{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "import sys\n", "import os\n", "if not any(path.endswith('textbook') for path in sys.path):\n", " sys.path.append(os.path.abspath('../../..'))\n", "from textbook_utils import * " ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "from sklearn.preprocessing import scale \n", "from sklearn.model_selection import train_test_split\n", "from sklearn.metrics import mean_squared_error" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Overfitting\n", "\n", "When we have many features available to include in a model, choosing which ones to include or exclude rapidly gets complicated. In the upward mobility example in {numref}`Chapter %s `, we chose two of the seven variables to fit the model, but there are 21 pairs of features that we could have examined and fitted for a two-variable model.\n", "And there are over one hundred models to choose from if we consider all one-, two-, ..., seven-variable models.\n", "It can be hard to examine hundreds of residual plots, to decide how simple is simple, and to settle on a model. \n", "Unfortunately, the notion of minimizing MSE isn't entirely helpful either. With each variable that we add to a model, the MSE typically gets smaller. Recall from the geometric perspective of model fitting ({numref}`Chapter %s `) that adding a feature to a model adds an $n$-dimensional vector to the feature space, and the error between the outcome vector and its projection into the space spanned by the explanatory variables shrinks. We might view this as a good thing because our model fits the data more closely, but there is a danger in overfitting. \n", "\n", "Overfitting happens when the model follows the data too closely and picks up the variability in the random noise in the outcome. When this happens, new observations are not well-predicted. An example helps clarify this idea." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example: Energy Consumption \n", "\n", "In this example, we examine a [dataset](https://www.key2stats.com/Utility_bills_1294_92.csv) that contains information from utility bills for a private residence in Minnesota. We have records of the monthly gas usage in a home (cubic feet) and the average temperature that month (degrees Farenheit).[^Kaplan] We first read in the data:\n", "\n", "[^Kaplan]: These data are from Daniel T. Kaplan, _Statistical Modeling: A Fresh Approach_ (CreateSpace Independent Publishing Platform, 2009)." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [] }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
tempccf
029166
131179
215224
.........
967611
975532
983991
\n", "

99 rows × 2 columns

\n", "
" ], "text/plain": [ " temp ccf\n", "0 29 166\n", "1 31 179\n", "2 15 224\n", ".. ... ...\n", "96 76 11\n", "97 55 32\n", "98 39 91\n", "\n", "[99 rows x 2 columns]" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "heat_df = pd.read_csv(\"data/utilities.csv\", usecols=[\"temp\", \"ccf\"])\n", "heat_df" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's begin by looking at a scatter plot of gas consumption as a function of temperature: " ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "mode": "markers", "type": "scatter", "x": [ 29, 31, 15, 43, 23, 71, 67, 72, 15, 64, 58, 48, 35, 16, 25, 35, 53, 69, 75, 72, 67, 46, 29, 25, 34, 47, 69, 72, 76, 69, 51, 45, 21, 48, 23, 28, 70, 51, 64, 76, 54, 37, 11, 75, 24, 64, 26, 18, 72, 72, 45, 66, 17, 56, 54, 56, 74, 69, 78, 72, 56, 21, 41, 30, 22, 34, 53, 59, 74, 78, 77, 64, 41, 30, 50, 24, 13, 38, 46, 65, 74, 76, 75, 68, 58, 41, 18, 28, 15, 45, 75, 55, 68, 67, 76, 55, 39 ], "xaxis": "x", "y": [ 166, 179, 224, 82, 208, 15, 15, 8, 242, 18, 35, 78, 144, 216, 204, 130, 48, 16, 14, 15, 18, 100, 153, 190, 126, 69, 16, 15, 16, 23, 60, 106, 190, 79, 210, 178, 1, 44, 20, 7, 37, 123, 235, 15, 228, 17, 194, 164, 13, 0, 74, 23, 224, 43, 61, 51, 9, 11, 11, 19, 32, 176, 99, 144, 161, 116, 52, 38, 10, 7, 6, 15, 101, 140, 47, 168, 191, 101, 77, 18, 7, 9, 6, 13, 28, 98, 182, 139, 191, 79, 12, 29, 6, 16, 11, 32, 91 ], "yaxis": "y" }, { "mode": "markers", "type": "scatter", "x": [ 29, 31, 15, 43, 23, 71, 67, 72, 15, 64, 58, 48, 35, 16, 25, 35, 53, 69, 75, 72, 67, 46, 29, 25, 34, 47, 69, 72, 76, 69, 51, 45, 21, 48, 23, 28, 70, 51, 64, 76, 54, 37, 11, 75, 24, 64, 26, 18, 72, 72, 45, 66, 17, 56, 54, 56, 74, 69, 78, 72, 56, 21, 41, 30, 22, 34, 53, 59, 74, 78, 77, 64, 41, 30, 50, 24, 13, 38, 46, 65, 74, 76, 75, 68, 58, 41, 18, 28, 15, 45, 75, 55, 68, 67, 76, 55, 39 ], "xaxis": "x2", "y": [ 166, 179, 224, 82, 208, 15, 15, 8, 242, 18, 35, 78, 144, 216, 204, 130, 48, 16, 14, 15, 18, 100, 153, 190, 126, 69, 16, 15, 16, 23, 60, 106, 190, 79, 210, 178, 1, 44, 20, 7, 37, 123, 235, 15, 228, 17, 194, 164, 13, 0, 74, 23, 224, 43, 61, 51, 9, 11, 11, 19, 32, 176, 99, 144, 161, 116, 52, 38, 10, 7, 6, 15, 101, 140, 47, 168, 191, 101, 77, 18, 7, 9, 6, 13, 28, 98, 182, 139, 191, 79, 12, 29, 6, 16, 11, 32, 91 ], "yaxis": "y2" } ], "layout": { "height": 250, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autosize": true, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "height": 250, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "margin": { "b": 10, "l": 10, "r": 10, "t": 10 }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.5, "xanchor": "center" }, "width": 350, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "width": 500, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 0.45 ], "range": [ 5.586166151608798, 83.4138338483912 ], "title": { "text": "Temperature (oF)" }, "type": "linear" }, "xaxis2": { "anchor": "y2", "autorange": true, "domain": [ 0.55, 1 ], "range": [ 0.9726530010384127, 1.9608342868102924 ], "title": { "text": "Temperature (oF)" }, "type": "log" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ -19.933075933075937, 261.93307593307594 ], "title": { "text": "Gas consumption (ft^3)" }, "type": "linear" }, "yaxis2": { "anchor": "x2", "autorange": true, "domain": [ 0, 1 ], "range": [ -19.933075933075937, 261.93307593307594 ], "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAFoCAYAAAAhG4EVAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQd0FUUXx//pDVIooYYWeu+9gxSlSsdPmogNERCkKIKCIiBdRJEmTUBQepMqnRBKaKF3EghplEBCEr5zN6a8bN7L7rx9LblzDgfImzvlP7s3vzfljt3r169fgxMrwAqwAqwAK8AKsAKsQLZWwI6hMFuPP3eeFWAFWAFWgBVgBVgBSQGGQn4QWAFWgBVgBVgBVoAVYAUYCvkZYAVYAVaAFWAFWAFWgBXgmUJ+BlgBVoAVYAVYAVaAFWAFePmYnwFWgBVgBVgBVoAVYAVYAVKA9xTyc8AKsAKsACvACrACrAArwFDIzwArwAqwAqwAK8AKsAKsAM8U8jPACrACrAArwAqwAqwAK8DLx/wMsAKsACvACrACrAArwAqQAtl6T2GpUqVw9epVm3wSHj9+DB8fHzg4ONhk+7VqNF3IExYWBl9fX62KtNly4uLi8Pz5c+m5yO6JdKBnI0eOHNldClStWhWHDx+Gh4dHttdCKwGePn0q+V53d3etisw25bx48QKvXr2Cp6enTfU5MTER4eHhyJs3r8XaTbrRs5crVy6TtYGhkKHQZA+XOQpmKExVmaEwVQuGwlQtGAq190QMheKaMhSKa8dQKK6dIkueKVQkk1VnYihkKMzoAWUoZCg0peNiKBRXl6FQXDuGQnHtFFkyFCqSyaozMRQyFDIUGn5FeaZQexfGUCiuKUOhuHbZFgoTEhJAS2Fubm6q1CO7ly9fKt47w1CoSl6rzMxQyFBoq1BoLj/HUKi962IoFNeUoVBcu2wHhZGRkZg6dSq2b98uqVazZk2MGTMG/v7+oAepcuXKOmrOnDkT7dq1k342b948zJo1SwLCWrVqpfzbkPwMheIPp7VYMhQyFNoaFBryc9SXbt264cyZMynd6tWrF7799lthP8dQqL23YigU15ShUFy7bAeFUVFRWL9+PXr37g1nZ2cJEOlnU6ZMQUhICDp37owDBw6kKOro6CidAAsKCsKgQYOwceNG5MmTByNGjICfnx+GDx9uUH2GQvGH01osGQoZCm0NCg35OepL8+bNMX/+fBQrVkzqmrF+jqFQe2/FUCiuKUOhuHbZDgrTS3XkyBFMnDhRmjkMDg7GyJEjsXnzZpmis2fPxpMnTzBu3Djps8DAQAwdOhQHDx5kKBR//mzCkqGQodDWoNCQn6PP6MtqQEAAvL29dbKK+jmGQu1dGUOhuKYMheLaZXsopJnC+Ph4jB07FkePHsWwYcPQpUsXaTawZcuW0mwgJfq8bNmy6NOnj/T/R48eoUGDBhJIGorjxzOF4g+ntVgyFDIU2joUpvVzsbGxqFixIj788EM4OTmhadOmqFSpEuzs7IT9HEOh9t6KoVBcU4ZCce2yNRTSN+VPP/0UGzZsQP78+SXQW716tRS08eLFi9i2bRsmT56Mtm3bYvDgwWjcuDG6d+8uqU2zhjVq1JD25SQHbJ0xY4ZsJGiJhmYVbTHRgRoXFxfpl0V2T+Rk1B5KyoqaUXBVchr0XGT3RF8m6QsDgVVmyZJBdNP7OTp88ttvv0lBkR8+fIhNmzahRYsWmDBhgrCfW758ubTawoGWM3sSlH9O7xn5Xlra56ROATXvprqSTZub/Al9aXN1dTVtRQZKN8bHK/VzVhm8+vr169KM4MKFC6XDJhmlFStWYMeOHaC/admYDqP069dPyhoaGopGjRrh8uXLsLe3l36WfHglbVlDhgyR9iPaYnr27Jnk5JP7Z4t90KLN9KKSFjlz5tSiOJsug5wtndrnX/6QnDclJYBsqS8USvwcrXa0b98ep0+flvZWi/g5Wkn5559/FEdlsOmXwEyNpy/l5Htp7zsndQoQUJOvstR7p661qbmt4XeN2ggrafuqVG+rg8L79+9LQEiOrEOHDnrH79ChQ9I3Z5oNpBk/OoiSfELv2LFj0v5D3lMo+vjbjh0vH6eOFd9okqqFtQevVurn6AtPtWrVpC/Au3btEvJzvHysvT/j5WNxTXn5WFy7bLd8TEvEPXv2xIABA9C1a9cU5ejb2JUrV6RlZNp8TflodpBmRCgszbVr16T8W7dulfLQDCCd3CMwNJR4T6H4w2ktlgyFDIUZPYvWDIWG/BzdaU5tL168uPT34sWLsXLlSukL7u3bt4X8HEOh9t6KoVBcU4ZCce2yHRSSA6R9gukT7YkhZzlnzhxpvyDtE6JZRILH3LlzS9mXLVuG5H2D1atXl2DRy8uLoVD8+bMJS4ZChkJbg0JDfs7HxwejRo2StsDQEiXtmX733XdRvnx5YT/HUKi9K2MoFNeUoVBcu2wHhUqkouUUOjyS0QELtevtPFOoRHHrzsNQyFBoa1Co5I0iIKTICRkdlFHr5xgKlSiuLg9DoTq90uZmKBTXjqFQXDtFlpaAwl8PXMepO1GwtwNqF8+N/g2SAtSqTTRzSrMKhkLuqC3TFvMzFDIUZkUo1PJdzFJQGLAQuHkQSIwHCtUAGhm+oEBLHdOWxVAorixDobh2DIXi2imyNDcUfrEuCGtP3tVp2/uNS+DLN8spam/aTAyFSWowFDIUMhQadh9ZBgr3TgL+nabb2UrdgC4LVftPYw0YCsUVZCgU146hUFw7RZbmhsKSY7chPvG1Ttt8c7rgxJctFbWXoVAuE0MhQyFDYTaBwjlVgYib8s5+GQo4uan2ocYYMBSKq8dQKK4dQ6G4dooszQmFz2LjUXH8Tlm73JwccGliG0XtZShkKDT0oHBImlR1rPn0seqX3UiDLDNTOLUEEBMuV2PkVcDD10iV1JkzFKrTK21uhkJx7RgKxbVTZGlOKKQGNZyyF/ciX+i0rVIhL2z+tKGi9jIUMhQyFCp7VRgKU3XKMlC4pC1w+4juA+CRFxh5TdlDoWEuhkJxMRkKxbVjKBTXTpGluaHwz5P3MHLd2ZS2OTnY46fe1dC6Qn5F7WUoZChkKFT2qjAUZkEovLoL+LMfEPc8tXPtZgA131P2UGiYi6FQXEyGQnHtGArFtVNkaW4opEaFPY3FhQdPQFcWV/Xzhpdb5nezZtQZPmiSpArvKUx9Onj5OFULhsIsCIXUpdinwL2ApNPH+SoCngUV+XqtMzEUiivKUCiuHUOhuHaKLI2FwsDbkQiJfgFvd2c0LJlHUZ1aZWIoZChM/ywxFDIUZuRfjF4+vncSiLoDuHkD/s21cmE2XQ5DofjwMRSKa8dQKK6dIktjoPDjlaew7VxISj0VC3lh9aC6yOHiqKhuYzMxFDIUMhTqf4t4plCjmcK/PwDOrk4tLG9ZoO9mIId5D3YY6y+1tmcoFFeUoVBcO4ZCce0UWYpC4aGrj/G/RcdldYxpWxYfNPFXVLexmRgKGQoZChkKlfgR4ZnCuyeARW/Iq2gyCmg2VknVWTYPQ6H40DIUimvHUCiunSJLUSj848QdjPnrnKyO3rWL4Pu3Kymq29hMDIUMhQyFDIVK/IgwFJ77E1g/UF6FhQJGK+mrufIwFIorzVAorh1Dobh2iixFoXDruRB8svKUrI6PmvpjVJuyiuo2NhNDIUMhQyFDoRI/IgyFdNp3ZTd5FbUHAW+mu1lESUOyUB6GQvHBZCgU146hUFw7RZaiUPjiVQJaTD+AB1G6MQf//qQBqvl5K6rb2EwMhQyFDIUMhUr8iDAUUuFzawDh6eIA0p7C4o2VVJ1l8zAUig8tQ6G4dgyF4topshSFQir8TkQMVh2/g3uRMcjl4YJ2lQugdvFciurVIhNDIUMhQyFDoRJfYhQUPnkABCwEIm8Cbj5AuY5AiSZKqs3SeRgKxYeXoVBcO4ZCce0UWRoDhYoqMGEmhkKGQoZChkIlLsYoKFRSQTbMw1AoPugMheLaMRSKa6fIMrtAIV2tN37TedCp6dcAGvjnwfgO5VEst4cinaw5EwevTh0djlOYqgWHpEnVgqFQew+mKRRe2QnsnwyEngecPYCKnYF2s7RvtJWUyFAoPhAMheLaKbLMLlA4YGkA9gY/0tGkUam8WP5ebUU6WXMmhkKGwoyeT4ZChkJT+i3NoDDxFTCtFPAiUre5TccATUebsgsWK5uhUFx6hkJx7RRZZhcoLPXldrxKSJRpcmPym7Cn+/ZsODEUMhQyFBp+gXmmUHsHpxkU0pV9C1vKG1i8CdB3k/YNt4ISGQrFB4GhUFw7RZbZBQr9x25DQiItHOum69+/CQd7hkJFD4sNZOLl49RB4plCnik05SurGRTqCxBOp7vplHcWTAyF4oPKUCiunSJLc0Mhgdm0nZdx8nYkiMXqlsiN4W+Ultp69m4Ulhy5hdvhz6W7lDtUKYjO1Qrp7YeagyZ9Fp/Av1fCdMqq758bq96vq0gna87EM4U8U8gzhdlopvDAVODmASAhHihcE2j+FeDklrmLCloLnF8HxEQAuYoDFGuxcK3M7fTk0AwK418C0/yB2Ge6NTX5Amj2pXD7rNmQoVB8dBgKxbVTZGluKPz0j9PYfPaBTtv+V7coRrcti4ZT9iIq5pXOZwv71kTLcvky7IsaKLwR9hzjNp7H4WuPpbLqlciNbzpWQOl8ORXpZM2ZGAoZChkKswkU7hwLHJ2n29mybwE9VxkWgA5yrOqum8fVCxgaBLiKxZXVDAqpVZc2AXu/A8KCAQdnoGIXoPMv1ux2jWobQ6G4fAyF4topsjQnFNIsIS3jpk+5PZwx+e1KGLQ8UPYZAeOkThWNhsLkAuJpCfk14Ohg20vGaQVhKGQoZCjMJlA4qxIQdUfe2bH3Aecc+kXYNgI48Zv88+7LgPIdFf2uSJ9JUyhMcdAvAUdXofbYkhFDofhoMRSKa6fI0pxQ+Dw2HhXG75S1y83JAT90qYTPVp+RffZ29UKY0b2qZlCoSBQby8RQyFDIUJhNoHBqCSAmXN7ZkdcAj7z6RdjwMXBmpfzzzr8CVXoKeTyTQKFQS2zPiKFQfMwYCsW1U2RpTiikBjWffgA3wnT3jtQo6oMJHSqg/dxDsjbTsvKHTfwZCg2MJkMhQyFDYTaBwmUdgRv7dTvrVRgYdsGwAEfmAru+kud5fy9QqIai3xXpMzEUCskmGTEUimvHUCiunSJLc0Ph9vOh+GLdWTx9GS+1zzenC2b0qIqGJfNg0tZLWHjwRkq7G5bKg6X9a8NRz+lgNXsKFYlho5kYChkKGQqzCRTeOQqsHwhE30vqsJM70GEOUKmbYQFeJwIrugLX96Tmq/sx0GaysNdjKBSWjqFQXDowFBohnhJTc0MhtSk+4TUuhkTDzs4OlQp56TQz9MlLPIh6AU9XJ5T0NbBHBgBDYZJ0DIUMhQyF2QQKk7sZchZIjAfyVVC3B+/xFeBFFECzi54FlfyK0JuHoVBcPp4pFNeOoVBcO0WWloBCRQ1TkImhkKEw/WPCcQpTFeE4halacPBqBQ5VZRaGQpWCpcnOUCiuHUOhuHaKLC0NhbHxiThw+RGexsajaC4P1Czmo6jdlImhkKGQoVD/68JQmE2h8Oo/wPMwwLMAUKKZYn+qNiNDoVrFUvMzFIprx1Aorp0iS0tCIcUOfGfhMYREv0xpa7eahTGtaxVFbWcoZChkKGQoVOIsssVMYXwssLgN8OBUqiT+zYF3/1Yikeo8DIWqJUsxYCgU146hUFw7RZaWhMJvN1/E4sM3Ze3c/lkjlCvgmWn7GQoZChkKGQozdRQAsgUUnlgAbBspl6PHcqBcByUyqcrDUKhKLp3MDIXi2jEUimunyNKSUPje7yex59JDWTsN3WKSNjNDIUMhQyFDoRJHly2gkELOUOiZ9Kn1d0C9wUpkUpWHoVCVXAyF4nLpWDIUaiSkvmIsCYUj/jyLdYH/hVZI08A/P6yHWsVyZdpzhkKGQoZChsJMHUV2mSk8OB3Y861cjk4/A1XfUSKTqjwMharkYigUl4uhUCPtFBVjSSjcfzkM/Zac0GlnFT9vbPykgaK2MxQyFDIUMhQqcRbZYqaQws3Mrw8kpLk/Pkc+4JPjgJvyA3xK9KQ8DIVKlZLn4+Vjce14plBcO0WWloRCauCR6+H45+JDPH35CsXzeKBv/WLI4eKoqO1KoTAq5hVyuDrqDYKtqDIrzsRxClMHh0PSpGrBp49TtcgWUEjdDT0HnPsTeP4I8CwMVHsH8CluEu9lNBS+jAbsHQFnD5O0z5oLZSgUHx2GQnHtFFlaGgoVNVJPpsygcMWx25iz5yoePY2FnR3QrYYfpnatbEyVVmnLUMhQmNGDyVCYDaHQjB5KGApvHgB2jAEe/nc1H4XN6TgP8CpkxtZbtiqGQnH9GQrFtVNkmVWh8F7kCzScslemwbh25fFeQ9N8c1YkuAkyMRQyFDIUGn6xss1MoQn8i74ihaHwp1oALXWnTRW7Al0XmbH1lq2KoVBcf4ZCce0UWWZVKNx1IRSDlgfKNGhfpSDm9qqmSBtbycRQyFDIUMhQaG5/JQSFT0OB6WXkTc1ZAPg82NxdsFh9DIXi0jMUimunyDKrQuH6U/fw+dqzMg3UHGRRJKAVZGIoZChkKGQoNLcrEoJCumllWkl5U2lf4dgH5u6CxepjKBSXnqFQXDtFllkVCv86dR/D155hKFT0FGSdTHzQJHUseU9hqha8fKz9Oy4Ehc8eAT+WYih88QIEN56emV/SoP3IiZeYmJiI8PBw5M2bV7wQIy0ZCo0UMDPzrAqFuy4+xKBlJ2Xd71ClIObw8nFmj4XNfs5QyFCY0cPLUKj9Ky0GhQ+BH0vLG+NZEBh+SftGWmmJPFMoPjAMheLaKbLMqlB4P+oFGvwgP2gyvn159G9QHFuCHmBLUAgoXE2x3O5SKBwlV+spEtXMmXj5OFVwhkKGQoZC8zggISikps2rA4Sl2z9YqRvQZaFuwy9vB4LWALTk7OUH1BwA+NU2T+dMXAtDobjADIXi2imyzKpQSJ3/48QdzN17DQ+iXsDJwR7dahTG929Xwp5Lj/De7wE6+vjmdMG/XzSDq5ODIt2sKRNDIUNhRs8jLx+nqsIzhdp7LGEovH0Y2DEWCPlve0+pN4AOPwE586c28u5xYFEr3UY7ugKfnQHoUIqNJ4ZC8QHMtlCYkJAAmvVwc3OTqUefvXz5Eh4e8qCfhj7LaBiyMhQm9/dZbLxOQOwv/z6HlcfvyORQeuey+ONsGkuGQoZCW4VCQ36OnusnT57Ay8tLlQ/kmULT+Jn0pQpDYXJBcTGAgyPg4Cxv8N5JwL/T5D830ZV95lEstRaGQnHFsx0URkZGYurUqdi+fbukWs2aNTFmzBj4+/tL/583bx5mzZolAWGtWrVS/p3ZZ/qGIDtAYfq+D119BhvO3JdJQnsNac+hrSWGQoZCW4PCzPzcgQMH8Nlnn0nd8vX1xS+//IISJUpk6gP1vbs8U6i9VzMaCg01acdo4Nh8eY43pwG1B2nfGTOXyFAoLni2g8KoqCisX78evXv3hrOzswSI9LMpU6YgKCgIgwYNwsaNG5EnTx6MGDECfn5+GD58uMHPDMmfHaHwp73X8OOuyzJZNn/aEJUKyWclxB9f81gyFDIU2hoUGvJztApSt25d/Pzzz6hfvz5WrVol+UT6Y8gHGnrbGAq190UmhcKTi4Etw+SNfvdvwL+59p0xc4kMheKCZzsoTC/VkSNHMHHiRGnmcPbs2dJyyrhx46RsgYGBGDp0KA4ePGjwM4ZCXQVexCWg75ITOHEzIuWDfvWLYUKHCuJPqgUtGQoZCm0NCg35OfJ5EyZMwK5du6RsBImVKlXC/v37sW7dOr0+kKHQvE7IpFBIXVnZFbj6T2qnqr4D0PJxFkgMheKDmO2hkGYK4+PjMXbsWOlP2bJl0adPH0nRR48eoUGDBggODpZAUd9nDg5JhyfoQUyfKleujCtX0l05JD5eZrWkeEne3t5I7p/ayi8+eIInL1+hoLcbiuRyV2tuNfkJCukeaEvGjrIWMWgfbkxMjPRcZPek5qCJHV0ObsGU1s/RSsiOHTswf37q8mHz5s3x448/SlAo4udoxpG+PGe0D9uC3bbpqk0OhaQO3Y/8IiLpcEnuDIJe26iC9LuYfq/nzJnTpnpAcQojIiKklUpLJYLCZ8+ewcfHR3UTlPo5u9f0W9UKU0BAAD799FNs2LAB+fPnx+DBg9G4cWN0795dai3NGtaoUQNnzpzBqFGj9H6W7Ag7dOgg6+WlS5dw+PBhK+x95k2iYVM6yJmXZts5WIvU8WMt1D/LtG/PUim9n1uxYgVOnTqFGTNmpDSpU6dO0jaZtWvXCvm5u3fv4u+//4a7u+1++bPU+HC9plHAVv2UNbRbtA1K/ZxVQuH169fRpUsXLFy4UDpsQolmA+nASb9+/aT/h4aGolGjRrh8+TLGjx+v9zN7e3u9T3V23FNomlfccqXy8nGq9hynMFULNTOFlnp6M/JzW7ZswebNm/Hrr7+mNItmCgkSaV+hPh9oyM/xnkLtR9gsM4XaN9sqSuTlY/FhyJbLx/fv35eAkJaL087u0XJKSEgIvv32W0nRY8eOYeTIkdKyiKHPDMnPUCj+cFqLJUMhQ2FGz6K1Q6E+P3fy5El88cUX2Ls3Kfg8/QKlbS60p3DTpk16faCh95GhUHtvxVAorilDobh22Q4KaZ9gz549MWDAAHTt2jVFOTqJfOPGDelnW7dulZaThwwZgmLFiklgeO3aNb2fMRRm/gCGRL/E3YgY5HB1RPkCtnUfJUMhQ6GtQaEhP0fPM+2Vnjx5Mpo1a4bFixdLMEjbaET9HENh5j5QbQ6LQGHsU+DRRcDeASiUtIJmi4mhUHzUsh0UkgMkZ5g+LV++XArTsGzZspS9NtWrV8fMmTNTgrsa+kzfEPBMITBlRzDm77+eIlH1Ij5Y0r8WvNycxJ9cM1oyFDIU2hoUZubnaLaQ9lDTyeNcuXJJ4WnogAklET/HUKi9QzI7FJ5ZCWz6DEh8ldQZOnzSdTFQtL72nTNxiQyF4gJnOyhUIhXfaJKkEp24pRNIoqePqYxrj56h5YwDMtkHNyuJEa3LKBkOi+dhKGQotDUoVPrSREdH840mSsUycz6zQ+H0MsDTUN1e+jcD3t1g5p4bXx1DobiGDIXi2imyNOVMIV0vFxObAF9PF1lbwp/FgaJg5PLI4IojRS3XBgr/ufgQ7y87KauxVfl8WNDHNpYnGAoZCrMqFCp0BZlms7qZQoIbZw/ARTAkSUwE8DoB8Mibad9NlcGsUEh6ERSmTzl8gRFXTdVFk5XLUCguLUOhuHaKLE0FhR+vPIVt50KkNuT2cMbwVmXwTp0iCLgVgXEbziM49Kn0WRU/b0x5uxLKCuzjSztT+PJVglSeq1NSTEalafelhxj4uxwKO1crhJk9qiotxqL5GAoZChkKDb+CVgOFgUsButf3eVhSg8t3BLotBez0R4jQ6Vn4VWDDJ8Dd40k/zlsGaDsVKNHU7D5ILxTGPgFcNNyXTeVRmuwn72Ou4sCQM2bvu7EVMhSKK2hRKKRftnQC7vjx49IG54sXL0p7XGhvS8mSJVG+fHl07twZbm5u4j20sKUpoHD27quYuVseEDvgq5Z4b2kAgu5F6/S6cem8WDagtmolCAofxjpiwuZLEmxSqlM8FyZ1qoRS+XIYLI/AdO3Ju4iNT4SDvR0SEnVDVc7tXQ3tK9vGPcgMhQyFDIU2AIUxj4GpSXfY66Qmo4BmY5X5v9W9geCtunnzlgU++Q8SlZWiSS4ZFB6YknRf8YtIwNULqPMB0OxL8bp2jQNOLgLinifNiLrnBsKCdctrOBRo+Y14HRayZCgUF95iUEjBU+nABwWGrlOnjhQbiy5kd3V1xc2bNyVIpM3Q9H8KHdOuXTsYipMlLoFpLU0BhQOWBmBv8CNZwxf2rYWBvwfIfu7m5IBLE9uo7ihB4Sfrr+J4muvqqJBGpfJg+Xt19Ja3/NhtabYyfapc2Au+OV3RtlJ+dKleWHV7LGXAUMhQyFBoA1B48wDwu/wCAZRsCfxvvTL3MbUEEBMuz/vFjSRoMmPSgcIb+4FlHeW1v7MOKPWG+lad/wtY119uV6UnEH0PsHcCSjQBGmZwP7L62sxuwVAoLrlFoDD5ppB3330XH3zwAfLly5dhD2hg6bL2uXPnplzeLt5Vy1iaAgoHLTuJXRcfyjpEs4F9Fp+Q/dzTzQlB41upFuDhozDUmSEvj2b+rn//pt7yPl97FutP3ZN9Pq93dbxVuYDqdljagKGQoZCh0Aag8PZhYEkGfql0G6D3GmVuZHpZ4GnSthydNPpO0uycGZMOFB6aCeyeIK+dZkBpJlRt2vklcPQnudVbM4Ba76ktzeryMxSKD4lFoJBO9z58+BAFCypbPqQgsXSPoZeXeV9KcVlTLU0BhUuP3MKETRd0mkfhXU6MbYFBywNx4Mp/+2n+y9GxakHM7llNdXcehT1GnenHkf6OQmdHe1yZ1FZveSP/PIs/A+VQOP+d6mhbiaFQ9UBYkQHfaJI6GNYevNqcj41V7ClMiAMI6tLP9LWZDNT9WJkcGwcDp5fr5i3aAOi/TZm9hrl0oPDwbOCfr+WlN/8KaDxSfa20dHxkjtyu3SygZgYziOprsKgFQ6G4/BaBwuTm0jVytERZrlw5KexJTEyMtMeQgkjXrl1bihto68kUUEiaTN91GVuCQvD0ZTxK58uBj5uVRMOSeRAa/RLfbbuE4zfDYW9nJ/1sQocKyOHiqFpKGpvhm67j3yuPdWxblsuHhX31nxymvYRfrAuS1XdkdHMU9La9/aE8U5g6lAyFDIUZORKrgEJqGC0h/zsdCLsEOOcEKnYGmo9T7vviY4FtI4Dre4CEeKBIXeCNbwCf4srL0CinDhTePgosyWALUN9NQPEm6mukfZO0fzJ9+vAQkL+S+vKszIKhUHxALAaFdMfm6NGjpZbnzp1buoh9woQJ0pVy9P/w8HBMnDhRun3ElpOpoNAcmhAUPocrJm0LxpHr4bAD0OA/yCzg5WqwCdN2XpaWkKN2IOxcAAAgAElEQVRjXqF4Hg980MQfNGNpi4mhkKEwo+eWZwpTVbEaKLRFB6OnzbKDJsd/AU4sAJ48SAosXWsgUO8T8R4fnA7QaW06qe1dJGk2tUY/8fKsyJKhUHwwLAaFbdu2BV3C3r59eyxZskSaHaSZw9WrV0t7DBcsWCD9CQwMNCp4srg02ljaOhQaG7xaGxUtWwpDIUMhQ6Hhd5ChUHsfZdY4hdo336IlMhSKy28RKAwJCUHjxo2lk8ceHh7SsnGVKlXQo0cPTJo0SeoNAWKjRo1w4MABxXsPxWUwnSVDoem0NVfJDIUMhQyFDIXm8jfJ9TAUiivOUCiunUWgMBn4KC6hk1PS/be9evVChw4dpL+TEwHV5s2bU+7kFO+m5SytGQpXB9zF6TuR0t7DmsV8ZGFitLjmznLKa1czQyFDIUMhQ6FRHiVgIfDgDODgBBRrCFTskmlxDIWZSqQ3A0OhuHYWgUL6JVutWjVMmzYNb7yRFGPpzz//RJkyZVC5cmXp/5GRkdJhk0OHDukNWSPebfNZWisUTth8AUsP39IRYnDzkhjRKvWqI4bCJHkYChkKGQoZCoV/a2z4CDizStf8jYlAgyEGi2QoFFYcDIXi2lkECqm5tI+QHvohQzJ+Mf766y/89NNP0mlkW07WCoXlvt6BF3FJV9clp/yerjg2tkXK/xkKGQrTv3t8+jhVET5okqoF7ynU81sq7hnwfSH5h/kqAB8dYSg00S93hkJxYS0GhYmJiQZvKKF9htQ4W4xNmHY4rBEKn8fGo8L4nbKnxsXRHpfTxB+0JiiMfB6HnRcfgv4u5OOGDlXMd5KZZwp5ppBnCnmmUOjX7JP7wIzyctOc+YHPL2d9KLxzDLh/MqmfhWomhfgxQ2IoFBfZYlCYvsm0XLxo0SI0adIEtWrVEu+RlVlaIxSSRPUm70FI9Esdtcrky4mdwxqbdaYwJi4B/1x8iOgXcSjk7Y4W5XxlI3g3IgZvzz+CsKexKZ/VKZEbawaZx8EwFDIUMhQyFAr/avmuAPAqRte8aH2g/3bbg0K6J/nyNuBFFODtB9BtMfrSkbnArq90P201Caj/qbCUSg0ZCpUqJc9ncSikK++WLVuG2bNno1WrVhg/fjx8feVgIN5Fy1paKxQuO3obX2/UvZ94evcqOodNTD1TeD/qBbr9chQPol6kDFLzsr5Y3E/3S8Gs3Vcwa/dV2UAu6VcLzcqa/llhKGQoZChkKBT+TXJoBrD7G13znquAsm/ZFhRG3U0KoE13Iyen0q2B3msz7gfNkNJMadrkWQgYflFYSqWGDIVKlbIiKKRBW7lypbRvsGHDhhg8eLBNnzLWNwTWCoXU3uthz3D+fjTs7OxQ1c8bRXK563QjGQofP3+Fc5QPQOXC3sib00X8iUtjOeOfK5izRw57KwfWkYJkJ6fR64NAJ6XTpx+6VEbPWn6atMVQIQyFDIUMhQyFRjmahxcA+mPvmLSE6pn59pcMD5rcPQ48ewh4+JptKTal3/u+Aw5MlcvQZxNQIt2tKgmvgImpPlzHaNzjpFPYJkwMheLiWmSmkGCjZcuWKFCgAGbOnJklYTB5SKwZCjN7bGic9t2Kwch153Sy0j3KWtxO8vnas9KtJ+nT9G5V0KVG4ZQf05V+c/dek+Wjq/boyj1TJ4ZChkKGQoZCU/uZ9OXLoHBlV+DqP6nZ/JsB724wX7M2fAic+UNeX6f5QNUMrsz7sXQSwKZNOfIBI66YvM0MheISWwQKY2NjsXTpUsyfPx/Vq1fHwIEDUa9ePWnGKqslW4fCrkvO4Va47n6Y0vlyYleavYeiY/b9tktY8O8NmTktH9MycnK69ugZOs47DDogk5wqF/bCpsENRatWZcdQyFDIUMhQqMppaJBZBwrPrQPWvycvtfMvQJXU2L4aVKu/iF3jgCNz5J/T8jEtI6dPNKtIs4tpU7MvgSZfmLSZVDhDobjEFoHC5ObSwP39998SHObIkQMffPAB3nzzTTg7O4v3yMosbRkKHzx8hPozA2SKOtjb4ep3baWg18YkWpJuP/eQThHlC3pi25BGsmLvRMRgx/lQRMbEobCPG7rX9IOTg70x1Su2ZShkKGQoZChU7DA0yqgDhf9OA/Ym3falkwiwCLTMkR6cBhY01a0pfyXgQ10frpPh6i7g3n+/QwrXAkq1MkdLGQqNUNmiUJjc7vj4eGzbtk2Cw9GjR0snkLNKsmUopOXjJnMDdWboaFx83J1x+uukoOPGpkshT7DjQiiiYl7Bz8cNPWsXQQ4XR2OL1dSeoZChkKGQoVBTp6KgMB0oPLEA2DZSbtX6O6DeYAWlaZTl4Xng0mYgJgLwKQpU7wu45NSocO2K4ZlCcS0tDoVHjx6V7j+mm0wodiEFx3V1dZV6RCeSBw0aBDc3N/EeWtjS1qFw9qEQLD92R0fFAQ2L4+t2GcTesrDWpqqeoZChkKGQodBU/kVfuTpQGHUH+KkWEJ8mjBgdWvnkBJDb39xNs/r6GArFh8jiUEhX3VEImr59++r0IiEhATVq1MDatWtRunRp8R5a2NLWodDHxwfLjt1F4O1I0GpxzaI+6Fu/mIVVNW/1DIUMhQyFDIXm9TqQbvxycHCAu/t/USFCzgCnVwFPHwAU/Jr2EhaqYe5m2UR9DIXiw2QxKAwPD8fZs2elO4+9vb1T7kCmrhAQ0p3HGzduREBAAJycTHt8XVy+zC2zAhSSY8rOiaGQoZChkKHQ3D6Q7z4WV5yhUFw7i0HhrVu3MHnyZL13G9esWRN9+vRB27ZtxXtnBZYMhVYwCEY2gaGQoZChkKHQSDei2pyhULVkKQYMheLaWQQKjx8/LsUoLFKkiBSahkLRpF8+Fu+SdVlmFyikU8Hfbr6Io9fD8RpA3RK5Ma5dOeTJoU2ga0uOKkMhQyFDIUOhuX2QplB4+wjw79SkANrOHkD5jkDLdLesmLuDJqyPoVBcXItAIYWeoSvtunTpIu0Z9PLyQuvWGcQ5Eu+X1VhmFyj8aEUgtp8P1dG9Zfl8WNinptWMhWhDGAoZChkKGQpF/YeonaZQOL0s8DREtyktJwANh4k2z6rtGArFh8ciUDh27FjpxDGFn5kxY0aGB03Eu2RdltkFCsuO24GXrxJ0xKc4htcnvyldj6ckXXjwBAv+vQ4KVp3T1QlvVsqPPvUsf6iFoZChkKGQoVCJD9Myj2ZQeP8k8FsLedNKNAP6GHkjypmVQNCfwItwwKc4UOcDoGgDLWUQKouhUEg2ycgiUEjLx//73/+kBhAcUgiavHnzZtiLP/74Qwpsbaspu0Ch/9htSEikhWPddO37N+FonzkWkmWDH/biQdQLnQKmda2CbjVTr7yzxHPAUMhQyFDIUGhu36MZFNJ9yYsyCBpdrCHQb6t4t67sAFb10LV3cgeGngM89Nx7LF6bKkuGQlVy6WS2CBRSC6Kjo7F7925s3boVLi4uqF+/foa96NGjh03fcGLNUPjrvzdw6nYkiNlqF8+F/g2K64wBBa+mkDRKTh/3XHAMx26E69jXKOqD9R9lPK7pB5tsqYz06a1KBTDvneriT7gGlgyFDIUMhQyFRrmSf38EHpwCHJyA4k2AmgMyLU4zKIx9CkwpDiS+0q2zwVDgDSP2FVIwbQqqnT51WwpU6Jxp/0yZgaFQXF2LQWFyk0+ePInQ0FC0a9dOvBdWbGmtUDh6fRBWB9zVUW5go+L46q3UoNRqoJCurBv71znQ35TourrvOlVCtSLeikZn/+Uw9FtyQpaX7kCmu5AtmRgKGQoZChkKhX3Qn32BC+mWaZuNBZqMMlikZlBItdAy755vgaf/7fsu+xbQdTHgmHRRhFDaOBg4vVxu2mk+ULW3UJFaGTEUiitpESikAduyZQs6deqkKAYhxSwsVKgQihfXnckS77b5LK0VCkt/tR1x8Yk6QtBJ4ZNftUz5mRooTDaKeB4nnT7O7aHu/uq7kTFoNGWfbGA+aVYSI1uXMd+AZVATQyFDIUMhQ6GQE3r5BPjBT26at0zSbSQGkqZQmFwPQaGzO+DiKdQdHaNjPwM7xsjLeX+vxYNqMxSKD6/FoLBZs2YSEA4fPhzNmzeXTiCnTTSop0+fxpw5cxAYGCgFsi5f3vauVrNGKIyJS0D5r3fInhoXR3tcnpQaFzIjKAwOfYrdFx8i+sUrFM3tjnfqFJVuOtEizd17DdN3XU4pisLa/NanJnK6WvYuZIZChkKGQoZCIR/35D4wI4PfW3Qjyeepvi6jshVD4dnVwKOLSbN+JZqY96DHHz2By9tTm19/CNBqopBUWhoxFIqraREopObSoC1fvhx0zR0lOnBSsWJF6Z7j4OBgaUmZUrdu3TB06FDphLItJmuEQtKx8dR9uBMRoyNphYJe2DqkYcrP0kMh7T98e/4RHZtaxXLhzw/raTY0T168ktqVw8URxfJ4aFauMQUxFDIUMhQyFAr7kB+KAi+jdM0J3vpsMlikIij8axAQtEa3nLd/Ayp3F26uasPIW0n98yxs8QMmyW1nKFQ9iikGFoPC5BbQgZOLFy+Cbji5ceOGBIvFihVDiRIlpDuPCxe27MlTcWmTLK0VCtcF3sOIP8+mdM/JwR5zelVD24r59ULh1xvPY9nR2zJJ1gyqizolchsrldXaMxQyFDIUMhQKO6jjvwLbv0g1p6Xb7ssA/2bGQSEtBU/PYGtNiaZAn43Czc0KhgyF4qNocSgUb7ptWForFJJ6j5/F4vz9J9Lyb5XC3vB2171jOv1M4ccrT2HbuXQBUAH8/E51vFmpgG0MiEArGQoZChkKGQoFXEeqCS0j020i9o6AX52kW0UySZnOFD48D8zPICagbzngY3kkh8zqy0qfMxSKjyZDobh2iiytGQoz60B6KJy45SIWHbopM6OwMxR+JqsmhkKGQoZChkJz+7dMoTDmMTDVX96sUq2Ad/40d3Otqj6GQvHhYCgU106RZVaCwisPn6LbL0elQybJKatcZWdoMBkKGQoZChkKFTl8DTNlCoVUV0axAnutBsqkHhjUsEk2UxRDofhQMRSKa6fIMitBIXWYlpz3Bj8CHQgpkssdrSqk7kFUJIgNZmIoZChkKGQoNLfrUgSF1Kjr+4CwS0mnj4s1AvKUMndTra4+hkLxIbEaKExISEBYWJisJ/ny5YOdVjFPxHUStsxqUCgshA0bMhQyFDIUMhSa24UphkJzN8wG6mMoFB8ki0NhTEwMfvjhB2zatAnPnz+X9YRuPEkfw1C8u+a3ZChUp3l84mvcjYiBh4sjfHO6qDM2UW6GQoZChkKGQhO5F73F2gwUPn/8X0iaQoCTm7llyrA+hkLxYbA4FO7YsQMTJkzAmDFjUKlSJdmsYNGiRWFvby/eQ40taUbz5cuXUlxFJYmhUIlKSXkWHryBaTsvI/a/m1boirtf3q0BZwfLjj9DIUNhdoNCtX6uatWqOHz4sGK/qNwrZN+cNgGF6wYA59enDhJd3UdX+Fk4MRSKD4DFoXDs2LHw8fHByJEjxXshYEnX7A0bNgxr1qxB9erVpRLoQapcubJOaTNnzky5l3nevHmYNWuW5Phq1aqV8m9D1TMUKhucB9EvUH/yXlnmIS1KYfgbpZUVYqJcDIUMhbYKhRn5OeoLXQpw5syZlG716tUL3377rfR/ET/HUKi987F6KDyxIOmgS/r0wb9AgSraC6KiRIZCFWKly2pxKCTIoqDVdJ2dudLEiRNx4sQJaQ8jOcAaNWpIVYeEhKBz5844cOBASlMcHR3h4OCAoKAgDBo0SLpuL0+ePBgxYgT8/Pyka/oYCo0fuQNXwtB3sfwu0BblfLGoby3jKzCiBIZChkJbhEJ9fo76QleLzp8/X7oogJKxfo6h0AgHo8fU6qFw06fAqWXy1nf+BajSS3tBVJTIUKhCLGuDwtu3b6NHjx74/vvvUbNmTXh6anBRdyZ67Nu3D3Xr1gV9Ox43blwKFNL1ejRjuXnzZlkJs2fPxpMnT6T8lOg+Zrp+7+DBgwyF4s9fiuWR6+Ho/Zs84GrbigUw/39JM7mWSgyFDIW2CIX6/Bz1hVYwAgIC4O3trdM1UT/HUKi9d7J6KNw6Agj4Td7xrouBil20F0RFiQyFKsSyNihcvHgxJk+erLcHpjxo0r59e2k/Y/JM4dGjR6Ul5S5dukizgS1btpRmAynRMnfZsmXRp08f6f+PHj1CgwYNpHuaaSZRX+LlY2UP56uERNSbvFcKeZM2fd+5EnrXKaKsEBPlYihkKLRFKExuc3o/FxsbK90z/+GHH8LJyQlNmzZN2c8t6ucYCrV3PlYPhZc2A2v+p9txOwdg+AUgp2VvuGIoFH8eLb58THceP3jwQG8P6tSpYxC6xLsOpHeWBHqrV69Grly5pPuYt23bJgFr27ZtMXjwYDRu3BjduyddNE6zhgSTtC8n+dDJypUrZc0h6Ey7d8eY9prblk6Gu7q6mu2gz+m70Vh05A6uP45BThdHtC6fF+/VtywQkuYEhaSF0sNF5h4nc9ZHBxDi4uLg5mYdpwzN2ff0dZEOlJydnTNthiWfnfR+jsbwt99+g7u7Ox4+fChFfmjRooX0BVnUz/3444/YuXMnvyOZPgnKMxC80yFLAndrTU6nl8DxwnrgRQReexfDq5oDkVC8ucWbS2CTmJgIFxfriGChVBBr+F1jjI9X6ufsXlNPrTCld5bpm7hixQrQ6Wj6m5aN/f390a9fPylbaGgoGjVqhMuXL6dA09KlS2W9/O6773D69Gkr7H3mTSIQol/+thwnMvNeKstB4ZKUPvDKSrTNXOQwyOHSl4XsnkgHcm1KoDBHjhwWkyszP0erHZSH/NSUKVOE/BwtO5Ov5HdEu2GmLx3ke60ZCrXrrbYlxcfHg3yVLUIhzXLSFzZLJYJp+kIi8sVfqZ/LFAppmnzZsmXSjBr9m5Zs6cBH/fr1TapLZs7y0KFD0jdnahdtyqaDKMkn9I4dOybtP+Q9hSYdIqsonJePU4eBflERIFPEgOyeSAd6NpQ6QkvplZmfe/bsGapVqyZB3a5du4T8HC8faz+6Vr98rH2XNSuRl4/FpbT48jE9+B07dsTdu3elE3GFChUCwdjNmzfx5ZdfpszMiXdRv2V6Z0nfmPPnzy9tvqalZJodJGKnsDTXrl1D165dsXXrVinPkCFDpJN7mYXS4T2Fphg585bJUMhQmNETZ6tQSL6N2l68eHHpb9rXTVtf6AsuHfwT8XMMhdr7JIZCcU0ZCsW1szgU0t4WCgtz5MgRnSnT33//HZMmTZL29plq+rxTp074+uuvU+IUUkwvCo1D+wWpzg4dOmDAgAHInTu3pDDNZs6YMUP6N8U2JFjM7LYVhkLxh3PFsds4cTMCia9fo6qfNwY2KqGqsOgXr7Dw4E1cffQUOVwc0aJcPrStqP6uZoZChkJbhsL0fo62vIwaNUraAkOB+GnP9Lvvvovy5csL+zmGQlWuSVFmm4TCixuBKzuA2GeAb1mg3ieAq+4Jd0WdPzgdCAkCHJ2BEs2Aqr0VmSVnYihUJZdOZotDIcX7o5O+o0eP1mkYvRAEXrR5uUQJdTAgLkeSJS2n0N6YjPbSqY30z1AoNhpTdwTj5/3XdYy71/LD1C66wcUNld755yM4fSdSJ8usnlXRqWohVY1iKGQotGUo1PewExBS5ISMvnSr9XMMhapciqLMNgeF59YC69/X7VvhWsDA3Yr6m5JpdW8geKuuTavvgPqDFZfDUKhYKllGi0MhbWymDc506jdtopnDvn37SkGjRTY8ikuirSVDoZie9X/YiwdRL3SM7e3scO37tqC/M0vn70ej3dxDsmytK+THr+8mBStXmhgKGQqzIhQqff6V5GMoVKKSujw2B4Wr3wGCt8g7qeaGk2ePgB9LycsoWB0YtE+xgAyFiqWyPiikQxx05VLv3r2l07y+vr44deoUVq1aJcUFNOdNJ+Iy6rdkKBRTtcL4nXgeGy8zDhrfCp5umYdoOHojHL0WyINh1y2RG6sH1VXVKIZChkKGQsOvDEOhKpeiKLPNQeHSt4Bb8i/i6LcFKNZIUZ8Rfg2Ym8GX9lwlgCHKo3gwFCqTO6NcFp8ppEZt374d33zzDcLDw1PaSKA4fvx4mztSnl5khkKxh7PDT4cQdC9axzi/lyuOjWmhqMB7kS/QcIr8LuXetYvg+7crKSojORNDIUMhQyFDoSqnoUFmm4PCzZ8BgfKwbBh6DvBWGG82IQ74viCQ8EpXwdKtgd5rFavKUKhYKuubKUxuEcXGefz4sRQkmELSGLolRLy75rdkKDSseUxcAv65+BDRL+JQyNsddNcxpTF/ncMfJ+7oGLcsnw8L+9RUPIjfbb2E3w7eSMlfyMcNS/vXRilfdTHjGAoZChkKGQoVOx6NMlolFMY9By5vA15EAd5+QOk2qb09+wfw94e6vc9TGhgcoE6RQzOB3RNSbVy9gJ4rlc82AmAoVCd52twWmymkQbPlvYJKJWco1K/U/agX6PbLUZ29g83L+mJxv1p4Y8YBXH30TMfY09UJQRNaKZVeynf54VPcevwc7s6OaFAyt6L9iOkrYChkKGQoZChU5Xg0yGx1UBh1F1jSBoi+l9q7tDN4fw0CgtbIe05QSHCoJkXcAB5dAhycgaL1AGd1X+QZCtWIrZvXIlBIF7HTHsL169dLp4sXLFigtwemvPtYXDbllgyF+rWa8c8VzNlzVZZh5cA6GLQ8MMM9hWfHt4KXgj2Fykco85wMhQyFDIUMhZl7Cm1zWB0U7vsOODBV3sk+m4ASTQB9ewr7bgGKK9xTqJGEDIXiQloECmnAjh49igYNGkjR8y1197G4bMotGQr1a/X52rNYfyrNt87/sk7vVgU/7buGm4+f6xi7Ozvg4rdpliuUD4NRORkKGQoZChkKjXIiAsZWB4UbPgTO/CHvSaf5SXEE170HnF8n//zjY4BvOQEFxE0YCsW1swgUpm3u/fv3pThZdOo4faKbTerVq2fT+wsZCvU/nN9vu4QF/6bu+UvOScvHN8KeYdLWSzrGHzX1x6g2ZcWfdkFLhkKGQoZChkJB9yFsZnVQuGsccGSOvD90AISWka/tBlZ00f287FtAz1XCGogaMhSKKgfpbnt69nLlyiVeSCaWBu8+njZtmgSEFJMwfaIwB3/99ZfZg1drqQRDoX41z92PRvt0sQTLF/TEtiFJSw0Hrz7GydsRSEwEKhf2whvl82k5NIrLYihkKGQoZChU7DA0ymh1UPjgNLCgqW7v8lcCPkwThibkbBIcxj1L2kdYpZdGaqgrhqFQnV5pc1sMCiliPt0cMnv2bOlGk3feeSelXfQZzRJ+/vnn4D2F4oNrrCWdBvfx8THpTO2lkCfYcSEUUTGv4Ofjhp61i0hX0llTYihkKGQoZCg0t0+yOigkAR6eBy5tBmIiAJ+iQPW+gEtOc0uTaX0MhZlKpDeDxaCQglb369dPupBdXxo4cKB0R6ctJ54ptOXRS2o7QyFDIUMhQ6G5PZlVQqG5RRCsj6FQUDhYePmYiHTSpElwdXVFx44ddXpRrFgxuLu7i/fMSiwZCq1kIIxoBkMhQyFDIUOhES5EyJShUEg2yYihUFw7i80UJjc5KipKClhdsGBB8V5YsSVDoRUPjsKmMRQyFDIUMhQqdBeaZWMoFJeSoVBcO4tDITU9KChIilV48eJFREREwN/fH23btpX2Gdp6gGuGQvGH01jL/ZcfYfaeqwgOeQoPF0e0q1wAEzpUUF0sQyFDIUMhQ6Fqx2GkQbaFwnsngT3fAPcCAEdXoExboMNcwF75XnOGQvGHz+JQGBYWhvr166NkyZJo0qQJ8uXLhxMnTmD37t1o164dZs6cKd47K7BkKLTMILxKSETNSbsR/UL3Ds2Rrcvgk2YlVTWKoZChkKGQoVCV09Agc7aFwnl1gLBgXQVrDwLenKZYVYZCxVLJMlocCn/44Qfs2rUL//zzj84p1y1btmDYsGESINIJWFtNDIWWGbmTtyPRdf4RWeWNSuXF8vdqq2oUQyFDIUMhQ6Eqp6FB5mwJhVG3gVmV5erlLQN8ckKxqgyFiqWyPiik08UUkmbkyJE6jaN9hlWqVMGePXtQpEgR8R5a2JKh0DIDEHArQrpXOX1qWDIPVgyso6pRDIUMhQyFDIWqnIYGmbMlFEbeAmZXkauXpxQw+KRiVRkKFUtlfVD4559/4rfffpPuQLazs0tpIM0UfvXVVwgMDDRpnDxx6ZRZMhQq00mrXDvOh2LDmfsIexqLM3eikPD6tU7RQ1qUwvA31F3OzlDIUMhQyFColY9SWk62gsJbh4HAJcCTewAFwI6L0ZWpep+kfYUKE0OhQqEyyGbx5ePg4GApXiGlZs2aSaeQ79y5gw0bNqBVq1agW03olzIluiu5QgX1BwXE5THekqHQeA2VlnDsRjh6Ljimk52+Z9DjY29nhw5VC2JWj6pKi0vJx1DIUMhQyFCo2nEYaZBtoJCWjGdXA14nZKwYHTSh+5XdlG8jYygUf/gsDoUrVqwAzQoqSQMGDJBA0ZYSQ6H5RuuH7cH45cB1WYWT366EHrX8JDAUSQyFDIUMhQyFIr7DGJtsA4WBS4HNn8mlavQ50HQM4OCkWkaGQtWSpRhYHArFm24blgyF5huncRvPY/nR27IKv+tcCe/U0d2Xejn0KbYEPcDjZ3Eo6O2G7jULI5+na4aNZShkKGQoZCg0nydLqinbQOHRecDOsXJ56w8BWk3U/fn1vcC1PcCrGMC3LFD7gwyHhaFQ/Gm1KiikgUyfOE6h+OAaa2mOu4+NbWNa+9+P3sL4jRdkRf4xqC7qlcid8vNrj57hzdkHEZeQmPIzPx937BrWGG7ODjJ7hkKGQoZChkItfZWSsrINFF7dBazsJpek409AtXdTf35uHbD+Pd18pdsAvdfIbBkKlTxhGeexOBTSKePZs2dj27ZtCJbqr3kAACAASURBVA0NlbXy5MmT8PLyEu+hhS15ptC8A9BvyQnsvxyWUmmv2kVAy8dp05w9VzHjnyuyhs3uWRUdqxZiKDQwZHFxcdJ95bYcJkqrJ5J0oC8MOXLk0KpImy2H9n4fPnwYHh4eNtsHa2t4toFCEn7DR8CZValDUOZNoNcfukNC4EgAmT59egrI7a/zU4ZC8afZ4lBI+wnp/uMhQ4agbNmysLe31+lNpUqV+PSx+PgaZWlrM4XJnb3y8CmiYl4hv5criuSS3589YfMFLD18S6YN3XbSr34xhkKGQkXvDUNhqkwMhYoeGVWZshUUkjIRN4CnIYB7HoDiEqZPvzUH7gfKfz5wD1C4JkOhqqdLf2aLQyHFJ/T19ZXFKdSofxYvhmcKLT4EsgYsPHgDk7Zekv18QZ+aaFU+H0MhQ6Gih5ahkKFQ0YMimCnbQWFmOq3rD5z/S55r+CXAsyBDYWb6Kfzc4lD4yy+/gJaIFy5cqLDJtpWNodD6xuvpy1foOv8oLj98mtI4Q0GteU9h6hjy8nGqFgyFDIWm9G4MhenUvX0EWPE28CrN2YM6HwBtp8qGgZePxZ9Mi0Mh3X3co0cP1KlTR4pDSHcfp03Vq1fn5WPx8TXK0laXj5V2eueFUEQ8j5OWmZuV8dVrxlDIUJjRw8FQyFCo1NeI5GMozEC1Z4+AmweSTh/nKQ0UqZehtAyFIk9cko3FofDu3bvo3bt3hodMqIF80ER8cI21tFUozGxPoVpdGAoZChkKDb81vKdQrVfJPH+2g8LM9hRmLllKDoZCFWKly2pxKKSTx1u3bsX06dNRpkwZ2UETR0dH8d5ZgSUvH5t3EJScPlbbIoZChkKGQoZCtX7D2PzZCgqVnD5WIShDoQqxrA0KR40ahQIFCmDo0KHivbBiS4ZC8w2O0jiFalvEUMhQyFDIUKjWbxibP9tAodI4hSoEZShUIZa1QeGaNWuwdOlSbN++XbwXVmzJUGi+wVFzo4maVjEUMhQyFDIUqvEZWuTNNlCo5kYThcIyFCoUKoNsFl8+Dg4ORs+ePUHwRIdNPD09dZrZt29fuLi4iPfQwpYMheYbAH13H8/sURWdq8mDUittGUMhQyFDIUOhUn+hVb5sA4X67j6me4+bjhaSk6FQSDbJyOJQuGLFClAAa31p0aJFNh0ln6FQ/OFUa3nsRjh6LjimY+bu7IADI5shb07xLxYMhQyFDIUMhWr9kbH5sw0URt0GZlcDXifoSpZBUGqlmjIUKlVKns/iUCjedNuwZCg07zjtOB+KDWfuI/xZHPxyueF/dYqielEfoxrBUMhQyFDIUGiUExEwzjZQSNrcOgwELgGe3AM88gFVegFl2giolmTCUCgsneVnCuPj46VG6Etubm7ivbMCS4ZCKxgEI5vAUMhQyFDIUGikG1Ftnq2gULU6hg0YCsUFtfhM4bRp07BgwQK9PeA4heKDa6ylrcYpNLbf6e0ZChkKGQoZCrX2K5mVx1CYmUL6P2coFNfO4lB4//590K0myYlmDulndP1d69at8dlnn8HOzk68hxa25JlCCw+ABtUzFDIUMhQyFGrgSlQVwVCoSi6dzAyF4tpZHAr1NT0gIEC66eTChQtwdnYW76GFLRkKLTwAGlTPUMhQyFDIUKiBK1FVBEOhKrkYCsXl0rG0WiikhpUvXx67d+9G0aJFNequ+YthKDS/5lrXaCwULjt6GwevhiE2PhEVC3nh0+Yl4ebkoHUzzVJeXFwc6M5fHx/jDu+YpbEmroTvPk4VmK+50/5hYygU11T1TOH9QIBC40TfBTzyApW7AyXfEG+AoGViYiLCw8ORN29ewRKMN7NKKIyNjcXff/+NH374AYGBgXBwsM1foDQ8DIXGP6SWLsEYKPx53zVM3XlZpwtNSufF7wNqW7pbQvUzFKbKxlDIUCj0Eik0YihUKFQG2VRB4bOHwJxqQNxz3ZIG7gYK1xJvhIAlQyGAn376CQsXLtSRj5wtJdpPOHjwYAFprceEodB6xkK0JcZAYbu5h3D+frSs6hNjW8DX01W0SRazYyhkKMzo4eOZQu1fSYZCcU1VQeGZVQDdvZw+NR4JNP9KvBEClgyFAC5evIgbN27oyEdhaGrXro2cOXMKyGpdJgyF1jUeIq0xBgqbTtuPW+HpvoEC2DeiKYrn8RBpjkVtGAoZChkKzfMKMhSK66wKCk/8Cmz7Ql5Z3Y+ANj+IN0LAkqFQQDRzmCQkJODly5cZ3qRi6LOM2sZQaI4RM20dxkDh+8tO4p+LD3W/9Dg54Pw3reFgb3un6hkKsw4U0nP95MkTeHl5yV4gtX6OZwq190EMheKaqoLCa3uAFW/LK3trOlBroHgjBCwZCgEEBQXhxIkTGDgwSfxjx45h+vTpyJUrl7R8TIdNTJHoar1hw4ZhzZo1qF69ekoV8+bNw6xZsyQgrFWrVsq/KYOhz/S1kaHQFKOnfZk7L4TietgzuDs5olHpPPDPmyOlkrRQuOviQ1x79AxuTvZoWDIvSuVLzZdRq07ficSHK07h4ZOXKR+Pb18e/RsU174TZiiRodC2oFCfnztw4IDkXyn5+vpKIcBKlCgh/V/EzzEUav/yMRRmomn4deDabiDuGZC7JFC+Y4pBChQ+PgWEnAHsHAC/OoCfnr3cfw0CgtakVujfDHh3g/aDmkmJDIUA6G7js2fPYs6cOdLVNPXq1UOTJk2kb68EjBs2aD8wEydOlECU4iOSA6xRo4Y0VFTfoEGDsHHjRuTJkwcjRoyAn58fhg8fbvAzQ+PMUGj290p1hUPXnMGG0/d17Fa8VwcNS+WRfpYMhVMPhGBd4D2dfEv710bTMoZPir1+DZy8HYG4+ESUypcTJ29FIOxZLPLldEWbivlVt9eSBgyFtgOF+vwcrYLUrVsXP//8M+rXr49Vq1Zh/fr10h9DPtDQc8dQqP1byVBoQNPbh4Elb+pmqNAZ6LZU+hmxhP2BH+BybJZunrdmALXey7jgR5eApyFA7FPgZRSQmADkrwwUrqn94OopkaEQwMiRI1GmTBlpppCcEjmyo0ePSieOK1SoAIpX6O3tremg7Nu3T3KKvXr1wrhx41KgcPbs2dJyCv2MEp18Hjp0KA4ePAhDnzEUajo8Zi2M9vvRvr/0qV3lAvipd9IMMkFh0PV76LgwSJavTYX8+OXdpC8VmSUKSdP558O4+OBJStaqft7Y8EmDzEyt5nOGQtuBQn1+7siRI5gwYQJ27doldYYgsVKlSti/fz/WrVun1wcaeggZCrV/RRkKDWj694fA2T/kGT4+BviWk6DQdWZJ2NEsYtrkWw6gPPoSzRbSrGHaRIdN6NCJGRJDIYD58+cjMjISo0aNQrt27fD222/j/fffl+QnR7N582Zpts4UqX379pJzTJ4pHDt2LMqWLYs+ffpI1T169AgNGjRAcHCwBIr6PjMUModnCk0xctqVGXArAt1+OSorsGZRH6z7qL70c4LCfUE3MeCPS7J8pXxz4J/hTRQ1aNXxOxj79zlZ3hndq+Lt6oUUlWHpTAyFqSNgKyFp0vs5WgnZsWOH5HuTU/PmzfHjjz9KUCji5xgKtX8zGQoNaLqsA3DjgDxDn41AiaZ4GfEArnPKyT93cgO+DNVf8IKmwIPTup875wDG6q4kaT/aSSUyFAI4d+6cBIIEfhEREaC9LrR0fPv2bXTs2BGnT5822TV36Z0lhb9p3LgxunfvLg0QzRoSMJ45c0aCVn2f0f5DSl27dpU9K7Q0Tt/MbTHRA2pvb2+LTVfc5juRL9FlsXwGsEXpXPihfcmUcoIePMV7GUBhLncn7PyomqL65h+6h8XHH8jyftywMPrXKaioDEtnIkCmP1n9uVCiM+lASck1nJYMRpvez61YsQKnTp3CjBkzUrrZqVMnaZvM2rVrhfzc9evXpa0+7u7uSqTjPAoUUPN8KSguS2XJuftzuF7eKOtTZM+tiM9dRvJRvj+Xpq/0Onle2zvh8UfyL/fJmXIvqgX7l5GycsP7H0Oie9J2IlMnS//eNcbHK/Vzdq+Tn249at67dw979+6V9hIm315Cs3OXLl1C586dTTYG6Z0lzQb6+/ujX79+Up2hoaFo1KgRLl++jPHjx+v9LPkXZHS0PB5dzZo1JXtbTATpBOi2HDxcie6D/ziNbed0vz0u6lsTzf7bK0iP7+aTNzD07yuy4nK4OCJovLLI90sO38LErXKH9F3niuhVyzSz4Ur6ryYPRbuPiYnJ8MSqmnKyQl7SgZ6N5C+FhvpkSYhO7+fo8AmtwPz6668pTaaZQoJE2sKjzwca8nNNmzbFv//+q0iLrDD25ujDs2fPJN9LIdo46Spgd/MA7JZ30gW+Mm/idY+V0s9iI0PgNjeDQ6p29kgcF65XTvv5dYGwdL+v7eyQ+OVDwN7J5MNAQEgrp7lz5zZ5XfoqiI+PBz17Itv2lPq5TKHQUr1P7yxpOSUkJATffvut1CQ6CU17HmlPoaHPDLWfl48tNbrq6t145j6uPXoOd2cHNC6dFxUKeqYUQL/4Vx++jDFbrssK9XR1QtCEVooqC41+ibZzDiLyeVxK/vyertg+tBF83G3jfm9ePk4daltdPj558iS++OIL6Ys4Jdp/VblyZWlP4aZNm/T6QEMPOS8fK3IBqjLx8nEmcj28AFz7B4h9BuQpBVTukWLwMuIeXOdUkBdgZw+Ml88EpmQ8MhfYlS5gde33gTd/VDV2opl5+fg/5WhGju44vnJFPhMzZswYk31TSg+F165dk5aAt27divz582PIkCEoVqyYBIaGPmMoFH0FbMOOoDDg8l10XyrfD1gmf07sHNpYcUfuRsRg45kHCHsai3xeLuhcrTAKeNnOzSYMhbYPhRSDkPZKT548Gc2aNcPixYslGKTlX1E/x1Co2AUozshQqFgqWcYXz5/CbVpheQGuXsDoO4YLvrwNuH0k6fRxwao6sCneImWWDIWAtLRKB0wIwiguYPqlSpq1M9X0Oe2j+frrr3XiFC5btixlrw3FL5w5c2bKUpmhz/QNOc8UKnsZrDlXckiaIRtu4NgN3aWHKV0qo4eNLP1qoTFDoe1BYUZ+jmYLaQ81nTymmLAUnoYOmFAS8XMMhVq8XbplMBSKa0qz345bhsDpwlrdQhqNAFokRRexxsRQCEjOiA6T/Pbbb1YzRnyjSdJQPH78GD4+Pll+T2FmD14yFObwzo0F/97A5dAncHd2lOITtq9iGwdEMuuj0s8ZCm0PCg2NLe2D5htNlD795s3HUCiud0rw6vPLgPsnAXsHoGgDoOYA8ULNYMlQCICWh/PlyyfFA8yKiWcKbX9UjbnmzvZ7r9sDhsKsBYVaPZ88U6iVkqnlMBSKa6rqmjvxajS3ZCgEpH0sdJsJ7SlUenJF85EwYYEMhSYU1wRFv4hLkGIJ7g1+JN1AUqOYD0a3KQtfp1jpOrDsnhgKGQozegcYCrX3DAyFKjTdOhy4uBGIey7dQhJb/3PEFqoHT8/UA4MqSrNYVoZCQAoMTSFgaE8hbX5Ov5TRt29fuLi4WGyQjK2YodBYBc1rP3p9EFYH3NWplE4iL+lZhqEQAEMhQyFDoXl8EkOhQp33fQ8cmKKT+bWHL55+EMhQqFDCtNko7Bg9e7TX2FTJYEgaCqRKcbP0JbobWUkcMFM13thyGQqNVdC89o2m7gOdEE6ftn1QFeWL28atI6ZUjKGQoZCh0JRvWGrZDIUKdV7SNum0cLr0/J2t8CjVUGEh1pGNZwqtYxxM2gqGQpPKq3nhDX7Yi/tRL2Tlbh1UBRVKZBDiQPMWWHeBDIUMhQyF5nlHGQoV6ry4NXBHfp/x895b4FG6kcJCrCMbQ2GacThx4oR05R0FhC1UqJAUP8uU05fmegQYCs2ltDb1DFtzBn+f1r3nsqRvDqz6XzlePublY52HzFaCV2vzZhguhfcUaq8yQ6FCTf8ZDxyepZP5tYsnnn50Fp7eplsCVdg6VdkYCgFQ+Jdhw4Zh+/btknjFixfHzZs3pSVjukWkXr16qkS1tswMhdY2IobbQ0Glv1gXhH2XH0kZKxbywpdvloV/zkSGQoZChkI9rw9DofZ+jqFQoaYUZPqv94Hz65MM8pRCXMPReFmiFe8pVChh2mwW31P4119/YdSoUfjjjz9QrVo1KSZeWFiYFDSarmE6cuSITZ9KZigUeCqtwCQuIRHxCa+la+84JE3qgPDycaoWPFOYqgVDofZOi6FQpaYEh/EvAOcc0tWNBDd8+lilhoCkm0UPmowdO1aaLZwyRff00P3790GXrO/btw+FC9vuXi6GQvUPpbVZMBQyFGb0TDIUMhSa0lcxFIqry1Aorp3FoXD8+PGIiorC7NmzdXpx/fp1tGnTBseOHUPu3LnFe2hhS4ZCCw+ABtUzFDIUMhQafpF4plADR5OuCIZCcU0ZCsW1szgU0l7CIUOGYNasWahfv7403Xvp0iXMmzcPISEhUnBrW04MhbY8ekltVwKF0S9eYcvZBwh7Fod8ni7oXK0QXJ0cbL/z6XrAy8epgvBMIc8UmvIFZygUV9cgFD65DwRvAWIiAe8iQNXe4hVpbMkHTf77hTtx4kQsX75cR146cLJkyRLpJLItJ4ZCWx49ZVAY8TwOHX46hHuRqaFsSufLiS2fNoSzo73tC5CmBwyFDIUZPdA8U6j9a85QKK6pXih8fBVY2AJ4GZ1aeJG6wICd4pVpaMlQmEZMOnFMt5vExMSgTJkyKF26NJydnTWU2zJFMRRaRncta81spnDJ4Vv4ZvMFWZXTu1VBlxq2ux82Iw0ZChkKGQq19C76y2IoFNdZLxTumQgc/FFe8DvrgFJviFeokSVDIYAHDx5Ip4vpmru0KTo6GnTYpHz58hrJbZliGAoto7uWtWYGhVN2BGP+/uuyKke1KYuPmvoj8nkcTtyKkO5SLpM/J2gWMaMUFfMKJ26GIzY+EaXy5UTZ/Bnn07JvastiKGQoZChU+9aI5WcoFNONrPRC4caPgdMr5QV3nAfkKg48eQC45wb8m+vmCb8OhAYBdvZA4VqAZ0HxxhmwZCgEMG3aNNy9exdz5szRkerixYvo2LGjNHtIYWpsNTEU2urIpbY7Myg0NFPo6+mK95edxMtXCSkFDn+jNIa0KKUjzNHr4Xjv9wDExKXm+6xFKQx7o7RVCchQyFDIUGieV5KhUFxn1TOFhWoC90+mVlioOtB/O+DoChz/Fdj+hW5jui0FKnQWb6AeS4ZCQApc7e/vj8GDB+vIFBsbi4oVK2LXrl1SQGtbTQyFtjpyyqHQ0J7CQctPYv/lMB0R7O3ssLR/LRT0dgPdlkKp2y9HEXArQibWhW9aw8PF0WpEZChkKGQoNM/ryFAorrOqPYV5ywBhl+WV1fkAaPYVMLM8EPtU9/NcJYAhp8UbyFD4+rU+9aZOnYqDBw9i8+bNOlkOHTqE/v374+TJk/Dy8tJcfHMVyFBoLqVNV09mM4VUs77Tx02n7cet8Od6G9e+SkHM7VUNFcbvxPPYeFk+OqxCt6pYS2IoZChkKDTP28hQKK6zqtPHBHzpZwKTq7Z3ACgodvpEP/9a/iVevMVJljxTCODMmTPo1q2b9IeCVRcsWBCnT5+WTiPT/ym4tS0nhkJbHr2ktiuBQn297DjvMM7ejTIowi//q4Gha87oLDEnG/zxfl3U87eeOJ0MhQyFDIXm8WkMheI6q4pTGLQG+GuQuspob+H4SHU2CnIzFP4n0tatW0FhacLDw1Nka9myJb799lvkzZtXgZTWm4Wh0HrHRmnLjIHCJYdv4pvNFw1W9UXrMvjjxF3cjYyR5Tsyurm0zGwtiaGQoZCh0DxvI0OhuM6qoJDC08yrDTwNVV6hiycw5q7y/ApzMhSmEYrEePz4MZ48eYICBQrAw8NDoYzWnY2h0LrHR0nrjIHC0Ccv0WfRcVx5+ExvVRM6VEBC4mtM3KILj03L5MXS/rWVNNFseRgKGQoZCs3zujEUiuusCgqpGlo+DlgEJMq38GTYiobDgJYTxBuox5KhUHNJra9AhkLrGxO1LTIGCj9fexbrT90zWOXeEU1RIo8H1p68i4NXHuNlfALKF/TEJ01LWl3wa4ZChkKGQrUeRCw/Q6GYbmSlCgrvHgcWtdJfWfkOQMHqSaeT7RyAYg2B2iqXmxV2haFQoVC2nI2h0JZHL6ntxkBhsx/34+Zj+UGTqn7eKJbHAz1q+lnVnsHMRouhkKGQoTCzt0SbzxkKxXVUBYUBC4Gtn8sr8yoMVO4BNBsL2JsnAgRDofiY24wlQ6HNDJXehhoDha1m/osrD9OFMwBweFRzFPKxnr2CSkeJoZChkKFQ6dtiXD6GQnH9VEFh4FJg82fyyhp8BrzxrXgjBCwZCgVEszUThkJbGzF5e42BQtonuOjQTZ1CKxT0xNYhjWxSGIZChkKGQvO8ugyF4jqrgsKwYGBeHXllvdcCpVuLN0LAkqEQQFBQEE6cOIGBAwdKEh47dgzTp09Hrly58Nlnn/E1dwIPllYmdPDHx8fHpm+U0UILY6CQ6v9643nsCX6E2FeJoGXjEa3LSFfY0bLy7D1Xcf5+NNycHNCiXD4Mbal704kW7deyDIZChkKGQi3fKP1lMRSK66wKCqmaoLXA8V+A6LuAR16g2rsALR+fXAxE3wdy5gOq/S9pOdmEiaEQwKJFi3D27FnpmjsayHr16qFJkyZSwGoCxg0bNphwCExfNM8Uml5jU9dgLBTqa99bcw7iwoMnOh9ndAWeqfunpnyGQoZChkI1b4x4XoZCce1UQ2H6qh5dAn6uK29A/x1A0XriDcvEkqEQwMiRI1GmTBlppnD9+vVSvMKjR49Ks1MVKlRAQEAAvL29TTYIpi6YodDUCpu+fFNA4Y2w52g+fb+s8dWKeOPvjxuYvlOCNTAUMhQyFAq+PCrNGApVCpYmu9FQeOI3YNsIeQOajgGajhZvGEOhpIDda/qtqifNnz8fkZGRGDVqFNq1a4e3334b77//vpS7atWq0vV3fn5+JhsEUxfMUGhqhU1fvimgMDj0KdrM+lfW+HIFPLH9M+vdb8hQyFDIUGh6n0M1MBSK62w0FB6ZC+z6St6AhsOBluPFG8ZQmDkUnjt3TgJBAr+IiAgcOHBAWjq+ffs2OnbsKF15Z2dnZ7JBMHXBDIWmVtj05ZsCCuMTXqPyNzsRE6d7r2b3mn6Y2rWy6TslWANDIUMhQ6Hgy6PSjKFQpWBpshsNhdf2ACveljegy0KgUjfxhjEUZg6FlOPevXvYu3evtJewaNGiklFwcDAuXbqEzp07m2wAzFEwQ6E5VDZtHaaAQmrxmoC70i0mz2KToujT0vFPvapbdagahkKGQoZC0/qb5NIZCsV1NhoKqeptXwAnfk1tRNV3gE4/izdKgSXvKVQgkq1nYSi09RE0Lnh1Zr1PfP0atL/QxdEefrncM8tu8c8ZChkKGQrN8xoyFIrrrAkUUvUvIoCnDwGPPEmnkk2cGAoBxMfHY+fOndi+fTtCQkJkkv/+++/IkSOHiYfCdMUzFJpOW3OVbKqZQnO1X8t6GAoZChkKtXyj9JfFUCius2ZQKN4EIUuGQgCHDh1C//790aNHD9y5cweenp6wt7eXIHHo0KH48MMPbTpOHkOh0LthVUa2CoX3Il/gyPXHePEqAaV8c6C+fx6jdWUoZChkKDT6NVJUAEOhIpkyzGQVUPgqBgjeCsREJMU8LPtWph1iKATw/fffS0KNHTsWc+fORc6cOdGvXz/s378fo0ePxuHDhxkKM32UTJOBg1cn6WptUBjxPA7HboQjNj4RJX1zoFIhL9kDcOjaY7y78DjSHvt/t25RTOxU0aiHhaGQoZCh0KhXSLExQ6FiqWQZzQqFoeeARxcBB2egSD0gZ37gaQiwqDUQdTu1bSWaAX0Mx11mKKTbHr7+WgJBile4evVqBAYGYtq0aXj16pV0m8nu3btTDp+IPyKWs+SZQstpr1XN1gSFBIP9lwRIs3/J6aOm/hjVpqxOdz9cEYgd50NlEhwf2wL5PF2FpWEoZChkKBR+fVQZMhSqkksns9mg8MAUYF/SxJaU7ByA3quBkLPA3knyDrzzJ1Cqld6OMRQCEgjSvkFaLj516hQGDBiAhQsX4uXLl9KyMv2MoNFWE0OhrY5carutCQo/WB6InRfksHfm61bwdndKaXT7uYdw7n60TPxNgxuicmH5zKLSUWIoZChkKFT6thiXj6FQXD+zQGFCHPBdASAxKXpESqIZQZ+iQOBSeQfazwZq9GMoNBS8Ojr6/+2dB3RUxdvGH0JPKAmE3kJHehUEQhdFBKQqfoqAiKKIgCg2BLEhKk0QsIACtj+CdAUUUHpRegfpLfQSIATCd56Ju9mW7N3J7ubu5p1zcpTdmbkzz8x99zfvtMtYv349WrZsqabpCIKcMmZ47LHH1A0ngRwECgO59RLLbiYo5IHXPPjaMSx6KRoVC+Wyftx96kas2BvjFG/lq01TtctZoFCgUKDQPzZNoFBfZ79A4YVDwLjqzoUkEFbpAvz1sfN3j84A7mkjUJgSFDqqwx8d3oUcGRmJkiVL6vcKk6QUKDRJQ6SiGGaCwq5frsPag+edarN6cDO78w3nbz2JF3/YbBevVeVCmPhEzVQoAQgUChQKFKbqFTKcWKDQsFROEf0ChdxAMtIFoxSukXie4eTGAL2JlpC/IvD82hQrJdPHNvLcuXMH165dsxMsc+bMCA01/9ltKbWyQKH+i22WlGaCwh83HsNrs7bZSXN/xQL4slttJ7m4/nDl/sTdx+UK5MRjdVJ/XaRAoUChQKF/LJNAob7OfoFCFm/W08D2n+0L+uAIoF4f4OxeYNdc4Pp5ILwYUKMbkC1pNsdV7dI1FA4dOhRNmzZFkyZNlDa83q5Xr152OpUpU0atNQzkIFAYyK2XWHYzQSHLs2TXGazcdxY3b99BMW/cUgAAIABJREFUhYK58HRD/3nUBQoFCgUK/WPTBAr1dfYbFLKI6ycDp7cl7j4u1Rio+Ih2wdM1FNarVw9vvfUWHn74YSsUDh48GJMmTVL/5kHW/fr1U3cfy+HV2n0sVQnlSBpzQmGqGjWViQUKBQoFClP5EhlMLlBoUCgX0fwKhfrFdEqZbqHw7NmzqF+/vt1xM/QUEhJXrlyphLp+/TqqVauGP/74A8WLF/ei7KnLitPc3BkdFhZmKCPxFBqSydSRzOYpTEuxBArTBxR6aueqV6+uNggatYtp2YcD5dkChfotJVCorx2PA2Tfy5Mnj34mblJmcNxocuzYMTRr1gzbtm1D9uzZVXJ+xl3InTp1Uv/mj0+lSpUwf/58VKhgfwabr0rKjlS1alW77EePHm31Zk6YMAFjxoxRhq9OnTrW/0+pPAKFvmot/+UbKFC45dgljPxtDzYfvYSsmUPQ4p4CGNGhKjJlzOA1sQQKgwMKO3fujC1btlgr07VrVwwfPlz9W8fOCRR67RWzZiRQqK9pmkLhr4OBnbOBuKtA/kpA41eBcg8Yqky69RTyR7ZGjRqYPn06qlSp4lKs/fv346GHHsLGjRsRHh5uSNDURuKUdfv27dX6RkvIlCmTulGFANu7d2/MnTtX7YweNGgQihUrhoEDB6b4WIHC1LZK2qcPFCi8f/Sf2H/GfrNWt/uiMLxdJTsR98dcw8e/7cE/hMdMIWhaIT/eM3jTiUBhcEAhB+UTJ05EVFSUqlBq7ZxAofftlEChvqZpBoWrRgO/D7MveNZcwCv7gZ2/ABu+AC4fB8LyA7W6Afc+axc33UIhVejbt6+aIv7666+RIYOzJ4OwtWPHDixZskS/Z3iYcs+ePepmFXonHcPYsWNx5coVDBkyRH3Fm1d4N7Nluju5RwkUetgIJoweCFB4/OJ1NPxouZN6vAbv94GN7T5vN341th6/ZPfZU/Wj8E5be3h01RQChcEBhbRLrgbcunZOoND7hkugUF/TNIPC7zoB+5c6F7zdBGDuC86fPzkbKN3c+nm6hsIjR47g0UcfRbly5dSGEhopBn7+xRdfYPHixZg6dSoaNmyo3zM8TLl27VoMGDAAHTt2VN7AFi1aKG8gA+9m5jR2t27d1L9jYmLQoEEDECTpSRQo9FDsAIoeCFB49MJ1NBrpDIWl8oVh2cuJO/wZzly5ibof/OGkfsnIMCwflBQvueYRKAx8KIyLi0PlypXx3HPPgcd+8QQIzthwcK5r5wQKvW/QBAr1NU0zKJzRATjgbF/VETXrJjpXqNEgoFmio4khXUMhBTh8+LDytu3cudNOrIIFC4JH1hDK/BkIerx2jwssd+3ahUWLFuHDDz9Eq1atlGezUaNG6NKliyoSvYa1atVS63Isi6u5KcYx0PBu377dn9Xw2rNolFi3kJAQr+UZiBkRCqlFrlwpnzGV1nVrNmY1Tl66aVeMTjUL472291g/O3n5JpqNTrwxyDYUDc+O3/vXd1uF27dvg1AhGwqgdGDfyJbN/V3SRuK4Fd9LEbiJ5Msvv1RnwJ45cwbz5s1D8+bNMWzYMG07x+U0vKde+oWXGgkAwYa2N2vWrN7LNJ3kxMEr+7llz4K/qp1p1SfItMrhJpOQTIhv9Boyr3C+C/l2vb643cQeCnlec1r+1lA39j2dU1+M2jmnjSaODcSr7giG3NVLzxzXuXAEm9ZhxowZ+O2338D/ctq4dOnS6N498d7C06dPIzo6Gnv37rVC04gRI5yKzOnxTZs2pXVVtJ7PH70sWbK4nN7XyjCAE7FvGu3w3q7mzdsJ+HrNMew5E6vWANYvGY4O1Qs6PeaxKVuw22FN4dP1i6Ff4xJ2cR/6fBNOXLaHx4cq5cOHbcu7LTpHsgRD9ov0HqgDA9fjuQu5c+vfN+0u79R+z9mONm3aqOO/PvroIy0799NPP6lBdKBfNpBaLb2Znv2L3tuUZqK8+bxgyotgQ1vlK47IeH4vsmydgZArR5GQPQ/iy7fF7aimyLLzJ2Rf8oqdlHdzFMT1VuMQNjPRoWQbrreegPhy9tfe8Xc3LQcCqbHxRu2cWyg0a2dctWqVGjnTG8hF2dyIYtmht27dOrX+UNYUmrX1vFeutJ4+7jZlA/7ad9auQm+1vge9oktZP0tuWrhS4VxY2C/aLu2yPTEYPn8XDp+PVZ/XK5UXn3aphiLhiScBpBRk+jhJndjYWOUp1BlRu9PZn9/TM8GNfxwAcw23jp2T6WPvt5hMH+tr6tPpY+4qHlcDiLW3yei+CFj3ObBngXPBe/0O7FsCrBkL3I5L/L7us0CrkXZx0/30sX6T+yYlR8ycuuZuZ04l0zvIkS+PpTlw4IA6LmfhwoUqDtdB0qNJMEwpyEYT37SVP3NNSyg8eekG6o9Y5lTdGsXD8cvzDayfHzoXi6afrHCKF5U3DCtecb1W8Oy1OGQOCUF4qHGvvEBh4EMhbRuBlnfL879TpkzBd999pwa4XNOtY+cECr1vkQQK9TX1KRRyF/HMxBlDu1D/ReD0duBfZzuMp+YBJRvzeizg2mkgNG/iDSgOQaBQv819knLBggUYN26cWi9It3Pbtm3Rs2dP5M2bVz1v2rRpGDVqlPr/mjVrKlh05y4VKPRJU/k107SEQh4xw6NmHEOesCzoXKsoyhXMiY41iypbU3nYYsTGJU5pWsKDlQpi0pO1vKaXQGHgQyGXvPD2KC6B4bIIrpl+8sknUbFiRW07J1DotVfMmpFAob6mPoXCf6YD8/o6F65gVSAiCtg9z/m7ATuB3EXdVkig0K1EaROB0ylcMO3qqBxPT/oXKEybNvTmU9MSCm/G30GloYtxJ+FuslVqV70Ixj5WHdPXHcGQOTus8YrlCcXn/1cTVYo4r2f7ffcZ7D51BZkzhqBuybyg59FIECgMfCi01IBAyPVqrtZdeWrnBAqNvD2exREo9Ewv29g+hcLDq4BvWidfuNzFgMvHkr5v8jrQ5LXEaeNtPwFXTgJh+YBKjyR6DG2CQKF+mwdMSoHCgGmqZAuallDIQk368yBG/LonRSHXvd4cBXNnw+Ub8eoA68yZMqBaUdeg9878nZi6+rBdfp92roaOtdyPZAUKgwcKvflmChR6U83EvAQK9TX1KRSyWHP6AFu+d13AonWA1p8Ct2KBPKWAnAWBuwnApGjgTNKgHbmKAL2XAzkKWPMRKNRv84BJKVAYME1lWihkwU5cuoEDMdeUJ5BnEjqGRf2iUbGw+yNzrt+6g4pv/+aUvlaJCMzq4/5IGoFCgUJXL4pAofftnEChvqY+h0IWbd9i4HvnHcWIKAG8tM2+8NtnArN6OVeo5XsA1yL+FwQK9ds8YFIKFAZMU5kaCi2F6/nNRnD3sGPY9FYLROZwf55Zcodcc+fx6teauW0sgUKBQoFCt6+JVyIIFOrL6BcojL8OvF/IuZBRDaB2ItuGNeOBJW86x63fF2j5vkChflMHXkqBwsBrM8cSp/X0sW15CIQEQ9vQ7b4SGN6usiGhxVNoSCZDkYLlSBpDlXUTSTyF3lDRPg+BQn1N/QKFLN7SIcDqcfYF7fwNUKm9/WfiKbTTI2DPKdTvkkkpBQq9oWLa5mEmKKQS/56LxdqD53AzPgHlCuREdNlIjwTyZE0h1yjuPX0VmTJmQM3iERBPYZLUAoVJWggUevQKGoosUGhIJpeR/AaFfPqhv4AzO4GMmYESDYD8STdIWQvnbk3h2b3AtTNICI3E+ZB8yJcvn37lU5kyPj5erWflzW6+CgKF+/f7Sluf5nvu3DlERESk+xP1zQaFnjT6/phr4A7mUpFhCMuadPOGkd3HP248htdnbYNl33P+XNkwpnMV3BOZWfWL9B4ECgUKffkOCBTqq+tXKEypmBcPATcuQm0qyRbuevfxzB7AztnWXOJKP4CsT/5Pv/KpTClQmEoB3SUXT6E7hcz/fSBC4bEL19Hnu3+w48RlJXBIhgx4u01FdK8fZVjwWu8uxfnYW3bxo8vkxbiO5QUKAXXwczDcaGK4Q6QQUTyF3lDRPg+BQn1NTQGFP3QF9tqsLazXB3jQ4SrcXXOA/z3lXNGOXwFVOusLkIqUAoWpEM9IUoFCIyqZO04gQuHgWdvw00abs7L+A8Ptw1raeQxdKc+DsHecvIw2n61y+jp/zqxY/HwtgUKBQru+IVDofRsmUKivaZpD4YYvgEUubjvruRgoXi+pYn99DCx7z7mijQcDTd/QFyAVKQUKUyGekaQChUZUMnecQIRCAt32/7yEturOf7Ghy8OsLXFGLd2HyX8eRNztBJeNUjIyDLOfriZQKFAoUOhjsyVQqC9wmkPhggHApinOFWj7GVCzW+Lnyz8AVo4CEuKd493/LtCgn74AqUgpUJgK8YwkFSg0opK54wQiFD46eS3WH7rgJOzSgY1RNn8Ol4JvPHwBnSetTbEx+jQuid71CgkUChQKFPrYbAkU6guc5lC4+A1g7QTnCnT8EqjSBTiyBpjaKvkK9lkDFKikL0AqUgoUpkI8I0kFCo2oZO44gQiFX/z1Lz5YtNtO2MpFcmPBiw2TFfubNYcxbN5Op+95hmGZ/DnQsEwknqpXVK2lk40msqbQtqPI9LH3bZhAob6maQ6FB/4AZnSwr0CmrED/7Yk3mKyfDPz6qnMFI8vhcv03kbvmI/qVT2VKgcJUCuguuUChO4XM/30gQiFVJRj+sfsMeDZh1swhuHDtFs5ei0Pu7JmRNVNGxFy9qf7brEJ+fNC+Cn7ceBRv2dydbGmZ55uUwasPllf/lCNpkvqrbDRJ0kKg0Pt2TKBQX9M0h0IWnfccb/sfcHY3cPNK4t3HGTIk/mXJCcSedarg3YYDcK7aC3IkjX7Tmz+lQKH528hdCQMVCi312nb8MtqOd940YlvvJ+qVAP8eHPOXkxzf9LgXTconnpslUChQ6Op9ESh0Z0U8/16g0HPNLClMAYUszOGVwDcPG67I3cdn4lxEDYFCw4oFYESBwgBsNIciBzoUTl19GDywOqUQFRmGFYOaYPbmE/h2zWGcuHgDkTmz4rE6xeyOsREoFCgUKPSPTRMo1NfZNFD41yfAsneTr0jOggAPtg7LpzagJNTpjfPnzwsU6je9+VMKFJq/jdyVMNCh8OtVh/Dugl0pVrNYnlCsfLWpOynEU2ijkEwfJ4khnkK3r47HEQQKPZbMmsA0UPjnR4m7jJMLDQcALYZZv01ISBAo1G/2wEgpUBgY7ZRSKQMdCudsPoH+P21JsSE61CyCUV2qY8uxS/hhw1GcuHQD+XJkRfsaRdCoXNKVS+IpFE+heAr9Y9MECvV1Ng0Urp8E/Do4+YqUbAyEhABh+YGqjyKhVFOBQv1mD4yUAoWB0U7BDIXT1x3BEBcbSCx1JvR90rkaEhLuosknK9S1eLZh7gsNUK1YuPpIoFCgUKDQPzZNoFBfZ9NA4eoxwNKhzhUJ+e/K0YTbdt8l9PoD57OWkOlj/aY3f0qBQvO3kbsSBrqn0NXxNKxzzwYlMeiB8gjNklFJwBtQeBOKY+jfoiz6tygnUOggjEwfJwki08furIjn3wsUeq6ZJYVpoJBTx5xCdgwV2gB75jt9fLfxYJyr/IxAoX7Tmz+lQKH528hdCQMdCpftiUHPbzY6VXNUl2roULOo9fMpqw9h+HzntYe9okvirdYVBQoFCpN9VQQK3VkRz78XKPRcM9NB4Y7ZwM89nCtS40lg83RnKKz3As7VGiBQqN/05k8pUGj+NnJXwkCHQtbP8S7k1lULYcLjNe2qvnxPDHq4gEeeYfh43eIChQKFAoXujIUXvxco1BfTNJ5CVmFWL2D7zKTKVOsKVO4AfNfZGQpbj8a5qDYChfpNb/6UAoXmbyN3JQwGKGQduXkk5koc8ubIguJ5Ql1W+6Uft2DulhPW77jecFrPe63/9uaawiPnr2PF3hhci7sN3qn8UJVCLst07OJ1EFiv3ryNqLxhINCaIcj0cVIriKfQ+z1SoFBfU1NBIatx8QgQG5N4m0l44gDbCRbLNEfC4z8b22hy+RiwbzFw8zIQUTIRMmPPAbvnAzfOA7mLqY0rOkFuNNFRzYM0AoUeiGXSqMEChUbl3XfmKs5cuYk8YVlQqXBuu2TegsK/j1xEl8lrcSfhrjX/BysXxKQnatk9b+uxS+g8eS1u3U6wft6iYgF81a220er4LJ5AoUChzzoXAIFCfXVNB4XJVSVmN3D1FBCaFyjEzX4GjqQ5tRWY8gAQfyMp16ho4Nxe4FpM0mfF6wE9F3ssokChx5J5lkCg0DO9zBg7vUFhSm3gLSh0nM62PHNRv2hULJzLWoQ35+zAd+uOOBVpbt8GqFY0cUd0WgWBQoFCX/Y9gUJ9dQMGCh2qaAgKeWcy7042Eh7/CSj3oJGY1jgChR7J5XlkgULPNTNbCoHCpBbRgcKtxy/h1KWbCA/NjHql8qrMnpqyAX/uc7770/ZKPcZ7+ttN6v5mx/DVU7XR4p4CadpVBAoFCn3ZAQUK9dUNSig8tw/g3+rPgGPrjInTZixQq7uxuP/FEij0SC7PIwsUeq6Z2VIIFOpDYb8fNmPe1pPWDKoXC8f3z9TD0Hk7MXPTMaemXvBiQ1QukjRl/frs7eowbccw54UGYF6OgYdvc+1h8TzZUSJvmE+7kkChQKEvO5hAob66QQeFy94H/hrpuSBdfwDCIoFbsUCeUkB4Cbd5CBS6lSh1EQQKU6efGVILFOpB4eoD5/B/X613asIeDaJQrkBOEPhsQ4MykXi5ZTnkzp4ZpfPlUF9tOnwRnSatsYvXuFw+fGuz+YVfnrsWh+5TN2LHicvWuLZH6fiiHwkUChT6ol9Z8hQo1Fc3qKDw+nlgZKmUxShQCbh8PHHjiSUUqAzcvQNw3aIlRL8MNH87xbwECvX7naGUAoWGZDJ1JIFCPSikh88R/GwbOjJHVjxQqYDa0LLl2GWs3J80nWwLfgdiruEPtfs4Xu0+7lQr6WxFS34jf9uDz1ccdOpHSwc0QtkCOX3SvwQKBQp90rH+y1SgUF/doILCk5uBL5q4FiMkI5Dw3w1UWXMA97QDchVK3H18Zgew4UvndP23J+2AdpGrQKF+vzOUUqDQkEymjiRQqAeFY//Yj9FL96XYtnVL5cVrD1ZA+89XO8Xjgdn09jEcOhuLs9fiULtkHoS4yLH3tE1Ysst57eGX3Wrj/ooprz1MuHsXJy7eQM5smRAemsVwXxQoFCg03Fk0IgoUaoj2X5KggkLuNp7cyJgYPJ6m3XigcHXgx8eBf/90TtdtHlCqMRB3FaAXMmdBIFM2azyBQmNSa8cSKNSWzjQJBQr1oPD9hbvx5cp/U2xHgtjQNpUwaOZWp3hdahfDiE5VUe+DPxBz5ab1+5YVC+ALmyNpLt+Ix1tzdmC+zdpFS2SuX6xfOnFzi23gETdX427j57+PK3C13PfMsxI//z/7Q72Tq4BAoUChL42UQKG+ukEFhUfXJR5B42ngMTeEPsfwzB/Ahq+ArT8kfdNwANBimPq3QKGnQnsYX6DQQ8FMGF2gUA8KX5u9HT+62CRi28QFcmVDz4ZR+HDRHqeW507lkAzAmoPOhm328/WRMUMGDJm7A9uO26yjscklLGsm7HzH2ZgSQAmDyYXXWlXAc41Lu+2JAoUChW47SSoiCBTqixdUULhrLvC/bvpi2KbMmhPIljtx/aFj6L4QiGooUOgdpZPPRaDQ1wr7Pn+BQj0oHLl4Lz5ffiDFBupePwo5s2XGZ8v2O8XjZpRL128h5mqc03cDWpTDX/vPgodgpxTm9m2IakWTdjN/tfIQ3lvofL+zbR4PVy2E8Q5XALp6hkChQKEvrY9Aob66QQWFMbuAz+/TF8NoylYjgbrPChQa1Us3nkChrnLmSSdQqAeFnDrmFLJj4O7iCgVz4r7SkejfoiyGzNmB6S4OqM6QITHl3aRLT6xZvfJAeXy8eK/bTvJSi7IgQFrCw5+tstuh7CqDDjWKYNSj1d3mLVAoUOi2k6QigkChvnhBBYWntwGTovXFMJry4dFA7Z4ChUb10o0nUKirnHnSCRTqQeGsf47j5f85rxWkd3BY20rWTL9dcwRD5+0w3OCExY1vtkDt9353m+b5pmXw6gPlrfEafrQMxy/aXA/lIodPOldzucPZMapAoUCh2w6YiggChfriBRUUntkJTKzvLAYNoasRs65sL6wH8lUQKNTVz2g6gUKjSpk3nkChHhQeOheLpp+scGpYbuTghg5LOHbxOqI/Wm6oA2TOGIKu9xbH8HaV0GPqRizfa3PXp0vAq4pOtYpZv4keuRzHLlx3ihmSIQOyZgrBfaXzYkr3Our7qasPYc6Wk7h8PR5RkaF4umEpRJeNtKYVKBQoNNRpNSMJFGoKByCooJAyjK0KXHS47jOyAnDOeS22lmrcgZw5FIgogdu1nsGVgvchT548WlkZSZThLn9V02kQKAz8hhco1INCppq75QS+WnVIgVie0CzoXLsY+jRx3sTBncNc73f4QqyCsJRCRFgWrHu9OS7E3sJ7C3Zh7b/ncS3uNrij2DEQ8BqVy4cRv+7BxkMXsD/mKq7f+u9cr2QeMqpLdWTOmAEv/rDZLka2zBmx9rVm4PMZBAoFCn1p3QQK9dUNOig8th5Y/gHA42kIb/c8DDR5HZjZHfjXeeCtr1xiyks9ViG8RJXUZpNseoHC/c6L6H2mthczPnfuHCIiIpAxY0Yv5hp4WQkU6kOhTmt3nLjG7QaSGb3qomGZJK9dcusXN7zZQq1rJJwaDR1qFgE9kj9tdL6Gb/KTtfBApYIChQ5iVq9eHatXr0ZYmG+vFjTahsEQT6BQvxWDDgqTk4I3mPC2k4Tb+mK5SBnbchTC6j/t1TxtMxMoFCj0WefyR8YChf6FQl5VN2zeTmxKYWcxPYDNKuS3a/4nvlqvjq/hYdQ8//DFZmXRu1EplHp9kfrMaKhVIgLF84Til83OIPlZ1xpoU62wQKFAodHupB1PoFBbuuCbPk5Jiu0zgQUDgbgrzrHylgYuHALuOs+ipJRlbPMRCIvuo98AblIKFAoU+qxz+SNjgUL/QqHlaXG3EzBh+QGM+8PZ075qcDMUjchuLdjinafx7PS/7boD70/+rX80yr75q0fdpErR3GhXrTDec7FzesmARureZgaZPk6SVTyFHnUxQ5EFCg3J5DJSuvEUWmq/aSqwoL++YA4pr3T5BbkqNvNafo4ZCRQKFPqsc/kjY4FC/0PhzL+PY+uxS+rBW45dxI4TiaPgLJlCMKhleeUBtA3c5czdzo5hes+6eHLKepfdpE5UHmw8fMHpu/y5sqJq0XD87nBtXkRoFmx++35rfIFCgUJf2h+BQn110xUU3okH1k8CNk0BLtjcIBVZFjinsXQta05cfHo9IvIX0W8ANykFCgUKfda5/JGxQKF/ofCd+bvUzl/b8Ex0KTxet7jyDnK9n2N4ZtomLE3m7uNnp29CgvHZ4xS71NQeddC0fOK0tUChQKEv7Y9Aob666QoKv2kNHF5lL1aXbxMh0dXdxwZkvdZqAnLUfcJATL0oAoUChXo9xySpBAr9C4X3DPkNN+LtdwgXDs+ONa8lP53B3cWT/jzo1GMW9muI1uMcDGYq+tXYx2qgXXVZU+gooUwfp6JTJZNUoFBf03QDhSc3A180cRaqSicgewSw4UstEWObfYCwRi9opTWSSKBQoNBIPzFtHIFC/0HhtZu3UXnYYqe+kD1zRux+98Fk+wivwntqygbsPpW02LpHgygMbVMJjT9ejiPnnc8m1Olws/vUR80SEeIpdBBPoFCnN6WcRqBQX9N0A4UHlwHT2zsLVbopwBtKvuusNYV89ZHpyFm9rX4DuEkZVFB4584d3Lx50/DRC3JOoc/6ld8yFij0HxTySfe+/7vTfcflC+bE4v6N3Lb5psMXcDXuNopFhKJM/hwq/v82HcOrP29zm9ZdBB5VwzMMLSGYp489tXMChe56j+ffCxR6rpklRbqBwnP7gPGJh+3bhVrdgTZjEz86sgaIPZt4zuFZ94ddJ9zTFpfuHyuHVxvpfhMmTMCYMWMUENapU8f6/ymlFSg0oqy54wgU+hcKp6w+hOHzd9l1Ctur5/4+clFdVcc7lJuUz2eo85y4dAPbj1/G2WtxGL/sAM5cuWlNx1tKHq1TXJ2N6LiW8an7olCnZASKRoSierFwu2cFKxTq2DmBQkPd0KNIAoUeyWUXOd1AIWs970Xgn2lJ9c8eDkQPAnIXBQpVA/LYbMpzjOsocZPXEd/gZbDvyY0mbvrftm3b0Lt3b8ydOxeRkZEYNGgQihUrhoEDB6aYUqBQ/8U2S0qBQv9CIZ+29/RVbD9xGbx+rkbxcJSMTDwU+aUfN2PulpPWApXNnwPfP1MP+XJmVZ+tP3QB127Go1ieUOvRMY796Gb8HSzbE4OrN2+rePVL57VGORBzDVuPJ+56rlokN8r+d/yMq74YjFCoa+cECr1vrQQK9TVNV1BImY6sBs7/C5zZDqyfbC9cveeBUo0T4TCyHHB6O3B6GxCSCciWG7h+PvH/i94L5Ckpdx8b7XZjx47FlStXMGTIEJXk77//Rv/+/bFy5UqBQqMiBmg8gUL/Q6GrrsLjYzpPWuv01Ustyqr7kJ/6egP2nrlq/Z5evnfaVfJZrwtGKNS1cwKF3u9mAoX6mqY7KLRINalhIvQlF+r3A1q+m6Kw8fHx4ik00vXeeOMNVKhQAd26dVPRY2Ji0KBBA+zZsyfFa+DEU2hEXXPHESg0BxTO2XwC/X/a4tRZ2tcoggK5srncfcx1iFyP6IsQjFCoa+cECr3fwwQK9TVNt1D4fkEg/kbKwr20FYiISjaOQKHBfte3b180atQIXbp0USnoNaxVqxa2bNli3XTy/PPPO+W2dOlSrF/v+vBcg49Os2i3b99WwJshQ4Y0K4MZHkwopBaZM2c2Q3HTcBV9AAAblElEQVTStAwJCQngX6ZMmfxejpUHL+KlWc4LpbvWKoRTl+Ow4oDzQdSjOpRHkzJ5fFJWbsZgMHI3uC/X53izcrp2bu3atZg/fz5CQ0O9WZx0nRf7F21vSIjzuZzpWhgDlaeNot028m4ayM5vUVL7WxM+5T6EXDudYnmvtp+B+GINko3DMrDv6dh4o3YuKHYfc9q4dOnS6N69uxLz9OnTiI6Oxt69e60v7X4XR8889NBD2LXLftG833pYKh906dIl5MqVS4wSgIsXLyIiIvEokvQcCMcchefM6RvvmzttW45djUPnYu2iffd0Hfz8zwn8sjlpraElwvSetVGvpG+gkKcQ0IBmz5503V5y5Q+UAYWuneNgefny5YZPZXDXzvI9cP36dWV7s2XLJnJ4qEBcXJwayHNTaCAF2pPLly8jPNx+U5vROmRc8T5CVo9OMfrtHktxt3CNZONQN/Y9/vZ7GozauaCAwokTJ+LUqVMYPny40mndunV45ZVXZE2hp70mAOPL9HFSo926dUvd5JFWgMxdwzPWHcXRC7EID82CVpULol6pvFiy8wx6T99k17t4JM3vAxv7rMcF4/Sxrp2T6WPvdzOZPtbXNN1OH1OyzdOBI2sTr7w76rAGu3B1oPefKQor08cG+92BAwfQqVMnLFy4EAULFkS/fv0QFRWlwDClIGsKDQps4mgCheaBwpS6yeKdp8G/yzduo1S+MPSoHwXehOKrEIxQqGvnBAq938sECvU1TddQaCvbzl+AvYuAuKtAvvLAfX2BsJSP8RIo9KDfTZs2DaNGjVIpatasidGjRyN37twChR5oGIhRBQoDAwr93beCEQqpoY6dEyj0fu8TKNTXVKBQXzuBQg+18/Skf/EUeiiwCaMLFAoUuuqWwQqFrKundk6g0PuGS6BQX1OBQn3tBAr1tTOUUqDQkEymjiRQKFCY3qDQ0xdSoNBTxdzHFyh0r1FyMQQK9bUTKNTXzlBKgUJDMpk6kkChQKFAYcqvqECh902YQKG+pgKF+toJFOprZyilQKEhmUwdSaBQoFCgUKDQ30ZKoFBfcYFCfe0ECvW1M5RSoNCQTKaOJFAoUChQKFDobyMlUKivuEChvnYChfraGUopUGhIJlNHEigUKBQoFCj0t5ESKNRXXKBQXzuBQn3tDKUUKDQkk6kjCRQKFAoUChT620gJFOorLlCor51Aob52hlIKFBqSydSRBAoFCgUKBQr9baQECvUVFyjU106gUF87QykFCg3JZOpIAoUChQKFAoX+NlIChfqKCxTqaydQqK+doZQChYZkMnUkgUKBQoFCgUJ/GymBQn3FBQr1tRMo1NfOUEqBQkMymTqSQKFAoUChQKG/jZRAob7iAoX62gkU6mtnKKVAoSGZTB1JoFCgUKBQoNDfRkqgUF9xgUJ97QQK9bUzlFKg0JBMpo4kUChQKFAoUOhvIyVQqK+4QKG+dgKF+toZSilQaEgmU0cSKBQoFCgUKPS3kRIo1FdcoFBfO4FCfe0MpSQUShAFRIH0q0BYWBi2bNkS1ALw7uPY2NigrqNUThQQBVJWYP/+/YYkynCXrhYJAadAjx498O6776Jo0aIBV3ZvFpijzkcffRTz5s3zZrYBmdfmzZvxww8/YOTIkQFZfm8W+scff1Qg9PTTT3szW8lLFFAKTJo0Cfny5UPHjh1FEQ8VWLx4MbZv345BgwZ5mDJto9M7/NRTT2H27NlpVpC9e/fis88+w/jx431WBoFCn0nr24wFChP1FShM6mcChUlaCBT61v6k99wFCvV7gEChvnYChfraBX1KgUKBQsdOLlAoUBj0hs8kFRQo1G8IgUJ97QQK9bUL+pQChQKFAoXJv+biKQx6E5imFRQo1JdfoFBfO4FCfe2CPqVAoUChQKFAYdAbOpNWUKBQv2EECvW1EyjU105SigKigCggCogCooAoIAp4oIBsNPFALIkqCogCooAoIAqIAqJAsCogUBisLSv1EgVEAVFAFBAFRAFRwAMFBAo9EEuiigKigCggCogCooAoEKwKCBQGSMvGxcUhJCQEmTNndirxnTt3cPPmTfB2hvQSEhIScPv2bWTJksWuyjy3MFOmTC51ClZtbt26hevXryN37tzIkCGDtZqXL19Gzpw5Vb9JD4Ftnz17dqeq8nz+K1euKH0kiAI6CtDG8j2T/qWjXmIaash3kfbZEgLh3UzOvvrrt4bPz5gxo/pzDL6w8QKF+n3cLyn37NmD9957Dzt27FDPe+CBBzBs2DCrcZowYQLGjBmjgLBOnTrW//dL4dLwIdTgt99+w7p161Qp+IK+8sorWLVqlfr3k08+iYEDB9pBUhoW1yePZt948803ceLECQXB06ZNQ8mSJXH06FE8++yzOHXqlHoubzhp2bKlT8pghky3bt2KDz/8EIcPH0ZoaCi6deuG7t27q6L9+eefeOmll9T/58+fX91EUapUKTMUW8oQAApcvHhRvT+//vqrKm3t2rXx+uuvo3Tp0tK/PGg/gg1vf6lQoQI+/vjjgNAuOfvqr98a9r233noLf//9t9KrcePG+OCDDxQc+tLGCxR60LHTIuq2bdtw7NgxPPTQQ8obxGu7unTpgg4dOoDf9e7dG3PnzkVkZKS6NqhYsWIKhoI5rFmzRr0s1MMChVOmTMGKFSvw9ddfq8/bt2+P4cOHo2HDhkEpxfnz59G8eXNlYO+//367Oj7zzDOoUqUK+vXrh127dqFdu3bYtGlT0HrKHnnkEXTq1AlPPPGEAuQmTZpg9erVyJUrF+rVq4fPP/8c9evXx/fff49Zs2apPwmigBEFLl26pPrL448/rmYlCIj87KOPPlKzM9K/jKgI5azgVaS1atVSNsvs2qVkX/31W0Odjh8/jlGjRiE+Ph6PPfYYXnjhBWXvfWnjBQqN9WnTxBo3bhx4ByM9RGPHjlXTYkOGDFHl44iif//+WLlypWnK6+2C0F1O4Bs6dCgGDx5shUK+MDy7kZ5UBnqE+ELRyxqMgaDD+nHkaBs4iq1atSoIzryblYFeMw4i2rZtG4xSKGNJz3Dr1q3VgKBatWpqgHDkyBHlVV+yZImqN3+ICMv8rkiRIkGphVTKtwrwveKd8/Qc8v+lf7nXm5781157TdkhDk4JO2bXLjn7ytr667eGv+8XLlzAO++8o0TmoJfPpjPAlzZeoNB9nzZNDK6/IBBZRgtvvPGGcsdzuowhJiYGDRo0AN3ertYfmKYiqSgIQbBcuXJqOrRz585WKIyOjsbkyZNRsWJFlTuN9syZM8FRXTCGPn36qFE3pxj4x37BqS16ypo2bYr9+/dbq80frsKFCyuvcjAGQh4HQ6wfAZDeG/4I0YPOJQYTJ060VrtZs2b45JNPULNmzWCUQurkYwXoKeRaZtpe6V/uxeYglTMV1I3LO+jBJxSaXbvk7CvXbPvrt4YzhPRQ057TEXT27Fn1G0d770sbL1Dovl+bJgY7BL2A33zzjVqs27dvXzRq1EhNJzPQa0hQ2LJlS1BuOvn999/VS8ErzE6ePGkHhWXLlgVPyresFyMofPbZZ0E7Vcgp09OnTytvKTfdcHrm7bffVssHOJpkH7AEGmRuNuHygmAM586dU15iGtHY2Fg1Tcz1tTNmzMA///yjpl8sgbpxeQXfGwmigCcKbNy4ES+++CLmzJmDggULSv8yIB5nMrjemeu9qZsFCs3+biZnXzl166/fGk4Zc5kUf9do1zg7SG8rnT6+tPEChQY6thmiLFy4ECNGjFAvVt68eVWROG3MBc+WRfWEBI5ieBVOsO04pRudXh5OC5cpU0ZNnbLeBMWIiAi1joweocqVKyttFixYgNmzZwetp7BVq1Z47rnn1CicwWJkCX5ckGzrKbTAItehBGPgAnaOnDm6p6eQaynZ/tRg/vz5aiBhCexDhMTq1asHoxRSJx8pcPDgQbVR4quvvlIeeYuNkf6VvOAbNmxQ7+LPP/+MbNmyYdGiReBnXOvN6WMza5ecfaXt4G+sP35rPv30U+zbtw/876FDh9SGOc6GcEDrSxsvUOgjI+LNbLmDkh6hb7/9FuXLl7dmzY7JHaZ8yRi46YIjsmBcU/jXX3+pTTauAqeKqQE9pg8//LCKMn78eOVJC9Y1hdxdzM1HFijkYIE6cM0pwZh6FSpUSGnRtWtX9ReMawrpMaaB5O78rFmzqvrSeHIZAb3mr776KpYtW6Y+t6y3lDWF3rROwZ8Xl2QQCDllbPsOcX2c9K/k25+zFzwdwzHQqUH7bGbtkrOvHGByuZY/fmsIn1zqUrduXSUhZ8i4HIZl8KWNFyg0uU2j4enVq5faVVupUiVraTnyOnDggNp1SS8ipzM4KouKilJgGOyBU4W2awr5whCMOLXOzQaEJS4IpwcxGAPX5NBrynpzrSnX1HHKg38DBgxQQMh+wEXe1IlTX+Hh4UEnBc8+Yxtb2poeZcIyp8y5vpZ/PK6GnkSuL+UOSPYTCaKAEQW4TptTdT179lS21hK4E5nvnfQvIyomxrGdPuZ7a2btUrKv/vqt4SCEp4pwkMsjfegYKlGiBF5++WWf2niBQuN9Ok1icsqPng3HsHPnTnVEAs+ms6yZ4uL50aNHB+3RI7YaOEKh4/oLGnG+RME2jW7RgEaV63XY/hx504PBQUGOHDnUhiNOpXLKi4HeUosHNU06sY8fSk8gPRL06PCcQmpBSGbgoIprb7nzOE+ePOp4Gm7OkiAKGFGAAwkOKhzD9OnT1YYm6V9GVHSGQrO/mynZV3/91vz777+q73FATycQZ0S4gY7LpXxp4wUKjfdp08ZMjzeaJNcY/jpl3iydgSNIBsebXfgZd6zxUPNgBWPHNuBGK55N6CrwKCO50cQsvTb4yiH9S79NzaxdSvbVX781fA4369jeBGNR2xc2XqBQvy9LSlFAFBAFRAFRQBQQBYJGAYHCoGlKqYgoIAqIAqKAKCAKiAL6CggU6msnKUUBUUAUEAVEAVFAFAgaBQQKg6YppSKigCggCogCooAoIAroKyBQqK+dpBQFRAFRQBQQBUQBUSBoFBAoDJqmlIqIAqKAKCAKiAKigCigr4BAob52klIUEAVEAVFAFBAFRIGgUUCgMGiaUioiCogCooAoIAqIAqKAvgIChfraSUpRQBQQBUQBUUAUEAWCRgGBwqBpSqmIKCAKiAKigCggCogC+goIFOprJylFAVFAFBAFRAFRQBQIGgUECoOmKaUiooAoIAqIAqKAKCAK6CsgUKivnaQUBUQBUUAUEAVEAVEgaBQQKAyappSKiAKigCggCogCooAooK+AQKG+dpJSFBAFRAFRQBQQBUSBoFFAoDBomlIqIgqIAqKAKCAKiAKigL4CAoX62klKUcCnCty4cQMrV65EhQoVULx4cZ8+SzIXBUQBUSAtFBA7lxaqJ/9MgUJztYcpSxMfH4+TJ08mW7Y8efIgZ86cpix7oBXq6NGjyJ8/P06dOoV+/frhkUcewaZNm1C5cmW88MILqjrHjx/HnTt37KqWPXt2ZMqUCQkJCYiMjAy0akt5RQFTKODq3bIULDQ0FPny5TNFOQO9EDExMciaNSsuXLggds5kjSlQaLIGMWNx9uzZgzZt2iRbtHfeeQePP/64GYvucZk4at28eTPq16/vcdrUJliyZAleffVVrFixAj/88AMKFCiADh06gFD+wAMPYOnSpciYMSPKli3r9Ki6deuic+fOGDp0KP766y/kypUrtcWR9KJAulPA1btlEaFVq1YYN25cUGiSlnaODobGjRtj2rRp2LJli9g5k/UogUKTNYgZi3P37l3cunVLFe3mzZuoXbs2vv76axBEGOihIqwEQ/j1118xc+ZMTJkyxa/VoZFu2bIlnnrqKfTq1Qt9+/ZFt27dcO+996py8Adp+vTpygvIH65PPvkEDz74oLWMISEh4B89iwTa119/3a/ll4eJAsGgAO0c7R3DE088gQYNGqBPnz7q37RxtHXBENLKzlE7zoBcv34dX331ldg5E3YmgUITNoqZi0R4qVq1qgKUevXqWYt69uxZvPfee/jzzz/B6eTHHnsMTz/9tDKk9HwtWLAA1apVw9SpU5VBINAMGDAAI0aMwPLlyxEVFYWOHTsqbxcD0yxcuFCl4YiS0w2NGjXC22+/bZ0epQdtzJgxmDdvnvKmNWvWDK+99prVS9azZ088//zzmD17NhYtWoRnnnkG7du3x9ixY7FmzRpcvXpVpXnxxRdRsmRJ/PLLL6DXMzY2Vv2b9fjxxx8VaNGDZ+s95FRuixYtVH6s+//93//hiy++sGpg0YfPZp2PHTuG6tWrq/KXKlXKqYlZx88//1xpwangiRMnIi4uDv3791dT9yzjrFmzVDpCIT0WBEXHQP0JlatXr1bT0BJEAVFATwHasIYNGypwsYS0sHN8dkp2xJWd6927t7JznH04dOiQGsA/99xzqj7J2bl3331X2VYLBPO5BDdOqQ8bNswrdm7Xrl1o164d5s6di4oVK4qd0+uaPk0lUOhTeYMvc1dQyPVtDz/8MHLnzg0aoyNHjuCDDz4AjQwNK4GQAEiYJLBcu3YNb7zxBsLCwtQ0AkFw/fr1mDRpkvLSEZ4sabjJgkaPHkoaOcIjQY2B+dPoEZy4PmXUqFEKIkePHq2+J/ARQAl4zIN5ZcuWTX0fHR2tyvvpp5+q9XqEQa7j++yzz7B3716VN4G2fPnyCsImTJigPHmWQFAkENKzd/r0aZVfwYIFFThyqp11Xbt2rfpBYd35DHofDx48qKaBWQ7bMHjwYKULn8NAnTmiZt558+ZVhtrimU0JCgm6NWvWxLfffpsmU+DB1+OlRulVAUcoTCs7t3jx4hTtiCs7V6xYMQwfPhzlypVTf1yO8vfff2PZsmXJ2jkOdAsXLow333zT2uQjR45UUMlBqjfsHIGUA+x9+/YhQ4YMYudM+HIJFJqwUcxcJFdQuGrVKvTo0UMBGgGM4aWXXlIjTHq3LIBH71+RIkXU94Q07qzdsWOHAjoa3Fq1ailY7NKlizXN999/jzp16qg0nPIgKP32229qwTfjf/jhh+jUqZP6nrA4ZMgQtSYwR44cCgrpQeQaOxogV4EjcBpPrm1hIHhu3brVbvrYKBQSbgnDlkDPJ72CH3/8sfpo//79eOihh9TUO72etoFx77vvPgwaNMjuc05nZcmSxe4zlocQatGaXzZt2lR5ARjowaVnkd5LCaKAKKCngCMUpoWdK126tJpBScmOGLFzHKhzZsNio13ZOaNQmBo7x4E7ZzEssx6WlhE7p9dHfZFKoNAXqgZxnq6gkF4pTh03adLEWnN6xLizjLBlgUJCkSXQE8c433zzjfUzetgIePS+WdJs377d6lXjFDLX+Hz55ZcKCumtIxhadj7zedu2bVNTxQQnGsu2bdsqT6IlEBI58iY4clqW3sGdO3cqYEstFHKa2AJmXJfEETrBrUSJEipvfsbpXYsH1bab0DtKoOUPgLvAuhEg6TW1hObNmyuvKwPXQnFqhoAtQRQQBfQUcITCtLBzfKfd2RFXdo413rhxo1qGw8H55cuXrTDGWYzUQGFq7BxnTrg8xjJQTqllxM7p9dvUphIoTK2C6Sy9KyjkWjq+5JyK5WYHS+D0K9e9EfAIjevWrbODwnPnzinjZAmuoNAWJC9duqS8hpxmjoiIwKOPPqqmZh3P8LNMDdNYck2hxZPI59BDyXUt9EbSOB44cECV21Mo5FQyPXG208e2nlJ6PjldTXC1wJqlnpUqVbLz8vFzQiGnbSxrKt0Zy+TWFDJd165dUaVKFYHCdPZuSnW9q4AjFKaFneNA250dcWXnOHDm1O+TTz6pbAtPI+CaanroPIFCzqJw4Gw7fZwaO8eZHs58cKOcu5DSMhmxc+7U0/9eoFBfu3SZ0hUUWta8zJ8/Xxkwx5AaKLTdMMFNGFyzyEXK9BRy/R6PYKFnzFVwNJY0bpy25ZpCroFk+Oijj9RiagsUErY2bNiAGTNmWLOkUeW0ruU5XN9I6HrrrbeShUImJjhylD9+/Hi3fYUwSODleht3wZ2xZHm5RpFwKEEUEAX0FHCEwrSwc/T4u7MjrqCQn3FWhbMSDBbbaYFCV3Zu4MCB6pQJW3vVvXt368Y3y5pCWyj01M5xYyC9l3PmzHHbKGLn3ErkkwgChT6RNXgzdQWF/Ixr2sqUKaN2uPFl3r17tzq+gdOpqYFCGjeudSlUqJDyCp4/f17tSqZHkqNOTgPTmNEA8uBn/vFsPwZHY8mpY4IXd0XTw8fNLa+88orabWyBQi7EfvbZZ/H777+rZ3JUSxhkHekNpdHk9AnXIrqDQq6HJLTyGVxLeOXKFXA6vHXr1mrNo23gETKc/p48ebLbzpOSsbR4U2WjiVsZJYIokKICjlCYVnbOnR1xBYW0mTy9gB45LtPhKQ9cymOBQld2jpvcCG3clFK0aFFwkE9vI9ciJucppIDuymcrMmGQ9pCb+WxnlVw1hNi5tHlBBQrTRveAfarFS0ZPmmU3LCvD3WSc/rRs2OBnXNPGDShGoZBTrQQ6ns9nScNRMo0UA6GTI1zLAbNcJ8ORMD2HlsBDni0jXQtQ2q7T4+5mThcTLrmrl2V8+eWXrVBo2fXL0SwDYZFrDpmGG2MYWE6m59QOy2oZQXNXse06P04hE/Isu6GZlmsMf/rpJzX9bRtYR3ot6RnlruyUQkrG0uLN4M5nudkkYF8zKbgJFHB1JE1a2Dl3dsSVnaMd5jEytF0MHJzy9AMu1+Eshys7xwHl+++/b/XicZqZa7Z5nJYtFKbGzlE/Dootp0yInTNBR3cogkCh+dokoEtEY0PPW3h4eKoOerUFSXrnmC+PkHEVaDTpZeOGE8ejXlzF51Vw9NqxjMkFHu1CTycXRVsC03CnNP88CdxgQohkuuSuAyRs33///WoNEKfIdYLlyAx6bY1MQ+s8Q9KIAqJA4pFR/rZzRuyIY9tw4MxZieQuF3Bl51g32hLH2Qx37W60fJzZIYDqXhAgds5dS6Tue4HC1OknqX2kgCvvoo8eZZpseeQOp5HpkdS5S9qSnjuckwNo01RWCiIKiAIuZ1GCXZYTJ06oWRYeIUZPpKdB7JyninkWX6DQM70ktp8USI9QyJE212JyCjo0NNRjpbmRhl5Qy1mQHmcgCUQBUcCvCqRHO0eBDx8+rJbJcMOgp0HsnKeKeRZfoNAzvSS2nxTgGYJcjMypUAmigCggCgSjAmLngrFVA7tOAoWB3X5SelFAFBAFRAFRQBQQBbyigEChV2SUTEQBUUAUEAVEAVFAFAhsBQQKA7v9pPSigCggCogCooAoIAp4RQGBQq/IKJmIAqKAKCAKiAKigCgQ2AoIFAZ2+0npRQFRQBQQBUQBUUAU8IoCAoVekVEyEQVEAVFAFBAFRAFRILAV+H9a37wOx4l4UQAAAABJRU5ErkJggg==", "image/svg+xml": [ "204060800100200204060800100200Temperature (​oF)Temperature (​oF)Gas consumption (ft^3)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = make_subplots(rows=1, cols=2)\n", "\n", "fig.add_trace(\n", " go.Scatter(x=heat_df['temp'], y=heat_df['ccf'], mode=\"markers\"),\n", " row=1, col=1)\n", "\n", "fig.update_xaxes(title='Temperature (oF)', row=1, col=1)\n", "fig.update_yaxes(title='Gas consumption (ft^3)', row=1, col=1)\n", "\n", "fig.add_trace(\n", " go.Scatter(x=heat_df['temp'], y=heat_df['ccf'], mode=\"markers\"),\n", " row=1, col=2)\n", "\n", "fig.update_xaxes(type=\"log\", title='Temperature (oF)', row=1, col=2)\n", "\n", "fig.update_layout(height=250, width=500, showlegend=False)\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The relationship shows curvature (left plot), but when we try to straighten it with a log transformation (right plot) a different curvature arises in the low-temperature region. Additionally, there are two unusual points. When we refer back to the documentation, we find that these points represent recording errors, so we remove them. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "heat_df = heat_df.loc[~(((heat_df['temp'] == 60) & (heat_df['ccf']==129)) | \n", " ((heat_df['temp'] == 41) & (heat_df['ccf']==16))), :]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's see if a quadratic curve can capture the relationship between gas usage and temperature. \n", "Polynomials are still considered linear models. They are linear in their polynomial features. For example, we can express a quadratic model as:\n", "\n", "$$\n", "\\theta_0 + \\theta_1 x + \\theta_2 x^2\n", "$$\n", "\n", "This model is linear in the features $x$ and $x^2$, and in matrix notation we can write this model as ${\\textbf{X}} {\\boldsymbol{\\theta}}$, where\n", "$ \\textbf{X} $ is the design matrix:\n", "\n", "$$\n", "\\left\\lceil\n", "\\begin{matrix}\n", "1 & x_1 & x_1^2\\\\\n", "1 & x_2 & x_2^2\\\\\n", "\\vdots & \\vdots & \\vdots\\\\\n", "1 & x_n & x_n^2\\\\\n", "\\end{matrix}\n", "\\right\\rceil\n", "$$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can create the polynomial features of the design matrix with the `PolynomialFeatures` tool in `scikit-learn`:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 29., 841.],\n", " [ 31., 961.],\n", " [ 15., 225.],\n", " ...,\n", " [ 76., 5776.],\n", " [ 55., 3025.],\n", " [ 39., 1521.]])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y = heat_df['ccf']\n", "X = heat_df[['temp']]\n", "\n", "from sklearn.preprocessing import PolynomialFeatures\n", "\n", "poly = PolynomialFeatures(degree=2, include_bias=False)\n", "poly_features = poly.fit_transform(X)\n", "poly_features" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We set the parameter `include_bias` to `False` because we plan to fit the polynomial with the `LinearRegression` method in `scikit-learn`, and by default it includes the constant term in the model. We fit the polynomial with:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "from sklearn.linear_model import LinearRegression\n", "\n", "model_deg2 = LinearRegression().fit(poly_features, y)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To get a quick idea as to the quality of the fit, let's overlay the fitted quadratic on the scatter plot and also look at the residuals:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [ "remove-input" ] }, "outputs": [], "source": [ "def make_ys(mod, deg, xs): \n", " poly_x = PolynomialFeatures(degree=deg, include_bias=False)\n", " poly_features_x = poly_x.fit_transform(xs.reshape(-1, 1))\n", " ys = mod.predict(poly_features_x)\n", " return ys.flatten()" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "tags": [ "remove-input" ] }, "outputs": [], "source": [ "y_hat = model_deg2.predict(poly_features)\n", "model_fit = pd.DataFrame(data=y_hat, columns=['y_hat'])\n", "model_fit['err'] = y-y_hat" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "mode": "markers", "type": "scatter", "x": [ 29, 31, 15, 43, 23, 71, 67, 72, 15, 64, 58, 48, 35, 16, 25, 35, 53, 69, 75, 72, 67, 46, 29, 25, 34, 47, 69, 72, 76, 69, 51, 45, 21, 48, 23, 28, 70, 51, 64, 76, 54, 37, 11, 75, 24, 64, 26, 18, 72, 72, 45, 66, 17, 56, 54, 56, 74, 69, 78, 72, 56, 21, 41, 30, 22, 34, 53, 59, 74, 78, 77, 64, 41, 30, 50, 24, 13, 38, 46, 65, 74, 76, 75, 68, 58, 41, 18, 28, 15, 45, 75, 55, 68, 67, 76, 55, 39 ], "xaxis": "x", "y": [ 166, 179, 224, 82, 208, 15, 15, 8, 242, 18, 35, 78, 144, 216, 204, 130, 48, 16, 14, 15, 18, 100, 153, 190, 126, 69, 16, 15, 16, 23, 60, 106, 190, 79, 210, 178, 1, 44, 20, 7, 37, 123, 235, 15, 228, 17, 194, 164, 13, 0, 74, 23, 224, 43, 61, 51, 9, 11, 11, 19, 32, 176, 99, 144, 161, 116, 52, 38, 10, 7, 6, 15, 101, 140, 47, 168, 191, 101, 77, 18, 7, 9, 6, 13, 28, 98, 182, 139, 191, 79, 12, 29, 6, 16, 11, 32, 91 ], "yaxis": "y" }, { "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "xaxis": "x", "y": [ 253.4795066988599, 247.39758384699238, 241.3863526499435, 235.44581310771326, 229.57596522030167, 223.7768089877087, 218.0483444099344, 212.39057148697873, 206.80349021884166, 201.28710060552325, 195.84140264702347, 190.46639634334235, 185.16208169447984, 179.92845870043595, 174.7655273612107, 169.6732876768041, 164.65173964721615, 159.70088327244682, 154.82071855249612, 150.01124548736408, 145.27246407705064, 140.60437432155587, 136.00697622087972, 131.4802697750222, 127.02425498398333, 122.6389318477631, 118.32430036636148, 114.08036053977852, 109.9071123680142, 105.80455585106847, 101.77269098894143, 97.81151778163297, 93.92103622914323, 90.10124633147205, 86.35214808861954, 82.67374150058563, 79.06602656737044, 75.5290032889738, 72.06267166539578, 68.66703169663646, 65.34208338269576, 62.0878267235737, 58.904261719270266, 55.791388369785466, 52.7492066751193, 49.777716635271815, 46.87691825024285, 44.046811520032634, 41.28739644464099, 38.598673024068034, 35.98064125831365, 33.43330114737802, 30.9566526912609, 28.550695889962526, 26.21543074348267, 23.950857251821503, 21.756975414978967, 19.633785232955063, 17.58128670574979, 15.599479833363148, 13.688364615795194, 11.847941053045815, 10.078209145115125, 8.379168892003008, 6.750820293709637, 5.193163350234784, 3.706198061578675, 2.2899244277410844, 0.9443424487221819, -0.33054787547803244, -1.5347465448596722 ], "yaxis": "y" }, { "mode": "markers", "type": "scatter", "x": [ 29, 31, 15, 43, 23, 71, 67, 72, 15, 64, 58, 48, 35, 16, 25, 35, 53, 69, 75, 72, 67, 46, 29, 25, 34, 47, 69, 72, 76, 69, 51, 45, 21, 48, 23, 28, 70, 51, 64, 76, 54, 37, 11, 75, 24, 64, 26, 18, 72, 72, 45, 66, 17, 56, 54, 56, 74, 69, 78, 72, 56, 21, 41, 30, 22, 34, 53, 59, 74, 78, 77, 64, 41, 30, 50, 24, 13, 38, 46, 65, 74, 76, 75, 68, 58, 41, 18, 28, 15, 45, 75, 55, 68, 67, 76, 55, 39 ], "xaxis": "x2", "y": [ 15.988754512635921, 38.395625678444134, 0.223191012291295, -8.101246331472055, 28.071541299564046, 3.1520589469541846, -4.633785232955063, -2.0782091451151246, 18.223191012291295, -8.21543074348267, -6.28739644464099, 5.937328334604217, 21.361068152236896, -2.0483444099344013, 34.32671232319589, 7.361068152236896, -7.791388369785466, 0.4005201666368521, 8.806836649765216, 4.921790854884875, -1.6337852329550628, 20.933973432629557, 2.9887545126359214, 20.326712323195892, -1.024254983983326, -6.529003288973797, 0.4005201666368521, 4.921790854884875, 12.293801938421325, 7.400520166636852, -2.0878267235736985, 23.326258499414365, -0.46639634334235325, 6.937328334604217, 30.071541299564046, 23.179281447503882, -12.688364615795194, -18.0878267235737, -6.2154307434826706, 3.293801938421325, -15.749206675119297, 8.919639460221475, -12.397583846992376, 9.806836649765216, 53.2344726387893, -9.21543074348267, 29.348260352783853, -42.80349021884166, 2.9217908548848754, -10.078209145115125, -8.673741500585635, 1.2430245850210326, null, null, 11.609428513021271, -3.876918250242852, 8.250793324880703, 4.123081749757148, 2.249179706290363, -4.599479833363148, 10.055657551277818, 8.921790854884875, -14.876918250242852, -14.466396343342353, 1.188482218367028, -1.2724640770506426, -24.162081694479838, -11.024254983983326, -3.791388369785466, -0.5986730240680345, 3.249179706290363, 6.055657551277818, 3.7100755722589156, -11.21543074348267, 3.188482218367028, -5.272464077050643, -18.342083382695762, -6.765527361210701, -44.44581310771326, -8.907112368014197, -2.066026567370443, -5.950857251821503, 0.2491797062903629, 5.293801938421325, 0.8068366497652164, -4.58128670574979, -13.28739644464099, 0.18848221836702805, -24.80349021884166, -15.820718552496118, -32.776808987708705, -3.673741500585635, 6.806836649765216, -20.777716635271815, -11.58128670574979, -3.633785232955063, 7.293801938421325 ], "yaxis": "y2" } ], "layout": { "height": 250, "shapes": [ { "line": { "color": "Black", "width": 3 }, "type": "line", "x0": 0, "x1": 80, "xref": "x2", "y0": 0, "y1": 0, "yref": "y2" } ], "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autosize": true, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "height": 250, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "margin": { "b": 10, "l": 10, "r": 10, "t": 10 }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.5, "xanchor": "center" }, "width": 350, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "title": { "text": "Residuals", "x": 0.75, "xanchor": "right", "y": 0.9, "yanchor": "top" }, "width": 550, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 0.45 ], "range": [ 5.771049222797927, 83.22895077720207 ], "title": { "text": "Temperature (oF)" }, "type": "linear" }, "xaxis2": { "anchor": "y2", "autorange": true, "domain": [ 0.55, 1 ], "range": [ -0.5901937046004844, 83.68946731234867 ], "title": { "text": "Temperature (oF)" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ -20.3866646920855, 267.893515719436 ], "title": { "text": "Gas (ft^3)" }, "type": "linear" }, "yaxis2": { "anchor": "x2", "autorange": true, "domain": [ 0, 1 ], "range": [ -52.49155092981901, 61.28021046089505 ], "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAFoCAYAAAAhG4EVAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQdUVFcTx/90xIIg9oa9Y8WG2Huv2GtijTHG6GdJ7CZGjVhiidHEHlssxIbGgmJXLNjA3sWCimIF4TtzyQLLY5e3y9sGM+d41N37bpl733u/nXtnxio2NjYWLKwB1gBrgDXAGmANsAZYA+laA1YMhel6/nnwrAHWAGuANcAaYA2wBoQGGAp5IbAGWAOsAdYAa4A1wBpgDTAU8hpgDbAGWAOsAdYAa4A1wBpgSyGvAdYAa4A1wBpgDbAGWAOsAd4+5jXAGmANsAZYA6wB1gBrgDVAGuAzhbwOWAOsAdYAa4A1wBpgDbAGGAp5DbAGWAOsAdYAa4A1wBpgDbClkNcAa4A1wBpgDbAGWAOsAdYAbx/zGmANsAZYA6wB1gBrgDXAGiAN8JlCXgesAdYAa4A1wBpgDbAGWAMMhbwGWAOsAdYAa4A1wBpgDbAG2FLIa4A1wBpgDbAGWAOsAdYAa4C3j3kNsAZYA6wB89VAREQEMmbMCFtb2/hOfv78GR8+fBCfs7AGWAOsASU1wGcKldQm18UaYA2wBlKpAYK+X3/9FevXr4eTkxO8vLwwdepUUevChQsxd+5cAYSenp7x/05lk3w5a4A1wBoQGmAo5IXAGmANsAbMSAOzZs3C1atXMWfOHDg7O8f3LDg4GAMGDICfnx/c3NwwcuRI5M+fHyNGjDCj3nNXWAOsAUvWAEOhJc8e9501wBpIUxqIjIxExYoVcfDgQeTLl09tbPPmzcPr168xfvx48XlQUBCGDx+OwMDANKUDHgxrgDVgOg0wFJpO99wya4A1wBpQ08Dly5cxaNAgjBs3DgcOHECZMmXQpk0buLi4iM9KliyJXr16iWuePn0qtpZDQkJgY2PDmmQNsAZYA6nWQLqGwmLFiuH69eupVqIpKnj+/Ll4UaT3l0FsbCyePXuGHDlymGIazKrNT58+4e3bt2JdpHchPdDayJQpk0WpIiAgAP3790fbtm3RokUL7N27F+fOncPu3bsxdOhQ1K5dGz4+PmJMZDWsXLkyzp8/H+90QuCYVOjaI0eOiLWRPXt2WFlZWZROUtPZV69eIUOGDHBwcEhNNRZ1raWu/dQoOSoqCm/evIGrq2tqqrG4a+mHodL3NEMhQ6HF3QiJO8xQmKANhsIEXVjqi3Hfvn2YPHkyDh8+LOCNnE4I/LZs2YLly5ejSJEi6NOnjxhoWFgYvL29ERoaCmtra/HZ6dOnJfcznUNkKGQotOgHfQqdZyhU7oceQyFDoUU/KxgKGQqTW8CWCoUXL17EkCFD1M4JEvgtWrRIgN3jx48xZcoUMeQTJ05g1KhRKZ4prFChAo4ePcqWQot+0snvvKWuffkjlJZkKGQoTM36ib+Wt48VUaNJK2EoZChMS1BIlsFGjRrhq6++Qrt27YTDyaRJk4Tl8ObNm+jYsSN27tyJXLlyYdiwYXB3dxdgqE0YCnn72KQPaSM0zlDIUKjIMmMoVESNJq2EoZChMC1BIY3l0qVLAvju378vto7JckhnCUlWrVoFX19f8e9KlSpJwtYkpwuGQoZCkz6kjdA4QyFDoSLLjKFQETWatBKGQobCtAaFqvFQeJrkHGV0zWjCUMhQaNKHtBEaZyhkKFRkmTEUKqJGk1bCUMhQmFahUKkbi6GQoVCptWSu9TAUMhQqsjYZChVRo0krYShkKGQo1H4LMhQyFJr0IW2ExhkKGQoVWWYMhYqo0aSVMBQyFDIUMhRq0gDHKTTp49lojTMUMhQqstgYChVRo0krYShkKGQoZChkKEzQAIekMekryaiNc/BqhdXNUKiwQk1QHUMhQyFDIUMhQyFDIWc0UeYFzMGrOXi1MivJRLUwFDIUMhQyFDIUMhQyFCrzEjZLKKSQC5Syi3JW6iK6hmpgS6Eu2jXPsgyFDIUMhQyFDIUMhQyFyryjzQoKX758iZkzZ4rk7yRVqlTB2LFjRb7P9+/fw8PDQ23Uc+bMQcuWLcVnCxcuxNy5c0VieE9Pz/h/a1NTqqDwYRCQt7Iys6BHLc+fP4eLiwtsbGz0uDrtXMJQyFDIUMhQyFDIUMhQqMx73aygkDzFNm/ejG7dusHe3l4AIn02Y8YMkfOT0j4dOnQofuS2trYCioKDg0FJ3/38/ODm5oaRI0cif/78GDFihFYt6QWFITuB08uATDmAdkuUmQU9amEojFMaQyFDIUMhQ6FSUBj+PhyxiIVbBjc9nsrmcQk7mpjHPBijF+nO0eTYsWOYOnWqsByGhISIHJ/bt2+X6HrevHl4/fo1xo8fL74LCgrC8OHDU0wUrxcUvrgJLKoBRH8EOq8BSrUyxtxL2mAoZChMuijoyAW9EMiCnN4lPb4YNc05xylMOU5hyIsQTDw2EVfCrwg1FslaBD9U/wFVclaxuFspPa59DkmTTkLSkKUwOjoa48aNw/Hjx/Htt9+iQ4cOwhrYsGFDYQ0koe9LliyJXr16if8TPXt5eQmQ1La9qhcUUgOHZgAHfwIK1QZ6/QNYKTchcp9ADIUMhQyFmu+W9PhiZChM0MDt27dFikA7OztxNt3BwSFZ9ezduxf+/v543eg1Tj49qVamdLbS2NByg9xHcrLlyECxdu1ajB49Gjlz5kxVXXIvTo9rn6FQOQYxq+3jxIv+9OnT+Prrr7Ft2zbkypVLgN769evh6uqKK1euYNeuXZg+fTqaNWuGoUOHioTxPj4+ogqyGlIi+fPnz4szhiSq7xK3ce7cOZA1Umf5HAXXDS1g8/IWIr3H471Hb52rSO0FMTExsLa2Tm01aeJ61kXCNNJ2upUJfqSY20IiPZDI0UX27NnNrfuK9sccLIXVq1dHeHh4/Ljoudy8eXO0bt0a9J3SQmOmP3TOXBsULlq0CHQ23XmcMz5af5R041T3U8hgq5vDY+JK/vnnH3z33XfifUVGCGMIQ6ExtGwebaSb7eObN28Ki+CyZcuEs0lysmbNGvELj/6mbWNyRunTp48oGhYWBm9vb4SGhsaDEzmxJJWqVauKMvqI1YV1sPIbArgWQUzPbYBzPn2q0fuaFy9ewNnZmR1NYmPFy4asx+ldaPv43bt3yJo1a3pXhdADgaHqR6E2haT1H1fmAIXUB3d3d3Tp0kXs/tAZcTo/TvfuggUL0KRJE0XX7O+//448efKgVq1asqAw+w/Z8QZvJH0I6hEEext7vfvGUKi36nS6kC2FadhS+PDhQwGEtCVMvyI1yZEjR4SFkKyBixcvFg+ZKVOmiOInTpwQ5w8DAwO1Liy9t49Vta5pD9zYD3h9AzSKa9tYwtvHcZpmR5OEFcdnChN0kR6tJZqePeYChfXr14evr298N2nHp02bNuKH/7p16wzy6EwpzZ3KUthmcRvsebhHrQ+18tbC4oaLU9UvhsJUqU/2xQyFaRQKyRRKvyT79euHjh07xi8I8kS+du2a2EYmKwiVI+ugk5OTMP3fuHFDlN+5c6coM2zYMPGrlMBQm6QaCu8cAVa0AOwyAL38gPzVZC/i1BZkKGQoTLqGGAoZCpN7rpgrFFJfGzduLJ7n9ONeJQ8ePBBHg44ePQpHR0dh7SMjAR0dUsmOHTuwf/9+HDx4UHxOW9BUV926dUWR/v37o0SJEvjyyy/jLYXUxi+//IKTJ0+iUKFCIpwZRbCgd8jxoOOYf2k+As8F4un6p6jWoxpm9JyB7E4JRwvatm0rImD07h13XCgyMhIbNmwQW8O0u0V97dSpE7p37y7eQyTJQSGdM6R31b///guCGdqxIjBWnYlP7bshPf4gYihMo1D4559/iodBUlm9ejUIgubPny/OC9LhYbIiEjxmy5ZNFF+1alX8r9BKlSrFnRNxdjYsFFLt24cDQcuBch2BDn+k9n6WfT1DIUMhQ6Hm2yU9vhg1acNcoVAVe7Zo0aLxsWlpp6hFixbCi75Vq1ag2HMBAQHCqZCOC5GBgKJR0A//GjVqoFq1arh3754IVTZkyJB4sKLjQ/QemDx5soBCgjayStL7ggwPBBHkAELtkFy4cEEYGSi8Ge1UUdxbgszEQkYECn2mMjY8evQIderUAfWfrKBkuKC+kr43bdqULBTev39flCUobdq0qWifzrWTEYN2vJSQ9Lj2GQrTKBTKuSHo1xmdE0ruALlJMpq8ugssrgl8jAQ6LQfKtNc6jKM3niP4QQSsrYBKBV3g6Z7w61fO+FVlGAoZChkKGQrlPDPMEQqfPXsmtox//fVXcQzom2++EUOZOHEi/vrrLxFztnTp0uIzgrdJkyYJgwHtCFFZgkCyuCWOLpHY4SwpFBLIEUzu2bMHhQsXFvWqAE1fKKTr6EykyjBB/6cIGWTFPHPmjDBKJLUU0pgnTJggQqtRxAyV0LtLqUQEDIVy7oq0USbdOJoYa7pSvX2s6migL7B/MlCwBtB7J2CdfJaRefuvY86/19SGN7FVGfT1ctd5yAyFDIUMhQyFch4c5gKF1FcCoYiICHHkh4Q8kCn0mCpkDPWVnAbJCUUltJ1cr149dO3aVZwbJ49isuQRQHbu3FnsHCWVpFBYtmxZEcYsqTVu8ODB2Ldvn16WwuR0v3HjRnz//fegUDdkDUwKhWQVpO1n2mamMDUp7WbJmd+kZRgK9dGaZV7DUKjwvCkGhTGfgd9qAU+vAI1/BGoOTban5SfvRcT7KLXvCrllxMGRcedgdBGGQoZChkKGQjnPDHOBQjpzR6HCSAiaCBATJyOgXaCKFSuK7xNb3+j/ZJGjrVqKSEFQSUeHaKuXytGWLkFW5syZ49WRGAppa7FmzZoYNGiQCA+TWH766ScsX75cLygk6x4BJf25fv266CNtdxOUaYJCsmaS1VPlWNO3b1+x5Z0vn3LRKxgK5dwVaaMMQ6HC86gYFFK/Lv4NbP4CyFoQ6LM97u9E8uZDNMpNUvduo68z2Nng6tSmOo+MoZChkKGQoVDOg8NcoDCx97HK2kfev40aNRLDoC1lgjcCR5XDSOLxETipct0TXJGTCV2vgsMVK1bEb8kmhkICNWqbslx99dVXaiqjbFgUEielM4UElrSdrTpTSFEPKI0qbRVTogRyhsmRIwfOnj0rtrs1QaGqcSpH/aUtbRI6A68am5w51VaGoTC1GrSc6xkKFZ4rRaGQ+vZXZ+CaP1B9CNBU6jDjMWkvXn9QtxS6Z8uIgFFsKdR3ajkkTYLm2Ps4QRfp8cWo6R4yRygkUCNwI89hAiPaPibQI49h8vKdNWuW7EcCwSHBWuLrEkMh1e3h4SEcTChtamKhKBaUFCEpFJKXMjmmqIRCnlGCBBUUUsYUckQhRxeKlasS2gpfunRpilCoKk8WxoEDB4q4muRtrcS5wvS49tnRJB07msh+UsgoqDgU3jsB/NkEsLYFem8HCtZU64Xvv9cwf/91tc9+aFEaX3oXktFb9SJsKYzTB0MhQ2FyN096fDFaEhRSXwnGCMrobB2FjiGhBAQER/SHLG9yhc4bPnnyBAcOHBCXJD1TSGcP79y5I8LRqM4vUhBtsvDRtq8KCsn7mayUtB1NW8sqUfVVBYVk6aM6x44dK7aySWg7mayGVF9KlsLE4yJLJVksyXM5b968coessVx6XPsMhQyFqb5xqALFoZAq3TUKOPU7ULot4LNS0s+A0KfC+5i8pysXdEHNInEhdXQVhkKGwqRrhi2FCRpJjy9GS4NCgjJyNCGrGzlgULrBixcvon379iLOH3nykiWRsk4RhJGDBm0vkxWRIlBQyBkKUUPbxz/++KOw7JGFLzkoJFikMDYEiwRxlMVm5cqV8RCpgkICO4JCsmQSAFL8QAo1Q6FtSFRQqALALFmyYOTIkeIcITnHEHSSaIJC2m6msdD5SBrbrVu3hFe1i4uLOF9JcRNTK+lx7TMUMhSm9r4R16cGCt99+oyNZ+7j4cv3cMloj2Zlc4GcRhBxH/jNG3j/EuiwFCgXl49ZaWEoZChkKNR8V6XHF6O5QyF5/6qgTdVXso5RoOlu3brFgxeFmiFnjJCQkPghkSfv7NmzUa5cOeEYsmTJkvhcyvQdwd7XX38dn+KR/u/p6SnCv6hyH1OoG9reVcUmpHOGtAU8ZswYAZZUjoTAlBxaKCg1CTmzUH/ImkfXqOIUEvhRP+haErIS0rlFsjKqoJAgkOCWYiySVzXBL9VFIKyqm/pKOihevLgir4n0uPYZChkKFbl5UgOFzecF4srj1/H9IIeRf76uhWI5MgHHfgX2/gDk8wT67gJSkTtT00AZChkKGQoZCuU8CM3hTKGcfiYtQ8GtKcc7eRWTRS6x0PlD2i6mreDEmU6S1pE0zZ3quAnVR97Q2oTO+VEfknpCJ72Gtosp8LUKKuWMlZ7fBDJkEU0u5q6cOjSVYShMjfYs61p2NFF4vvSFwr2XwzBgdZCkN1/XL4bvGheng27A73WAxxeAhpOAWt8q3HOIDC+05aDEwWTFO2fECvlMYYKyefs4QRfp8cWo6bazVChU4jGSUu5jJdowtzrS49pnSyFbChW5D/WFwnWn7mHslouSPnStWgDT25eL+/zyVmBTHyBLXqDPTsBVd2cSbYNkKIzTDkMhQ2Fy90l6fDEyFEo1wFCoyKvS7CthKGQoVGSR6guFB0Keot+K05I+jGhUHMMaFEv4fEMP4Op2oOoAoLn8EAtyBsdQyFCYdJ2wpZAthck9O9hSmCHe41jOs9XSy6THH0QMhQyFity3+kIhNd516Qkcvxke34/czhmwZUhN5HZOdE7l/ingj7jArOizA3D3VqTfVAlDIUMhQ6Hm2yk9vhjZUsiWQtJAelz7DIUMhYrAVWqgkDqw6+JjPHr1Hlmd7NGkTC5kdkwmnMCeccDxhUDJFkCXvxTpN0Nhghp5+zhBF2wpZEshWwrVNcDbx4q9csy6IoZChkJFFmhqoVBWJ14/inM6iXwKtFsClO8i67KUCulqKdx89gGC7r4EYoGKBV3QqbJyuTZT6qshv2coZChMbn2lR2sJWwrZUsiWQldDvm7Mrm72PlZ4SowChdTnE4sA/7FAnopAP3/AVnsoBDnD1AUKZ/iHYHHATbVq+3sXxvctSslpyqzLMBQyFDIUar9F+Uwhnyk064e4Ap1jSyFbChVYRqkLXq1zB5Y1AB6cARpMALy/0/nypBfoAoWVp+1DeORHtSqyZLBD8MTGqe6HqStgKGQoZChkKNSkAd4+NvUT2jjtMxQyFCqy0oxmKaTeXvEDNvYCMuUA+voD2YqkagxyoTAmNhbFvt+NzzGxkvZCpzWDg611qvph6osZChkKGQoZChkKEzSQHo9OMBQyFCrCIkaFQurx332BS1tw1KUNNuceAU93V1BsQ5LHER+w5sRd3A1/CxcnezQrl1trXmS5UEh11/8lALeev1XTWX4XJwSOrqeIHk1ZCUMhQyFDIUMhQyFDIeWr1pbdxpTvKUO1zWcKFdassaFw8doNGHx9gBhFt0/f41hMGQypWwSjmpREvdkBuJME3NYPqI7qhbMlO2pdoHDD6fsYvTkuP6dKfmxXFt2rFVRYo8avjqGQoZChkKGQoZChkKFQmfevVSy9VdOpGBsKi/+wGyOxBgNsd+BATEX0+zQKubI44qf25ZINht2npjsmtS6TaiikCm4/f4sL91+Jusrlc0aR7JnSxKwzFDIUMhQyFDIUMhQyFCrzSmcovH5dGU2mUEvkx2iUnbgHOaxews9+AnJbhWNk1CDstK4nUuMN33BeUkO7inkxp3MFRaDQKIM0QSMMhQyFDIUMhQyFDIUMhcq8gBkKjQSFNF01pu8XZwf72vhjot0qXI0tgO9dfTGuTRV0/O2YZEaHNyyO4Q0Tpc1LVEKX7WNllop51sJQyFDIUMhQyFDIUMhQqMw7mqHQiFC49uQ9fL/1opi5TfaT4WkditBSw1Ci81RhKdx27mH8rJbImRl/9a+ObJns2VKoZa0zFDIUMhQyFDIUMhQyFDIUploDxj5TSB2+/+IdLj16jdyP/kWFY0OBDK7AF3sAt+I4d+8VHr56B4ohWLtYdq3jY0thnHoYChkK0zIUUqgNa2tr2NjYxA/z8+fP+PDhAzJmzCjrGcjBqzl4tayFYsGFOCQNh6RRZPmaAgrVOr75S+DiJqByH6DVPJ3GxFDIUJh0wXDu47RlLbl37x4aNGiA6dOno2PHjmJwCxcuxNy5cwUQenp6xv9b28ODoZChUKeXiwUWZihkKFRk2ZoaCg8F7IF3QBdYIwYris5F3WY+cM8m79c/QyFDIUOh5seApQfwJWtgjx498OTJEwwZMkRAYXBwMAYMGAA/Pz+4ublh5MiRyJ8/P0aMGKH1echQyFCoyAvTjCthKGQoVGR5mhIKdwQ/xtC/zmKM7ToMst2OgJjymJxlCg6OrCtrbAyFDIUMhWkXCpcvX45r166JbWOCOoLCefPm4fXr1xg/frwYeFBQEIYPH47AwECGQg0a4DR3sl4nFl+IoZChUJFFbEooVDmWuFlFYIv9RBSweor/RQ1Auy/GoIaGgNWJB81QyFDIUJg2ofDGjRvo27cvduzYgZ9//hmVK1cWUDhu3DiULFkSvXr1EgOnbAZeXl4ICQmJP3NIz4Wk0qhRIxw6dEicQ8yWLflg+Io8UM2wEoJoR0dH2Nsn77Bnhl1OdZfev38vzlo7OTmlui5LqSA6OhqRkZHImjWrpXRZkX6Gh4fLvqcTn0vW1jh7HxvR+zjxRHy58gz2XX0iPuplsxdT7FbgWmw+POqwA3U9CqW4YBgKGQoZCtMeFNLLjQCQLIB169bF2LFj46Fw6NChqF27Nnx8fMTACXgIGM+fPx/vdNK1a1eJUggaacvZwcFBOK1YWSlnVUjxQWXiAjExMWK86W3MpHaa6/QiBMH0Jz2NmeaWjpnIvafpyIkcYSg0ERT+vDsEvx26GT9HG+ynopr1Vbyo+h1cm09Ice4YChkKGQrTHhQuWrQI586dE84lJFOnTkX58uXRqVMnzJw5E0WKFEGfPn3Ed2FhYfD29kZoaKjWlyGfKTTdmcKn755i1+1deP7+OXI45UDLwi3h6uia4vM9NQUs/TytPmPn7WPlfugxFJoICp9HfkTf5adx8WGEuAcaWQdhqf1swCEL8OW/QPaSWu8NhkKGQobCtAeFBH9k+Usqbdq0EUD4+PFjTJkyRXx94sQJjBo1is8UanlSmvJMIYFgp+2dBBCqJE+mPPi71d/IbJ9ZH/aRdQ1DoSw1pYlCdIQke/bsilrCGQpNBIWqFXnhwStEfohGAVcn5A8YDgRvACr2BNosSBUUUp7jP47cFjmPnTPYoYVHbnStWiBN3AiJB8FxChO0wSFpEnSRVl6MibeP6awhbS3v3LkTuXLlwrBhw+Du7i7AUJuwpdA0lsK1V9fi51M/S6ZmUs1J6FCsg8GexWll7euiILYUsqVQl/WisawpHU2S7dTjC8CyhsDnT0C3DUDxphr7rs1S+CHqM7xmHER45Ee16xd0q4iWHnkU0Z25VMJQyFCY3FpMKy9GgsIqVaqgQ4c4iFi1ahV8fX3FvytVqoQ5c+bA2dmZoVCDBkxpKZx/bj6WBi+V9GxYxWHo79HfYI/QtLL2dVEQQyFDoS7rxXKgkHq6byJwZC5Q0Avou0svKAwIfYo+y09Lru1YOR9+6VReEd2ZSyUMhQyFaRkKkxsbZzSR//QxJRRuDN2IqSemSjo7rdY0tCnSRv4gdCzJUKijwiy4OG8fKzx5ZmcppPFFPo2zFr66CzSdDlQfkuyotVkK/c4/wjfrz0muq5g/K7Z+5aWwFk1bHUMhQ2F6g0Jd7zjePjbN9vH76PfotrMbbry6ET9lpbKVwvoW62FtZTjPYIZCXe8Qyy3PUKjw3JklFNIYT/4G7B4NZM4NfLEXyCo9C6gNCteevIvvt16SaKt0nizYNcxbYS2atjqGQoZChkLt9yBDoWmgkGYlOiYae+7sEc4m2Z2yo3mh5gZ/YDIUGlzFZtMAQ6HCU2G2UEjj/KMxcP8kULU/0PwXyci1QaH/pTAMWhMkuaZZuVxY3L2ywlo0bXUMhQyFDIUMhZo0YMrtY1M9GRkKTaV547fLUKiwzs0aCq9sAzb2jhtx901AscZqo9cGhTeeRqKh7yGJtkY2LoGh9Yti+dHb2Hb+ESLeRcHdzQlf1CoM72LyAlsqPAWpro6hkKGQoZChkKEwQQMMhal+rVhMBekGCukgNYXXyJAhg2RytB2y1vUAtllDIY1860DgwnqgQHWg724g0TmUlOIUztl3DfP2XY/XX53i2fFHH0/svvgYX69TP2/oaGeD42PqwyWj5aWCYihkKGQoZChkKGQofPPmDVxdDRsY3NxoMc1D4cuXL0XU/t27dwvdUygGCslAQVtJFi5ciLlz54qUTp6envH/Tuk7TRNp9lAYfgNY3hyIfALU/wGonRCPLCUopDG//hCFBy/fI7OjLfK7xOXBHL05GBtO35eoZEnPymhSJpe5rfkU+8NQyFDIUMhQaAgovPDsgjgTWDRrUTg7aA/7k+KDyogF2FJoRGWbuKk0D4V0/mPz5s3o1q2bSGBOgEifzZgxA8HBwRgwYIDI4Uk5/EaOHIn8+fNjxIgRWr/TNmdmD4XU+VNLgV0jAVtHoJ8/kKeiGJIcKExu7N9uOI+t5x5Kvvq1a0W0Km95MQwZChkKGQoZCpWEwnNPz2HkoZGgFHUqmVhjIjoW72hiBJDXPEOhPD2lhVJpHgqTTtKxY8dE7k+yHM6bN08kgB8/frwoFhQUJJLGBwYGav3O4qGQBrC+GxCyEyjZEuiyNlVQuCzwFqbtvCpRy95va6N4TsOlXjLUDchQyFDIUMhQqCQUDt43GEceHlGrMqtDVgR2CTTUY0zRehkKFVWnWVeW7qCQLIXR0dEYN26c+FOyZEn06tVLTBIpw8vLCyEhIQIUNX1nY2OjcVItwlJIvX90Lm4bOeod0HIuUKWv3pZCqm7I2rP1DJp2AAAgAElEQVTYdfGx0Iu1lRWGNyyGYQ2KmfXi19Q5hkKGQoZChkIlobDhpoZ48u6J9Idzx73InTG32T8nGQrNfooU62C6gsLTp0/j66+/xrZt20Sez6FDh6J27drw8fERCiWrYeXKlUXy+NGjR2v8js4fklC+0KRClkbalrYEsT0xH3aHfkJslrz42N0Pb6yzwsnJCdbW+gVBDX/7CW8+RCO3syMcbPWrwxz0RlAYGRmJzJktz8qptP7oBxQ5aNG6SO/y8WNcikcHB4cUVZGcQ1uKF1lQAY5TqFucwjbb2uBWxC3JDJOlkCyG5i4MheY+Q8r1L91A4c2bN0Wuz2XLlglnExKyBpLDSZ8+fcT/w8LC4O3tjdDQUEycOFHjdypoIgeVpEKOK7QNbSnitKkzbO8fwyeP7nhVa5J44VlZKZfz0FL0kLSf79+/T9ZT3VLHo2+/Y2JiQDlA5YCQvm1YynUEyPSDwc7OLsUuZ8mSJcUyllyAoVA3KFxwbgGWBC9Rm/I6+epgQYMFFrEMGAotYpoU6WS6gMKHDx8KIKTt4tatW8crbvHixXj8+DGmTJkiPjtx4gRGjRolzhRq+06b5i1m+1g1iNuHgZWtxP9eN1+MjJU7Q9v2uCKrzswr4e3jhAkiKyG9EFxcXMx81gzfvfT4YtSkVYZC3aCQ9Ljy8kqceHwCUTFRKJutLAZXGAwHm5StzoZf2Sm3kB7XPv0Y5pA0Ka8NOSWsYumtaiZC1NulSxf069cPHTsmeHqRJ/KtW7fEZ7QNTNvJw4YNg7u7uwDDGzduaPwuTUEhDWb/ZCDQF9E5ysGqnz9sHDOZyeyZphsMhQyFya289PhiZCiUaoAzmpjmuWzsVhkKldsxNCso/PPPPzF9+nTJelq9ejWqV6+OVatWwdfXV3xfqVIlzJkzB87OcfGjtH2naYFanKWQBkLOJuR08ugcYmt9B6uGE1J1/+2+FIZFB2+AsqBkzmCLthXyYlzzUqmq05gXMxQyFDIUar/j2FKou6XQmM8wpdtKjz+IGArTKBTKuTnSVUYTTQqh8DQUpobOE1KmkwI15KhOUublu0/wnLYP0THqxuLJrcugd013veo09kUMhQyFDIUMhZo0wJZCYz+RTdMeQ2E6hkIll5yhLYW0MW8oP5APm4fC8eJqoFgjoPvfeqklIPQZ+iw/Jbm2RbncWNi9kl51GvsihkKGQoZChkKGwgQNsKXQ2G8h07WXLhxNjKleQ0HhBL9L8Dv/CJEfo0VA6GH1i6JZudy4/iQSU3ZcxrGb4bCxtkLtYtkxtW1ZERZGV3lx7ypc/boD4TeBZjOAaoN0rQL/XnmC/qvOSK5rVjYXFveorHN9priAoZChkKGQoVBfKDwddhqXnl8SURw83DxQKadl/BjWNuMMhaZ4E5mmTYZChfVuCChccugWpu9Wzxhib2uNoB8a4cuVp3Hy9gu1UVC+Yco7rKtQmrvoK9uR68BwPI91RpfoichbpBymtCmLgtm0x6mbtvMKNp15gIj3Uck2S2cKB9QurGuXTFKeoZChkKGQoVAfKFx2cRnmnZ2ndukoz1HoVTouQYKlCkOhpc6c7v1mKNRdZ1qvMAQUfrnyDPZdlUbDX97XE32Xn5b0J5ODLS5NbqLzyAgKv9l6Ax3uTUN7m0Bs/uyN76IGo26JHFjR11NjfetO3cPYLReT/d7WxgodKuXDjA4eOvfHVBcwFDIUMhQyFOoDhXU31kX4+3C1S/Nmygv/Dv5qn+29sxfHHh3Dx88fUdylOPqW7Wuqx52sdhkKZakpTRRiKFR4Gg0BhV+sPIP9yUFhH0/0XSGFwowOtrisBxQ+ffYMVWefQiGrx9hoPxXZrV5hWNRQ7EYtXP+xmUZNjdx0AX8HPZB87+tTHu0r5VNYw4avjqGQoZChkKFQVyj8EP0BnmulP55trW1xtudZWCHu4P7G0I2YemKqWvV189fFr/V/NfzDTc8WGAr1VJwFXsZQqPCkGQIKFwfcxAz/ELWe2lpbIWg8bR+fwek76tvHjUrnxNJecVlbdBEVFNI1vWz2YordCoTG5kf36Ek482NCjMekdWqCwkXdK6F5OfPP65l0PAyFDIUMhQyFukIhla+9oTZefnipdinlNt7bcW/8Z338+yDoiTTrFZUx1zzIDIW6vEktuyxDocLzZwgopC7S9uy28w/x/tNnFM2RCd80KIZW5fPg6uPXmLz9Ck7cChe/Q2sXz44f25VFPhfdc9Wqto+P3ozb/vjd3heNrc9gd5ZOaDZimUZNado+DhxdD/n16IfCU6JzdQyFDIUMhQyF+kDh4guLsej8IrVLv638LfqV7Rf/WTu/drjx6oak+s2tN4utZHMUhkJznBXD9ImhUGG9GgoKVd38FB0DcjJJKp9jYkWoGutUxKshKHwZbY8pO68i8PpzVLC5jQ32U+EQ+wHo5QcUrqtRW4kdTQq5ZcSQukXQqUp+hbVrnOoYChkKGQoZCvWBwtVXVmPm6Zlql46vPh4+JXziPxt+cDj239svqf5Y12PIbJ/ZOA85HVthKNRRYRZcnKFQ4ckzNBQq3F216ggKKcetWu7jQN+4NHiFagO9t6fYfPTnWJBziSULQyFDIUMhQ6E+UNhwU0M8eafuFFgwS0HsaLcjvrozT85g6P6heBv1Nv6zgR4DMbTiULN9bDIUmu3UKN4xhkKFVWruUEgZRyh+VtYMdpKRJwuFVGplK+D2YaDRFMDrG4U1Zn7VMRQyFDIUMhTqCoXaHE3O9TynVt3rT69xJuyM8D4ukrWI2W4bqzrNUGh+7ylD9YihUGHNmisUnr33EuO3XcLlR6/FiCsWyIrp7T1QMlfCdoVGKCQgJDB0yAL02w3kLKuw1syrOoZChkKGQoZCXaGQynut8wIBX2LJ4ZQD+ztJt4vN66mnvTcMhZY0W6nrK0Nh6vQnudpcobDtwqM4f/+VWn+9i2XH6i+qxn+mEQqpBG0h01Zy2fZAx+UKa828qmMoZChkKGQo1AcK5wbNxR+X/lC7dEiFIRhcfrB5PeR07A1DoY4Ks+DiDIUKT545QuGHqM8oOV49eCoN28HWGqHTEuIPaoXCqHfA8ubAo3NA20VAhe4Ka05aHaX0owwpubI4ihR+xhKGQoZChkKGQn2gkK7xv+OP4GfBIi5hhRwV0KhgI2M9ugzWDkOhwVRrdhUzFCo8JeYIhVGfY1Ds+92SkSbNfKIVCunqkJ3A+m6Aa2Ggnz+QKade2iPQe/0+CrmzZgDFW0xOEsc+JG/rofWKYliDYnq1p+tFDIUMhQyFDIX6QqGuzxtLKM9QaAmzpEwfGQqV0WN8LeYIhdS53n+ewqFrz9RG29IjNxZ0S0jWniIU0tW7RgKnlgJVBwDNZ+msveHrz4t4iyR2NtYY1qAovq6vDnt/nbyHcVulafN2fF0LZfM669ymrhcwFDIUMhQyFDIUJmiAoVDXt4jllmcoVHjuzBUKH0d8AMUSPHnrhYhnWKuoGya1LgPnRF7IiaHw/ot3QjP5XZMEwY58EreNHH4D6LYRKC4/x/LKY3cw8Z/LEo3v/sYbpXJnif+cgJDAMKnM6lQenSobPm0eQyFDIUMhQyFDIUPhmzdv4OrqqjAlmHd1DIUKz4+5QqGcYRIUhr6MxffbLuNOeFwMrcLZM2FGh3LwdE90Y1xYD2wdCOSvCvT1B6xt5FSP//0djI1n7kvKzulcAe0q5o3/nMCRADKpzO1cAW0TlZPVqB6FGAoZChkKGQoZChkKGQr1eIEmc4lVLL1V06lYOhT2Wx+C4AcRarNXpaAL/h5cU31GCQoJDuuNA+qMljXb32+9hLUn70rK0hY2bWWrxP9SGAatkeYGPTK6PvK5ZJDVVmoKMRQyFDIUMhQyFDIUMhSm5k2acC1D4fXrymjSyLWEPX2G6r6nJK2S5+/Nn5qrf07bx7SN/OEV0Hc3kLdyir3dGfwYX/11Vq0cpeU7PrY+cmZxVPv8jyO3sfnsA7x8+0lsYX9RqxCalMmVYhtKFGAoZChkKGQoNBUUxiIW76LeIaNdRiUeZ4rUoe+ZwvfR73Ho/iERuzFPpjyolbeWIv0xRiVRUVFgKFRG0wyFFgqFtH1MUBgdo27ozWBvg6tTmkpXBzmckONJyRZAl79krR6Cva3nHgrYK5gtI77wLoQGJXPIutZYhRgKGQoZChkKTQGF44+Ox/ab2/E59jPyZsoLinHYukhrYz36NLajDxQ+iHyAvv59EfY2LL7eBgUaYG69uSYfj5wOMBQqFwaOodCCoXC8/13svpRwE9PN07pCHszvUjH5+2h9VyBkF9BoMuA1XM69ZvZlGAoZChkKGQqNDYXLLi7DvLPzJM0e6nwIro6mdXbQBwppLDSmpLKi6QpUzpnyzpKpXxQMhQyFiqxBSz9TaOeUGTP2XBNeyrACahTOhh9alIKjnQZnkgengT//syL23g4UTHL2UBGtGrcShkKGQoZChkJjQ+GwA8Nw8P5BSbNLGi1BzTymfa7qA4WjD4/Grtu7JOOZ4T0DzQsnOY5k3Ee8rNYYChkKZS2UlApZOhS6uLjAxkaeN3G8Lg7+CByaGQeEBIbWtimpyay/ZyhkKGQoZCg0NhR+c/AbHLh3QNLs0sZLUT13dZM+M/WBwhmnZmDN1TVmCblylMlQyFAoZ52kWCY9QSH5mF98GAHr6A8os8cHVo/Px20h01ayBQtDIUMhQyFDobGhcPWV1Zh5eqZasw42DgjwCUAm+0ypeqIGPgjE3dd34WTnBK+8XsjppFs2Kn2g8MKzC+ixq4dav0tlK4WNLTemaizGupihkKFQkbWWXqAwIPQpvtt4AeFvPwm9dcwQhF9iZ8fpsMtaoGRLRfRpikoYChkK0yIUfv78GZ8+fUKGDNKwTvTdhw8fkDGjPI/XChUq4OjRoyBYyJ49O6woIn46kVevXgkdOjg4KD7iWadniS3XyKhIFHEuggEeA1C/QP1UtTMmcAx23toZX4ejrSP+aPwHPLJ7yK5XHyikyq+EX8H+e/sR8TEC+TLnE38+RH9ALqdcqJKriuz2TVGQoVC5e5odTSzY0UTu9nGrBUdwMUk8w9+zLEfjT/8COUrFbSNnzJ7ivRwW8QH3XrwD5WEunSchq0mKFxqwAEMhQ2FagsKXL19i5syZ2L07Lv95lSpVMHbsWBQpUkT8f+HChZg7d64AQk9Pz/h/a7vFGAoNA4VKP9ZuvLqBdn7tJNW2L9Yek2vK39HRFwpVDRPkkidyyIuQ+L7Uy18P8+vPV3rIitXHUMhQqMhiSg+WQgpYU3TcLnxOEromt1U4juWeC6sXN4HKvYFW2m/4X/aEYsHBG/F6r5A/K/7o44lsGe0VmQt9K2EoZChMS1BIlq3NmzejW7dusLe3F4BIn82YMQPBwcEYMGAA/Pz84ObmhpEjRyJ//vwYMWKE1tuHoVB3KFxwbgGOPTqGqJgolHMrh68qfoVsjtn0fUzJuo7aG/jvQEnZGnlq4PdGv8uqgwqlFgpXXF6B2Wf+20lK1OrihovNNnYhQyFDoewbRFtBc4bCNx+icflRBChgtEc+Z4lHceLcxykpo+zEPYj8GK1WzMHWGqFd3wOb+sZ93mYRULF7slVRGr26swIk3w2sUwRjm5VMqXmDfs9QyFCYlqAw6ViOHTuGqVOnCsvhvHnz8Pr1a4wfP14UCwoKwvDhwxEYGMhQqEED+mwfExARGCWWarmrYVljacgWJR9uV19chc92H0mVLQu3xHTv6bKbSi0UTjsxDRtCN0jaG199PHxKSPsnu2MGLMhQyFCoyPIyVyj858IjcQYw6nOMGCdt187rUgENSiUcONYFCkdvDsaG0+p5jNtXygdfn/KA/xjgxGIgc+64bWS3YhLd0pnEPstPSz6vVzIHlvfxVGQu9K2EoZChMC1DIVkKo6OjMW7cOPGnZMmS6NWrlxjy06dP4eXlhZCQEK1RCNhSqJulsOXWlsLRI6kc7nwYLo4u+j6qZF03aN8gHH14VK3sb41+g1ceL1nXU6HUQuGv537F78FSy+SsOrPQ1D2ZxAiye2a4ggyFDIWKrC5zhcJ6vwTg9vO3amMka+E/QxPSDukChVTRL3tDcer2C5AXsqe7K/7XtERc/Z8igZWtgYdBQOm2gM9KiW5P3n6BzkuOS3/BeuTBgm4aAmUrMkMpV8JQyFCYVqHw9OnT+Prrr7Ft2zbkypULQ4cORe3ateHjE2etIath5cqVcf78+Xink7Vr10rU8csvv2DPnj3icycnp3TlaEIOOba2tuKPXGm9szWevn8qKe7X3E9nT2C5bSYut+3WNtx9c1ekzquZqyZKu5bWqRpyUCKh4wf6SOjLUPTe31vtUnI2Wd9kPRxt1FOc6lO/Ia7R5phliPbMpU76ASD3npbrmMaOJmbmaPLu02eUnuAvWXNiu3das/jPNUHhmbsv8eZDFPK5OKFYDpmhEW4eAFb/d8C5yU9Aja8k7dP2MW0jJ5a5nSugbcW8Jr0/GAoZCtMiFN68eRMdOnTAsmXLhLMJCW0bk8NJnz59xP/DwsLg7e2N0NBQWFtbi89WrFDf9qTPaNvZ3z/umSL3xWDSm1rBxgkK7ezsdIrnOvr4aBx+dFitF26ObtjeYruCPTNcVWQ1o+eivlBIPbv84jL2PdiHVx9fCe/j1oVaI7dTbsN1OpU1x8TE4OPHj8l666eyarO+nKBQ7j2dKZM8HmAoNDMopBVIjiFJcxqTQ0fQ+EYaoZDCzfT645Q4h6iSnjUKYmqbsvIWdcDPQMB0wM4pbhs5n3oIgpvPIrEs8DZuPI1Elgy2aFomFzpVyS+vbgOWYihkKExrUPjw4UMBhLRd3Lp1Qi7dxYsX4/Hjx5gyZYoY8okTJzBq1Kg0e6bwzac32H17N8LfhyO7U3a0KNwCGWylIXq0PV70OVNIXrcUGubmq5ui6iz2WfB99e/RvJD5Z/ag/qZ2+9iAj2uDVc3bx7x9rMjiMtft4+82XcDmoAdqY+xd0x2TW5fRCIWz94bi1wMJ3sGqgjuHeaOM3PAxZC0kq2HhukAvP0V0bOhKGAoZCtMSFNI5wS5duqBfv37o2LFj/NDI6nPr1i3x2c6dO8V28rBhw+Du7i7AUJtY4plCipXXZWcXPHiT8Bws7FwYG1pt0GkLUx8oVOnydsRtRMdEo2jWoha15c5QaOi3jvnUT88LpWOPsqXQDC2FtOTm7b+Os3dfguLMViuUDYPrxsUpU0nS7eMha89i18XHktW6uEclNCsr0+xP5wrpfCGdM6wzGqg3znxWv4aeMBQyFKYlKPzzzz8xfbrU03T16tWoXr06Vq1aBV9fXzHkSpUqYc6cOXB2dk5zULguZB1+OvmTZFxTvKagXVFpLD9NCkgNFJr9w09DBxkKLXXmdO83Q6HuOtN6hblaCuUMMykUJudhTPWs/qIqvIulHJg6vk3yRCaPZJIem4GiDeV0x2RlGAoZCtMSFMq5kdJDRpP55+ZjafBSiTqGVRyG/h795ahJlGEolK0qiy7I28e8fazIAk5LULjv6hN8ufKMml4KZnPCoVH1dNcVxS68vAXIUxHo/Q/gYB7ZS5IbCEMhQ2F6g0Jdb2hL3D5mS6Gus5xQni2F+uvO0q5kS6HCM5aWoJBUs+dyGHZfCkPEuygUcssIOodIYKizhN8EVrYCXj8Eqg0Emqknfte5PgNewFDIUMhQqP0Gs0QoNIczhQZ8bBm0aoZCg6rXrCpnKFR4OtIaFCqqngvrgK2D4qrs+AdQNuHQu6LtpLIyhkKGQobCtAeFNCJTeR/r80haH7Ieu27vAsFsgSwF0LN0T1TNVVWfqlJ9DUNhqlVoMRUwFCo8VQyFKSh0x3DgzHLAtZAIU3PmVSbcDX8rMqzUKZ5dknpP4emRVR1DIUMhQ2HahEJZD4AUChnjTOGeO3sw8tBItZ442Tphb8e9cHbQ7gSkxBiT1sFQaAitmmedRoVCetkeOHAAJ0+exI0bN3DlyhVQIFBKs1S0aFGULl0a7dq1M6tgkboewGYoTGGhvwuP20Z+chlnszZB+7CEKPc5szhi7ZfVUFRugGwD3VMMhQyFDIUMhZo0YAwonHRsEjZf3yzpwrx681C/QH0DPfk0V8tQaHSVm6xBo0Hh2bNnRVgESp9UrVo1EUW/cOHCcHR0xO3btwUknjlzRvyfAqy2bNkyPqK+EtrZsWMHvv32W2zYsEGEXSB5//49PDw81KqncAzUNsnChQsxd+5cEd3b09Mz/t/a+sNQKGO2QncB67qKgj9E9cOazwneyEljJ8qoTfEiDIUMhQyFDIWmhMKxgWOx49YOSRdm1Z6FpoWMnyuYoVDx14zZVmgUKFTl0+zZsycGDhyInDlzJqsQgrS//voLv/76KxYtWoSaNWsqoripU6fi1KlTePbsmQA9yu1JQpH8yTJ56NCh+HYon6WNjQ2Cg4MxYMAA+Pn5wc3NDSNHjkT+/PkxYsQIrX1iKJQ3Zfc2jEKBq7/jVWwmdPv0Pa7EFhQX1iuRA8v7esqrxEClGAoZChkKGQpNCYUrLq/A7DOzJV3Y0noLirkUM9CTT3O1DIVGV7nJGjQKFNIW7JMnT5AnTx5ZA6UFGB0dnWIAVVmVATh48KAI0tq1a1eR61MFhSEhISJy//bt0vyTlNuTYJbKkwQFBWH48OEppn9iKJQ3K+duP0PU8paoah2C/TGV8MWnuPMz7Svlha9PBXmVGKgUQyFDIUMhQ6EpoZDa/ubgNzhw70B8NwaXH4whFYYY6KmnvVqGQpOo3SSNGgUKVSOjZOsUILlUqVLCGvfu3TtxxpBSLVWtWlWAmyGlVatWmDRpUjwUHj9+XGwpU05QsgY2bNhQWANJaAubzjr26tVL/J8U5eXlBQJJ6rsmYSiUP4Pfz1uCyS/HwhafMSu6MxZGt8GffTxRv2QO+ZUYoCRDIUMhQyFDoamhULx33j0VHtO5M+aGE+WQN5EwFJpI8SZo1mhQuHnzZowZE5fVIlu2bNi4caMAtMDAQPH/8PBw0DYv5eg0lCSFQhr8+vXr4erqKpxedu3aJc49NmvWDEOHDkXt2rXh4+MjuqPaAqczkXTGkCS5vpJF8dixY4YagkHrjYmJUfQcZ0qdfffpM+7u9kXtB0sQC2ucrLkERSrqERg7pYb0+N7YutCji0a7hCDZinIjpnMhPZDI0QXlDk3LYolxCpWaD2M4mijVV6XqYShUSpPmX4/RoJBAq379+iAwW758ubAOkuWQoIzOGP7+++/iD0GVNktcalSaFAqT1rVmzRr4+/uD/qZtY3KG6dOnjyhGffX29kZoaGg8OBHIJhWydlIZS5QXL16ILXtD6V+TTqw2dINV6G4gf3XE9PIDbOxNqj56+dPckvU4vcunT5+ERT9r1qzpXRVCD7Q2VD8KtSnE2to6TeuLoTADHBwc0vQcJx4cQ2G6mWqxK0o/auX8+JWrFatY1U/q/64ghw6yuqmsbPRwLV++PDp37oxp06apQRc5fcg9eyi3Q6pyKUHhkSNHhIWQ+rl48WLhiDJlyhRx+YkTJ8T5Q7JsahPePtZ1ViDC04gwNRSuxusboFGczk0lvH2coHmCQnohuLi4mGo6zKbd9Phi1KR8hkKGQrO5MQ3UEUvPfXzv9T0EPgzE26i3KJilIJq4N5GlKaNAocrKRlu0dnZ2omPk9NG6dWvxt0oIqMjpg87yGUKSQiGdD8yVK5ewgpAiyDro5OQECktDIXI6duyInTt3ijLDhg2Du7u7AEOGQgPMDgW0psDWAPaVn4PMFdqiWiFXnRuifM23nr2Fk70NahfPjgKuup/DYShkKExu4TEUJmiFoZChUOeHs4VdYMlQeO7pOfTx74OY2Jh4rVN8S4pzmZIYBQrpJVuxYkXMmjULjRo1En3atGkTSpQoER8n8OXLl8LZhKx1mkLWpDSYlL5v27YtJkyYEB+nkGIXzp8/X5wXJFglSO3Xr58440iyatUq+Pr6in9TbEOCRdpeZShMSdO6f7/25F047hiKDjaHcS02nwhT07uRJ76uLz/8wvD157Ht/MP4xq2trLB+QHVU1REuGQoZChkKtd/DDIUMhbo/5Q17xcfPH7Ho/CJcfH4Rtta2qJa7Gr4o+4XejVoyFE48NhFbrm+RjH1Tq00o6ard6GYUKKSe0TnCN2/eCItbcrJlyxYsWLBAeCMbWyIjI8U5oeT20DmjiXFmo9GcQ4h8ehd/2f+IQlZhWPe5PqbbDkbwxMayOnDzWSQazE6IN6m6qF3FvJjTWbcQNwyFDIUMhQyFmjTAjiayHslGLzTswDAcvH9Qrd1+Zfvh28rf6tUXS4bCQfsG4ejDo5JxL264GLXy1tKqD6NBYXLenPTypTNLdGCXzhnSJKRkidNrdo14EZ8p1E/ZZSbuwduP0WhpcwIL7OaLSkZFDcQPP/wI5wxxRw60yfGb4ei69ISkSPXC2YS1UBdhKGQoZChkKGQoTNCAuR+diIyKRI2/akimLH/m/NjVfpcuj//4spYMhROOTsDWG1sl497YciNKZStlHlCYtBcUtmX27NnCclinTh29Js0cL2Io1G9W6v0SgNvP34qLJ9itQj8bfzyFK3IM3Qu4pbyFfO3JGzSec1jSeKvyefBr14o6dYqhkKGQoZChkKHQcqDw2ftnqL9RmhM6W4ZsCPAJ0On5rypsyVB45skZ9PXvqzbuOvnqYEGDBSnqwmiWQlVPKL8xwSDlOyZPX3LmoHzHaUUYCrXP5IOX77H3chhevY9CPpcM8KkSFyx8wOoz2Hv5ifh3RnwQ28jlrW8CpdsCPitlLY/+q87g3ytxdahkRd+qqFtCt5hxDIUMhQyFDIUMhZYDhdRTgkKCw8RSI08N/N7od8w6PQunw04jBjGolKOS2FLOYJtB6yK3VCi8FXELH6I/CCcTgkOV93HLwi1lvUeNBoUXL14EpcuL3FUAACAASURBVI67dOlSmoRBlbYZCjWvO7LmtVt0TGwTq6SKuwv+HlRTnAekc4Eq8bYOxmr7n+P+2+RHoMZQWQt6U9AD3HwaiYwOtgIGy+XV7hiUXKUMhQyFDIUMhQyFlgWFfjf8MOn4JETHxL1fcjjlwMzaM0GfJ91KbVSwEXzrxjmRahJLg8Kwt2EYHjAcl59fjh/S/zz/h56le8p6d6oKGQUKHz58iLp166Jo0aJYu3atyCCSVoWhUPPMzvAPweKAm5ICK/tVxZC1Z9VgkQoNt90s/sDGDqCg1gW9jLJsGAoZChkKGQoZCi0LCqm3ZBW7/vI6bKxtUM6tnBiA1zovvP70WjKdF3pdgLWV5iDzlgaFU09MxcbQjZJxHu16FFnss8h+dxoFCqk3Z8+exZIlS3Dy5EmRJaRbt27IkcO0OW5la0mHggyFmpX13cYL2Hz2gaTA7E7lsSjgppqlkAplcrDFpXLrgUtbgPxV48DQCPk/GQoZChkKGQq1QeHNdzex6OIiBD8PhoONA+rmr4tJNSaJUCiWIhS6Zf7Z+SKES/wYak6CFaQpLc3d0USbzqusqQIKV5NUTnU/pXUL2dKgsMeuHrjw7IJknGubr4VHdg/Zy9JoUKjqEaWAW7ZsGbZt2ybOE44YMUKkVEkrwlCoeSZn7gnFooM3JAVW9auKW8/fYtI/CWZvKkQxCr+rkQVY0z4u60m1gUCzmQZfKgyFDIUMhQyF2qCwd0Bv0NmtxNK1ZFeMqzbO4M8npRpo69cWN1+p79x0L9UdY6qOkTRhyVDY2783zj45qzam4i7Fsbn1Zq2qtCQopGDVYwLH4FHkI8mY/m79N0q4lJC9bIwOhaqePXjwQMQubNKkiQhanVaEoVDzTNKZwfaLjiHifVR8oWqFs2HDfyFjTt5+gaC7LxETE4ty+ZxRp/h/PxZuHwLWdAA+RwHtfgPKJ2TBMcS6YShkKGQoZCjUpIGrj67C518fydeFnQvDr62fIR5Jitf54M0DNNvSTFJv0axFsbWNNJSJJUNh0JMg/HD0B9CYSeis4aSak+Cd19viofDS80v4NuBb0HlCTbKtzTYUyVpE9hoyOhQeP35cBIr28JCaM8kRZcCAAciQQbtXkOzRmaAgQ6F2pT95/UF4Gb96/wn5XJxAwaVlyamlwK6RQEY3oMcWIHd5WZfpU4ihkKGQoZChUJMGrjy8gs77Oku+dnd2x/a22/V55Bjlmk+fP8Hexl60de/NPbTY0kI22FoyFKoGeTviNmIRC4J3OWJsSyGBHc2Pq6N8n4vhB4dj/739WoezpvkalM8u/31pdCikVHd0lrB3795qA6HMIZUrV8bGjRtRvHhxOXNmlmUYCg04LTu/A04vA9xrxYGhrYNBGmMoZChkKGQo1KQBymjSZX8XPIxMSKlJZdsXa4/JNScb5JmUmkr33Nkj0r/RdrejrSNaFGohLGWN/26Mx28fq1XdoVgHjK46Gr5BviALG50v9MzlicGlB8MGNsiUKVNqumJR1xoLCml+KGTOk3dx4dRI3z97/ywsmilJy60tcff1Xa3FDvgcQPYM8o/oGQ0Kw8PDceHCBZHzOGvWrPE5kGk0BISU89jPzw+nT58WeYgtVRgKDThz0R/jzhfeOQJ4fgm0mG2QxhgKGQoZChkKtUHhhYgL+PXCrwh9GSqKkaPJNK9pcHbQPQSWQR5i/1VKmT7qbKgDshImlmEVh4nMFrPPzMaNV3HnvCm48bRa0zD1+FTsvbtXrXyzgs0wocoEg0DhpmubsO7qOjx+9xhuGdzQqXgn9Crdy5BqkVW3oaFwzdU14kzn9lvb8ZHebYmkXdF2mOI1JcV+dtnRBZfD1c/iJ76Icj8Przw8xXoSFzAaFN65cwfTp0/XmNu4SpUq6NWrF5o1k55z0GlEJi7MUGjgCXh8IQ4M3z6Pg0KCw/8klnJsH72NG//FKaxXIgdqFsmmc4cYChkKGQoZCrVBIR1xEulZo9/BztpO/DFHORV2Cl/s+ULSNTpPt6jhIvE5gSP1nzyQSSqsqoDPsZ/VrslomxH72uxTHArpTFzXndIz4r81+g1eeYwTgkzTvBkSCofsG4LAh4EalwydAaSzgCnJsovLMO/sPLViBPsDyg0AHWegM6K6ilGgkMLQ5M6dGwUKFMCKFStgZWUl2T7WtePmWp6h0AgzE7wB2DIgbvuYtpFpOxlAj2UnceTGc7UOLOlZGU3K5NKpUwyFDIUMhQyFcqBQpweLCQpTFo9+e/pJoTCfNxY1iIPCxEIWxcprKks+p1A7ge0CFYfCtVfX4udT/yUpSNTqwPIDMbSCvIQFhlKrLlBI1rqt17ci7F2Y2KptVbgVKuWslGzX6Gxj622ttXa7pGtJbGq1SdbQ1oWsw9FHR4U1uJRrKQzwGICMdhllXZtcIaNA4cCBA9G4cWN06NBBnBl0dnYWXsdpURgKjTSr+yYDR3zjHE56bMHV1/ZoNk/6y6t5udxY1D35m1NTTxkKGQoZChkK0wIUvot6hzob64i0Z4lleKXh+KKc1IJIZXy2++Dqi6tq5T2yeWBJ3SWKQ+GqK6vEebqk0q9sP5GKzpQiFwrpXGarra0ksRDJizs5Sx3FEqSYgtqE5obmyBRiFCgcN26c8DgeM2YMfH19k3U0McXgDdEmQ6EhtKqhznVdgdBdgEdnHC8/HV2XnpAUrF44G9b/F/JGbs8YChkKGQoZCtMCFNIY9t3bh98u/CYyfWSyy4RmhZrhh+o/aJzg44+Oi3Rxqph3+TPnx/eVv0f5bOUVh0JygFl8YbGkLx2LdcTEmhPlPrINUk4uFFIWEcomklQ0gTd5GTf6u5GkPDkB5XTKKc52jvIcZZAxyanUKFBI28c9esSRMcGho6OjxoDV69atU3zhyVGEUmUYCpXSpIx6XtzGxxVt4PD6Lra4fokRj+pLLupUJR9mdZTvjk8VMBQyFDIUMhSmFShUjYOea3R0S67ceX1HeB8XzFIQhgpJs/zScuHpnFT6lu2LEZVHyO2qQcrJhcI/L/2JOUFzJH34styX+KbSN8n2rfaG2nj54aXadz1K98Boz9Eax9J5R2fcenVLhNWhOVnaeKlO4WvkKskoUEidiYiIwL59+7Bz505xQLdmzZrJ9rFz586wt4+LpWSJwlBovFm79DACcxfOwzL7OC/kLz99h30xCedhMjvaYs2X1VA+X1adOsVQyFDIUMhQmNagUKeHYJLChoLCrTe2YsLRCZKuERASGJpS5ELhv3f/xYgAKcBOqTkF7Yq1kwzh2str6PBPB8nn1XNXF6CXnCQXeoasivs67VNcRUaDQlXPz5w5g7CwMLRs2VLxwZhDhQyFxpuFX/aGYsGBGxhi+w/+Z7sed2NzotenMajp6YkaRbLBu5gbXJx0/4HBUMhQyFDIUMhQmKABQ0Hh60+v0c6vHZ6+exrfmJOdEza32ox8mfMZ72WSTEtyoZAu/ebgNzhw70B8LTXy1MDvjX5Ptv/Bz4LRfVd3yXcZbDOAHEzIM7y/R3+17z1WeggLYVI51/Oc4vm2jQKFtKAmTpyIr776CoUKFdI60RQYlDyU69atiwoVKph0UejTOEOhPlrT75oftl3CmhNxgTvn2C1CO5sjwlIY1nw5elQvqFbpmTsv4Hf+EcLffkKerBnQxTM/iuZIPhArQyFDIUMhQyFDoRQKN9zegOOPjyM6Jhpl3cpiSIUhcLJ10u8B/t9V5Kjhd8NPBG+mOIXNCzVHIWftnJCqBmVerAsUUpWXn1/Gs/fPxJauR3ZpxjZVsxEfI1BrfVzEDE3yVYWvMKj8oPivy60sl2zRw50Pw8XRReaI5BUzChSScr/77jvs3r0b7du3R9OmTVGwYEHky5cPtra2ePz4Me7evSsCVy9YsABlypTBwoULkTevzBRo8sZqlFIMhUZRs2jk98O38NOuOC+5bFavsdLuZ5S1voN7pQehgM+M+I5cehSBlvOPqHUsW0Z77P+uLrI6SeOLMRQyFDIUMhQyFKpD4aKLi7AqdJWaWmrnq42FDRYa7KFPKdwoc0xm+8zCAUOXFHCp7ZSuUKhLeysurxCBwzVJmWxlsL7lepGthDzBxx8dL/Egp7iSZ3qc0ViH/x1/HLx3EG+i3gj9ZbHPImC+QOYC8CnhozFsjVGgUNXrs2fPgtLc0RZycpIrVy6MHDlSbC3b2NjoomOzKctQaLypiPwQDZ/fj+PKo9ei0erWV7HG4WfYxkYB7X8XXskkc/Zdw7x91yUd8/WpgPaVpD88GAoZChkKGQpNDYXkmfvPzX8Q8SkCBTMXFGfsmribJpQb7fb5+PvgXuQ9iVqOdDlikEwuQ/cPxaEHh+Lby+qQFSubrZSduzi1byJDQiH1jSyGxx4fw/8O/U/SVcrP3K1UN0w7MS3ZYZADEFlpE1sTExf0v+2PUYc1ezCXzlYaG1puSLZuo0KhqgcfPnzAvXv3QFlO6N9kNXR3dxfxCy1dGAqNP4MBoc/w8t0n5HZ2RPXwrQDlSM7oFhfYOnd5TN5+GcuP3pF0bFLrMuhT013yOUMhQyFDIUOhKaFw241twjqUVMixgBwMjC0EhS13tMTzD+rJAagfhujT2Sdn0du/t2SYfcr0wXdVvjPK8A0NhTSImNgY1FhXAxRPMrG0KNxC5J6m8DWahMpQjuTkZNShUSBLoTaZXXc2GhdsLCliEig0yoyaqBGGQhMpPnGzBIWnl8VlOumxBStOPcakf6T5If/s44n6JaVJxxkKGQoZChkKTQmFBIQEhknFt64vGhWUxrgz9FOXoPDbI9/ieNhxtaayZciGAJ8AxZsnoCGwSSpN3ZtiVh1psGvFOwDAGFBI/d58bTOmn5oeH/y6uEtxkUfbZ4eP1mHZWNngXK9zImxQUhm0bxCOPjyaolpoW5lC51CwcJUwFKaoNt0KMBTqpi+DlKbk4pQf+c4RkRs5quksdPn9BILuJsSFotR3lAIvOWEoZChkKGQoNCUUfn/ke7F1nFR+qfOLSbaQCQqDnwdj4umJIMcQEkp9N7HGRLQt2lbxx/jJxyfx5d6EvPaqBrqX6o4xVcco3l5yFRoLCqltSlF3K+IW7G3s47fHPdd6Ss4RJu3nqe6nQF7LSWXm6ZlYfWW1bD1tbLVRpMgjYSiUrTZ5BRkK5enJ4KUeX4gDw7fPgRazBRyeuBWOF28/IZezIyoV0OyxxVDIUMhQyFCoCxSGvAhB6ItQ2FjboHz28qAsIKkRymf708mfJFXsaLdDBC42tiQOSUNettGx0SiWtRgofIyhpOfunjj/9Lxa9X+1+Avl3JL3xFW6H0pBIcVifPDmgXD0qJu/ruz5o/mndaBJyEP7n7bSHw5UnsB98L7BuPnqpiy1TPGagnZF42IqMhTKUpn8QgyF8nWlRMn9V59g2/lHAvbyuWRA92oF4ZHvv7OpwRuALQMAW4e484W0nSxDGAoZCtMbFH7+/Fmc76aMU3KEwoUdPXpUZLrInj27Tpky5NRvzmUobFqGDBlEEgaSPy79gblBc9W6PKv2LDQt1DRVw5h8fDK2XN8izp3RNu2AcgOE84EpxFBxCrWN5XPsZ/x97W/cf3NfAFX9AvWTzSWcGn0QrJ1+clpY6ihPceWcCbtHSkBhvz39cDrsdHwX7aztsKb5GpCjhxzZdG0TKK7h0/dPceHpBbyNeisuy2iXEVO9pqZ4lIDOZr6NfoscTjlwN+IuNlzbgFOPT0ma/rHWj2hdpLVpoPDBgwegP9WrVxcdoEDW69evR9asWeHj4wMnJ8P98pAzCaktw1CYWg3Kv/7U7RfwWaJ+xoWymASMqgcKOSNk32TgiK9wOBFgSA4oKQhDYYKCPn36JF78Li7KxsJKaQ7M8XtTvBiNoQcK/zV37lwBhJ6envH/1tY2Q2ECFJKjQOSnSDV1kTWLrFqpFQIjqtvZwbROmGlx7R9+cBhf7f9KbYp6l+mNkVVGis9SC4UEgwSFSSW5dHZ0fpQcS2grmLbjk4NG+nFwOfyySMNKQa5pq1mTRMVEgQA0qey9uxffBUgddRJboI1uKSQA9Pf3FwGqY2Ji0KZNG3z8+FGEoMmZM6f43JKFodB4s/fz7hD8dkhqHp/buQLaVkwUamZdVyB0V1yIGgpVw1CYkgriv2coTFBVWnwxBgcHY8CAAfDz84Obm5sICZY/f36MGKE976ylQuGaq2uwMXSjCDKcyykXupTsgs4l4kJXyZXElsLw9+Gou7Gu5FIKnxLYJVBulfHlKI/unjt7BAgWzlpYOABUzFFR53qUviAtrn3aXj3yUD1+LentaNejwjKZWiiU6yzTY1cPXHh2QW3KhlUahv7l1LOayJnTcUfGifVDlk9yWPm64tdiyzqx/HHxD+HE9PLjS+TLlA89S/cEeTKrxOhQ+MMPP4DiEQ4dOhRHjhxB3759ERgYKCyElStXxsWLF+Ho6Chn/GZZhqHQeNMyftslrP4vo0niVn9sVw7dqxVI+OjFbWBNO4D+bjgRqKX9hceWwgTVMRSmbSicN28eXr9+jfHj48KfBAUFYfjw4eKZrE0sEQo1OS/Qdh6dA5QrKiiELXDtxTV02yXd0tV23ktTO7RVOOX4FLWvKVgzhXxJzuojt79KlEuLUNhmWxvh3JFUtrbZKraSUwuFZ56cQV9/af7mXqV7YZRnnGc1hZxp9LfUm5zm/VDnhBiNcuZw3tl5WHZxmVpRsjBT1hNrK2s5VYgyRofCmTNnim0KSnnXv39/8at0woS4hNj0oNmyZQsKFy4sewDmVpCh0HgzsuLYnWRDzfzVvzpqFsmm3hGyFJLFkKTrOqBEc40dZShkKExucaTFF+O4ceNQsmRJ9OrVK/6F4OXlhZCQEK0JBFRQePnyZQGVliA7bu2A300/SVd9ivukeDYr8UW0Ds6En8GG6xtA23TJSYdiHUDhU3SR3y78hqCnQZJLaDuzhEsJXapSvCydNyWxZINNUqX8cvoXhL4Klehqdp3ZwlJI52zfvXuHzJkz663PuWfnii1flTjaOGJ01dHCQkdy/tl5LDwvzQhja2WLxQ0X69QueRxffyVN0vBDtR/UnFsCHgTgxKMTePPpDdyc3NCgQAN4uCWk5aPzsjVr1lT0nLBVLL1VNcihQ4cwevRo1K9fH5s2bcK+fftE8Gr69UXnWa5evSpS31mqMBQad+a6LzuJozcSAqp2qpIfszpqyDtJZwvpjKFrIaDH1ri/kxGGQobC9AKFtGNTu3ZtcZ6bhACPdmzOnz8f73TSo0cPiToIBmnLmVKU3rhxw7g3vZ6t7X+0HwceHZBc3TRfU3jn8pZdKz0fpp2fhg+f40BJJa4OrijuXBzumd1RzkV3D9nV11cjJCJE0o/exXqLenWRR+8eITAsEE/ePxG5iStkq4AqblV0qUKtrOqVbmUljYmnd6UmvjDoeRC23Nmi1gsPVw90Lhx3nECpMQe/CBZbtQSEJbOWhLN9wvnQx+8eY8GVBRJNOFg7YEKlOGOZXFkashR3IqVJGoaUHoK8TnHHqUJehWD1DWmomlEeo5DVPqsoQzxGPxTlCB05kSNaoZDom3Ig79y5Ex06dEDDhg1FnSdOnBCfT548WU4bZluGodD4U3P50ev4jCZFsmfS3gHyRiavZLIUksUwGWEoTFAKbx8n6CItWgpp27hIkSLo06ePGCg5/nl7eyM0NBTW1nFbTk+ePJHcJZS/nn7gk0Xx0aNHiloVDPUEufT8EpZeWiqp/qvyX4nzV3Ll/ov7+CX4F0lxtwxuGF9NmoVEbr27b++G/11pFopJNSbBxUG+oxfltx13dFx8MGRV+71L90alHJXkdketHD0H6Lmo8rjWqxIzvIhCCV17dU3kBM6dMTdq5K4R30tdPfLlDI9S21FWGMpbrLIWTjw+Ea8+vlK7vErOKuhZqqecKuPL7Ly1E3vv7VW7JpNdJhEIWxXgesuNLWqpA1WFqS1qk4RAr1q1arLuabnpiLVCoU6jtMDCDIVmPmkUt5DiF1IcQzpbSGcMkwhDYYJCGAoTdJEWoXDx4sXC2jdlStxZNvpxPmrUKNlnCp8/f25RIWkWnFuADaEb8D76vQjr0aZoGzQp2AQuji7IkymPrIfXjbAb6LKvi6QsgWVqPI5pK5qyeKicHwgchpQfgu6lu8vql6rQtuvbMO2kNGcueazS+Ul9xFzW/pO3T0RsRMrEYWhJ7ZnCpP377fxvWHYp4cxfmWxlQBlqKNzQuMBxYuuXzo7WzlsbgyoMSnZ4T949AWKBnBnVUx0+jnwsjjKsvLIS++/ux7vodyjpUhIDKwyEVx6v+LoocwplUEkq46uPF/cCCZ0pLFCggCwolDsHKUIh/RqlbWP6O6nQdoYln1tgKJS7TExYjjKdEBhS5hPyRiav5ETCUMhQmNzqNJcXo5J3Dm39duzYUezckAPgsGHDRB56AkNtYomOJonHQ5aZ+Wfng5w7VCI3hRoddfrm+Dc4+/SsmooGlR+EryqohzjRZ67IM5py4ebNlFdkDdFVfM/4Yvnl5ZLLcmXMhX87/qtrdaK8qdc+gfyv534FWdpIGhZsCN86voqCS1LFKAmFFA+x2ZZmEt3LzeVMVu6Jxybi2strog73LO6YUGMCaE5HHx6Ni88vis/J650yvjQv3DzZ9HfJOTPRdYmDghvd0YTOorRt21Y8gOzs7MT5QeoELTp6OE2aNMmiTdQMhXo9c4x/EeVGphzJ9k5A1/VAoTrxfWAoZChML1BI41y1ahV8fX3FkCtVqoQ5c+bA2Vl7XDxLh8Kjj45i0L9SawxttaksJpoeSgSF76ze4Y+rf4Cye5BFzyuvFwZ4DDD+cyyZFgmgpp2QWgpLuJbA363+1quPpoTC5++fo97GepJ+Dy4/GEMqDNFrPHIuUhIKKQ8x5SNOKrXy1pLlUPLFni9wKkw96DTFMiQvd9o2TiwphUMaEzhG7Zr+Hv0xrOKw+CqMDoUUKPXatWugUAgUMJViE3bq1AlLly7F4cOHsW6d5rQucibS1GUYCk09Azq0v3s0cPI3wKVgHBjmiIsyn1oo/GVvKAJCn+Fj1Gd45MuKbxsVF9lWLFF4+zhh1kz5YjT02tH1/JSlQyHlhSVvzaQix3KTNKOJoedG1/op60XtDbVFrLrEkjiVmc51vn0rnouZMqVwZlvXimWUP/7oOAb8KwXu2vlqY2EDqeeujCplFVESCimzSG//3pJ2G7s3Bnk7pyRV1lSRnBGlawpkKYB7r+9JLk8pHeLLDy8R8SkCOZ1ySnInGx0KyfOYvFuGDBmClStX4u7duyIkTUREBKpUqSJSJ+XIkSMlHZnt9wyFZjs1yXfsr87ANX8gX5U4MMyYPVVQONM/FIsC1L0xKxV0wZbBNS1MMXHdZShMH1Co6+K0dCjUtI0mx/pk7lBIc0nZMShm3e2I2+L8HWXJ6F5Kt7OJideEKX8QkYWMLGVJhdLezas3T+vSPff0nIjRp0scSlWFSkIh1dlya0vcfX1Xrb8/1foJrYq0SvH2Sy5rDl1E51hVW8qJK9nTYY/sM7JJGzc6FC5ZskQcYl6zZg0CAgLw008/4e+//xZZTSg2DgW0JuuhpQpDoYXN3Kv7wNqOwLMQoEQzAYapsRQ2nXsYIWFvJEo4NqY+8mS1PGshQyFDYXJ3tKVDIVlXWmxNyOKgGuOqZqtSzCBiCVCo9FPYlFBIFs/6m+rHnydUjW1stbHoVjL5XNArL68ExQgkr2ISOptZLVc1FHUpCkpB2MS9SYoqUhoK77y+A+oXBczObJcZDQo2QLui7VLsBxUYGzgWFGczsVCmEgqynTRgdSnXUtjYaqOsepMrZHQovHfvHtauXYuxY8cKKwTFyFIFxiSgotiFxhZtWye6bqswFBp79hRo7/ZhYG0nIPoDULEnYlv/imfPnullsa47KwB3wuOSlieWgFF14Z4towKdNW4VDIUMhWkRCmlM/2/vLKCjOro4/o8QIlgSgrsGlwDF3YpTnFKKt7RA0WLFS5H2a4G2UAqUIsWhuBV3CwQPBNdAsAgkIfadO8tustnN6su+lXvPyWnZnTdv5j+z835v5F7aV7j+xno8ffsU5E6mbdG2oOU8fcZQqE8h6b8/8/SMgJ9b4bdAblboUJCu/YRV/6mKGBrP0zAKHzgsYJjOgkoNheaoQnWh7Q4UlScRiQjIGYARASPESfrUzq/L+5XHPy3+Mfl2FofC1CV9/PgxNm/eLGYHyfdVeu1Z2L59O4YNG4a1a9eKzdRK0xUM3pRA8QyFJvdFeS8MWg1s/rARuOYQPK842CQoHLz6ArZdfKJWFx8vN5yfoBnKSN4KG3Z3hkKGQnuFQsN+AZqpHBkK/7nzD2iPH7k/oRk3Om1tCfcwxrQVnVCuvaa2zksILE92P2lRKKR41hR7m2YM6f4000cHTQw1illMofOSkISKfhVBp907b++M6y+va2RBp8zpZLIpJjsUmlJoY6+ZNm0azpw5I2Z/CPTIYz+ZrmDwpgaKZyg0tnUsn/7Cg9eYd+AWgp9GwNPNFc3L5sKoZiWB43OB/xRe5KNqjMLtMoMwb38Irj1RpGtaJidGN9ft6f1O2FsMWXMBVx4rXCdk88iAyW3KoF0lhUd5WzOGQoZChkJ1BYyFwtiEWLElxd3V3dZ+/qry0vLxb5d+w8qb6n4ODT09a8mKk950MEOfne5+Wvg8TMukninsvqO7ynWM8p60J5L2RuqzGadnYFXwKrVkbYq2wcWwixr7FCnRtvbbhNsaU8xiULhu3ToR27hECYXneAq8Tu5nUhqFVvnxxx9NqYfOaw4ePIjq1aujW7duIvC7Egp1BYM3NVA8Q6HkzSd5hrVmHsDjN9Fq+RLsDaxfFNgzHjipCDs0O+MgzA9XPyAyomlJDG5YTG+ZHrx6h/fxiTh77xVWnX6A55GxyJXVHZ9VL4iOAYq4l7ZgDIXJRVZpcwAAIABJREFUrSTnvipr6yu2vqfQHD0NhUI6VDD15FSVKxE67ED74Mhpsa0Z9f1OuzvhYdRDjaIf63oMWTPqdmFk6fqSCxtyZZOW0XaBg50P6iyWlFB4KewSPt2pedCnZZGWmFlnpl556DQ5nRhOabRPkoBy7z31KCYEuqe6nTLZh6PFoLBp06bo27cvunRROAqmEEnffPMNyFk1GXnGX7JkCa5cuZJufgpbt24tQFQJhbqCwRM8mhIonqFQb/+WNcGlR+Fo89sxjTLUKpYd//T7SPH5xn7AZcXe1gHvh2NvYvJbZ7XCPlj3RXIoJF2VOX33Fbos1Fyi2DKoFirkU8SZtHZjKGQo1NZHGQo99D6nvt7/NY48OqImH4GhqVFF5BwrCApbbW8lQrSltn2d9gnXJtZkBOSk/+Oox0hMShR/KW1ElREg90O6TEoopCg1A/cN1Hzu5K2FPxr/oVe6tFzS0N7B8cfGiyVpMjppPf6j8ehcUhHL/OTTk8IRev7M+Q0O5WgRKIyKikKlSpVEAPXSpRW+4AgKv/vuO1U4JaVLGjqRnDdv+iy1pYZCXcHgyXWOvkDxFAUgtQ0dOlQsS9uiUTt5enqqYp7aYh30lTnoUTi6LQnUSFalQDas6K3Ya0pLPbF/t4P389N4k5QJfeJG4XxicfFdriwZcXBYctggXff748g9zD14RyPJ6KbF0KtGAX1FtYrv4+PjxYEw6heObuQhgcyQ+K8eHrZ30tyY9mUo1A+FaR12OPvpWZtbSiYoHH5sOE6EnlDrJn4efjjQ+YAxXUeWtBTjmKJ+EBzSTG3Z7GVFOUJeh+Bs6FnhA7C4d3G1PX7GQCGdKN58azMoDB/NQrYq2gp0Clhp9H3bzYowcimtm383jPtonF5Nuu3oBopqktIKZikI8kdIRvWjfZ5FshYR4RsfRj4UztkfRCb7MOxeqjvGVhur914WgcI7d+6gWbNmApaUg+Xly5eFo2pySUNGp3xpZm7btm3iv+lhqaFQVzD4SZMm6Q0UT863UxvtWaSlcVs0OgVODzwnJydbLL5BZX77PgF1fj6J+MQktfQ9P8qLkY2KqD67eOM2cmz/DCWdHuJuUm50eD8Jr5KywMvNBSdHGuZzcP6R+/jjmKZj0aENCqNPDdtYQk5MTAQNjoaAkEENYMOJCJDphYEiMemzLFmy6Eti098zFOqHwhqraiAqLkqjnc/1OCeioFibUeg/giQXZxdUyF5B/FdpBIVXXl7B5HOTQSHbyGiP5MTqEw3ys5e6rltub8GmkE148e6FiOPbpWQXg9zESKnZvvv7MOyQ+gnklJBmKBTSMjUBX8T7CFXxKIbxprab1Pb1TTs1DetuJLuKoYMgfzb5U0Ql0WeHHx4GRSJR9ifKf3rt6fi4sGboPMpr5pmZ+Oe65gnkre226r2fRaBQCXx79+5F4cLaBaBTyPXr1xcziHnyGBaYXJ+Qqb9PDYW6gsGbGiiel4+NbRXLp1937iFm7grGq7cKj/8NSubAb90rwSujIs4oPfhXHg3G6t0HsSLDDPg6RYiZwk/eTxFprk7R7+OK8tlzNRRfrNB8QVjepxrqlvCzfMVNuCMvHyeLxnsKk7VgKNQPhcMPDcd/99VjDVfLVQ1Lmi0x4ZeYvpdsDNmIySeS9/j7uPvgx3o/gspLlrLv33h1A/FJ8cJHnilwm1Z0jw1tNqCkd8n0rWiK3ClKCp2kTm1Hux4VMYQNhcINNzdgyskpGvkMDxiO3mV7q31Os300e0ezeTXz1ATBnaEWkxAjwirS88nf11+cYE7LKKQehdZLbQsaL9B74tkiUEgF69mzJ0qVKiX8E2qz+fPn488//0RQUJChGhmdLjUU6goGb2qgeIZCo5tFtguevImGh5sLvD3d1MpAP7r9F++i35rraOwciMVuijBE+xMrY2zG8TgzvrHBZZ667Rr+On5XpHd2ckL/OoUxtkXysoLBGcmUkKEwWXiGwmQtGAr1Q+HL6JeYfnq6AA+CKHKePKrqKNCyn7VZ/XX1QeVNadVzV8eipovER1L2/T8u/qHhW4/uMabaGLOirhirKc3u0bJuavu37b8CeA2FwiVXlmBOoOaqYd9yfTG08lBjiyVJ+m+PfItdd3dp5EX7WfVFd7EYFNIMYL9+/YSvwD59+sDdXXE8n5Zk1qxZgylTpmD8+PHo1Uv35k9zFGvXrp0IqZfST6GuYPCmBIpnKDSnhazjWoLCJ6HP0fD384iNT0R3l/34IYPi7f6CTwtUGmJcfG7K42VULPwyZ0QGF2frqKSBpWAoZCjU1lUYCvVDoYE/MdmThUWHoeE6Tbcovh6+ONT5kORQOO/CPCy6pIDNlDa8ynD0LqM+s2aIOEuvLBV76txc3FAjTw20KNzCkMtE6DwKoZfaDnc5DJopNRQK99zbg5GHR2rkM6nGJHQs0dGgskidiGaoaaY6pZXyLYV1rfRHOrEYFFLh9u3bh4EDFSdwlPsGg4ODxb8JFL/99lu4uCTvY5BaqLTy44gmCmXoBLi3t7csbWCptjbkPsowd6eexGPW7mDhvmaI6yYMd92guLzmYKDp94ZkZfNpGAqTm1DK2RJb7xgMhfYDhW/j3qL6quoaXbJAlgLY0V5xmFJf3//twm/Y/2A/3sW/E6dcB5QfIJxba7O0IIpO4dbKa9ghPmW+Qw8OFfdNaYbOOO64s0Ps00tpFHZuaq2p4iNDoZDS9trdS8SbVlpp39JY02oNnCDf/vwDDw7g4MODYh8i7VvsUaqHgF19ZlEopMK8fv1aHDi5cOGCCG9XqFAhVKtWDUWKJG/y11doa/6eZwqtuXUMK1vq2Mcvo97DPYMzvPaNBs4uVmTSbDpQQ+FOyZ6NoTC5dfU9GO25H6SuG0Oh/UAhtS0duKCDFymtf7n+GFJ5iPhIV9//68pf+CXwF7Vr82bKi90ddiPyfSQOPzqMiNgI5MmUR0TxIKM9eLQXT2kELKOrjTbqJ5TWDKcxYd4uPL8ACqEXmxiL4tmKqx3cMBQKKYJKh60d8OzdM1X5KcrLhtYbRJ1tzSwOhbYmkLHlZSg0VjF500fGxGPMpkvYf/054hISEVDQG2M/9kde9zjtYe7W9QSubVEUuttqoKRhSxXy1tL0uzMUMhRq6z0MhfYFhQlJCZgfNF+4PSGnyB/l/gg9S/dUNb0uKOy/tz9OPT2l0U3mNJiD6aemg+BNaQSFvzb8VfyTTuu+inklXLjoOjSR1uh1N/wu2mxuo/F1Slctpo98hs8U0inqSScmadzK190XhbIWAkUe+aT4J+YUxaLXMhRKLDdDocSCpnN23264BDqNnNJK5c6MZd380459/Fdz4MGHU2tfnwb80seFUjpX3aDsGQoZChkK1RUwNKKJQT8wG0mkCwo/3/056ERxamtdtDW23d6m8fnS5ktRJaf+MHT6pKHTuNX+qSZO46a0uvnq4vdGv+u7XO/3hs4UpnXQJOUNDDn1q7dAFkrAUCix0AyFEguaztnVnnUAj16rh7yjW+78oiJKF9bhRH1eZeDVbcA9GzAqBHBRP8GczsW2WPYMhQyFDIUMhbqg8MezP2L5teVqIrk4uaBRwUYaIdgo0aw6s9CiiDQrLAsvLQTtZ1QahXijmUilKx1zBkpDofDXC7/iz0t/6rzV52U+x8gqmodRzClfel3LUCixsgyFEguaztmlBYU7BlREmSI6oDA2CvjZH4iNBHyKAEMupHNJ5cmeoZChkKGQoVAXFNJBhpGHRuL4E4VfPIqDPCxgGG6/uY0V11ZodJ+FTRYKH31SGbmVufXmFtyc3VA5Z2VkcZPGcbyhULjs6jL8dO4nndUxNHJJWplQxJXZZ2fj9NPTYmY0IGcA6LQ2+VOU2hgKJVaUoVBiQdM5uxHrL2JjoMJDv9JK5MyMlZ/qWD5WJgwLBn7/EC85XxWgn/opuHQuukWyZyhkKGQoZCg05JAV7Q+Mjo8GHTIho7By3Xd0VxOPwsutbmmcSy+LDHRabmIoFBL4ErDpMnPd04w9Ohbb7yhC2imtQf4GmNdwnuTyMBRKLClDocSCpnN2r9+9x+iNl7H/+jMkJCahUgFvjGvhj4Ke8WnvKUxZplv7gJUdFJ+Ubgt0Vl9GSefip3v2DIUMhQyF1gOF8Ynx4iCIpc0QKNRWphuvb4Bco9AJ3XyZ86FTiU4mRUGxRH1pxpEcjRPYUgzhOrnrIDIyEj4+ut24aIPflOWlUHSz6+qGRn31q7m6pjjJndqCPgtSC0eoLx9DvmcoNEQlI9IwFBohlpUljU9IgquLk5ieDwsLMwwKqQ6BfwPbvlHUpvYwoHFyuCgrq6LRxWEoZChkKJQfCmnfGrlwodk4monrWaYnuvurz8IZ/eM24gJTodCIW8ialELCUWi4lNaqcCuMKjtKLxTSNetvrseq66sQ+i4Ufh5+4sQxnbSm5V06XW2uVVlZBbSEnNrOfnpWxKBOy+iad3Hv4O3ubXARGAoNlsqwhAyFhulkzamMhkKqzMHpwOEPb4NtfgUqJ7tzsOa66isbQyFDIUOhvFCYlrPn9a3Xw9/HMp4P7B0KtcWpplZf02gNyuQro2+YTPfvtUVf0RehZPSR0dh5d6coWw7PHPi64tcGucZhKJS4ORkKJRZUhuwMhcLEpCSQY2sKXyds80AgaJXi/3vtAArVlqH00t6SoZCh0BagkPzs0YlXS5ilXdJoO91L9TR3n5oxWtk7FH6681NcCrukIcn82vNRp2gdY6RKl7S0RD3p+CSEvAkR+ZMvxgnVJwh/ktps4cWF+C0o+VS2Mo0yhJ+uQjIUStyEDIUSCypDdoZA4fc7ruPv43cRn5gE9wwu6F+nMEY0LQksaw3cPaIo9fDrQBbb82ifUnKGQoZCa4bCiccnYve93WIfGM2a0WyIMmpGeg0dDIXppax8+WoLl0elWdVwFcrl1x6uL71KS1sEQl6HiL2jFfwqqO0hffr2qdjepC9Sytf7v8aRRx+eQykK+meTP0V8aIbC9Go9LfkyFFpQ7HS6lT4o3HM1FF+sSI5zqSzGqv4foWbR7IDShyF9MTk8nUppmWwZChkKrRUKyT8d+alLaeSOhGZD0vMwhqWhkJeP03+sO/zwMAYdUA9b2qxgM4wrP86gPYVSlXDdjXWYdmqaKjuKVfxTvZ9QNVdVo24x5MAQEfc4tS1ptkSvD0eeKTRKav2JGQr1a2TtKfRB4f/23sCvB25pVGN8i1LoX1cRwztpWg440cbgjJmBseoub1JeSMvP7xMSkTtr2puF5dSLoZCh0FqhsM+ePjgbelajeKtarkK57KbP7pDPu3+u/4P7EfeFz7umhZqiReFkZ8uWhkKqIB80Sf9R8NrLa8mnj7MVQZN8TQw6fSxlyeqsqYM3sW/UsqSZPZrhM8ZWXluJWWdnqV1CoQQPdj6o82AKXcBQaIzSBqRlKDRAJCtPog8K5+y7iTn7FHs7UtrEVqXRrGwuDFsbhPN3w3DL/TPxdbRXPniMuqqW9llEDIauCcLJOy/F57myumNCy9JoWT63VanDUMhQ6EhQSHsTm29sjtC3oWrVpji+jQo0Ep/JAYXKwtiaSxqrGsyMLIyhfgqNzDbN5M/ePUPj9Y01vvfz9MOBTgeMvs2c83Ow++5ukHPxotmKon+5/qidV/8+d4ZCo6XWfQFDocSCypCdPig8fusFPl18WqNkWwfVxt8n7mLT+cfiOz+ncJzNOFD8//scFRDX9wC8Mip8jA1adQHbLz1RyyNTRldcmdJMhhqnfUuGQoZCa4XC9Fg+1uaahOrfvlh7TK01VXYolGtwsPeDJtp0tTQURryPQK3VtTSKUjhrYWxtt9ViTc9QKLHUDIUSCypDdvqgkIq07MQ9rDrzAM8jY5Enqzt61iiELlXzo8FPh3D3xVtVqYs7PcJ/Gb8V/z6VWBp7qy0BzSiWn7IXEdFxGrXbP6IeivplkqHW2m/JUMhQaK1QSOWS+qDJf/f/A7knSW1NCzbF/+r/TzYo3Hd/n4hoQYcQ6JBB5xKdRUg3SxlDoWWU1nbg5csKX4oDVJYyhkKJlWYolFhQGbIzBArTKlbTX47g5jN1z/PVnIOxzk0xy0BgGPPpFnFQJTY+USObFX2roU5xPxlqzVCoT3RHfDCmpUnFihVx/PhxkCZ+fn5wcnLSJ1+6fi+VS5qbr2+iw9YPEYpSlHhghYH4quJXskDhuWfn0Ht3bzX93FzcsOuTXcL/nCVM2fc3P9ws4u/GJcahrG9ZDKw40GKugCxRz5T3sPRMId2b+vGCoAW48vIKMjhnEC5nepTqYdGqMxRKLDdDocSCypCdOVA4fcd1LDp6R6PU1Z2vY42b4lTZk2xV0CZqLF5EaXqoPzyqAQr6espQa4ZCfaIzFCYrZG1QqK/tjPk+tV/Ain4VMb/xfGR2yywLFM49PxeLLy/WqML3tb9H26JtjamayWmp7/959U/8df0vtTxonyXtt7RHkwMKrUFHhkKJW4GhUGJBZcjOHCi8E/YWnRaexEstwJcSDB9kCUDd5yPUakfLxrR8bE3Gy8fJrcFQ6BhQSLV8HPUYT6KeIJNbJpTyKaX2k7T0QZMZZ2aIEGqpbfxH49HVv6tFhgvq+132dMH9yPsa9zve7bg4pZ2WnXhyArRfLo9XHpT3K5+u5aU4y8GvgkU84IAcAaiSq4rJ92MolG723ymJnqoOagyFtt/w5kDh4NUXsO2i+gGSlIqogWHmyuiNyYiJS0D5/NkwvHEJFM9pPfsJqdwMhQyF2n7R9jxTqG8EszQUpvZdpyzf4qaL04xooa8Oxn5PUNhqeyu8iHmhcem+TvuQ0zOnxucvol+g395+uP3mtuq71kVb44faPxh7e4PSa4v8QlE/OpfsbND1qRMxFDIUmtRxUl/EUCiJjLJmYg4U1v/xEO69TD5ooqwI+SHM5+2JHtULoG22u8DfLRVfUSg8ColnpcZQyFDIUKiugKWhkO4+aP8gHH50WFWQjiU6ijB3ljKCwiFHh+DMszNqt8yWMRuOdj2qtRi/B/2OPy7+ofHdyhYrRaQOKY1c9QSsDEBikvo+bYpyQzGiTTGGQoZCU/qNxjUMhZLIKGsm5kBh8zlHEByqftCEKnNiTEPkyeaRXK97x2wCDBkKGQoZCuWHQirBnfA7wrExzcrlzZTXomMkQWHg80BMODNBnIBWmq6ZuNFHRmPn3Z0a5ZxVd5aaM3ApKvL83XM0Wq/wI5nSfD18cajzIZNuwVDIUGhSx0l9EUOhJDLKmok5UDh79w3MP6Qe7aRyQW9sGlhT1CkqNh63w6KQ0dUF/jEXrR4MGQoZChkKrQMK5RwUlftp3T3dcTHsImhmrrh3cVAYtrTsh9M/YHXwao2v6dBOnbx1JK0OndqtsrKKKFdKK+1bGmtbrTXpXgyFDIUmdRyGQklks6pMzIFCqshPe2/g0I0wxNJewXzZMKxJCeTz9sCyk/cweetVKHfclsyVGX/Xj0XuzR0V9bfCpWSGQoZChkKGQlMOWZ0JPYO+e/qqiVcoSyFsa78tXcZ7iuCx5PIStbyn1JyCT4p/YtL9GAoZCk3qOAyFkshmVZmYC4XaKkOAWHbyXsQlqO95+aRyXvxcLcpqZwwZChkKGQoZCk2BQlKNfBqSQ/Dw2HDkz5wfXfy7aD2Uou8BQDOAq4JX4V74PVAM33r56yEgZ4DGZXTSWZw+dnIRzr3NiYHNUMhQqK9fGvQ9Lx8bJJNVJ0oPKLz+NAIfz9XckO2fKzN2D60LWOkeQ4ZChkJbhMJfL/yKLbe2IPx9OApmLojeZXujZZEPh7vMHH3kOGhiZpHNvtxUKDT7xh8y6LW7FwKfBaplN7/RfNTJJ+0ydMobMBQyFErSfxkKJZFR1kzSAwrvvXiL+j9pbngOKOiNjR/2G1ojGDIU2g8UJiQkCBdDHh4pDjx9qB59FxMTAy8vL4N+e9bskmbzrc2YcHyCRj32dNgjQsSZawyF5ipo3PWXX1xG9x3dNS5qXaQ1fqiTPu5t6GYMhQyFxvXUNFIzFEoio6yZpAcUUoXazz+OCw/eqNVtdHN/DKxfNPkzK5sxZCi0fSh8/fo1Zs+ejV27donKVKlSBWPHjkXRoop+9/vvv2POnDkCCKtWrar6f10/QmuGwoknJuLfkH81iv9TvZ/QrFAzs8cWhkKzJTQqg2OPj2HgvoEa19TKWwt/NNZ0eWNU5joSMxQyFErSlxgKJZFR1kzSCwqfhsfgtwMhuPokAh4ZXNDAPwcG1C2iWVcrAkOGQtuHQoKYjRs3onv37nBzcxOASJ/NmjULly5dwoABA7BlyxZkz54dI0eORP78+TF8+HCdv0FrhkKaJaTZwtT2Y90f0bxwc7PHFoZCsyU0KoNbb26h/Zb2GteQU2pyiZNexlDIUChJ32IolERGWTNJLyg0qlJWAoYMhbYPhan73YkTJzBt2jQxczh37lxERERgwgTFwzUwMBBDhw7F0aPaHRIr87JmKEwrAsj29ttRMEtBo36G2hIzFJotodEZfHf8O7FHVGnkNHtxs8Uo6V3S6LwMvYChkKHQ0L6iMx1DoSQyypqJVUAhKWACGJ668xIxcYko6ueF/D6eZuvIUGh/UEgzhfHx8Rg3bpz48/f3R8+ePUVFnz9/jlq1aiE4OBguLi5p9h9rhkIq9PTT08UScmxCLHJ45kD/cv0lixPMUGj2sGJSBuTi5mHEQ3hl8ELNvDV1xls26QapLmIoZCiUoh+BoVASGWXNxGqgMBUYvsnxESK6bkYBLbB37WkE+i87h8dvolXaDW9SAkMaFTdLS4ZC24DCf/75B5MnT9Zo66VLl6J27dqqz8+ePYvBgwdj8+bNyJUrFwYNGoS6deuic2dFfFiaNQwICEBQUJDq0Mn58+c18u3bty8OHDggNuNnzZoVTk7SPUDM6rCpLn4b91ZAhJQWFRWFjBkzIkOGDFJma9V50SEkGhe1HVKy6oKbUTh6cYqOjkbmzJnNyCX50pA3IVh+fTnuRtwVbnUa5m+IzsVNi8ssSYHSyIReegz9TdN2FEPMKYl6j4MaQ6HtN7w1QeHFR2/wx9/LsCB+ohD2VGJpnK2/AoMbFlMTetjaIPx74bGG+EETmyKbp+kPL4ZC24BC6rOJieo+MKnkKWf7bt++jQ4dOmDx4sXisAkZLRvTgZNevXqJf4eGhqJOnTq4ceMGnJ2dxWejR4/W6Fd79+7F9u3b4erqKvYpOpIRLJA2Sn0coe50Oj11f7L3etNvitpaKvjvvK8zQt+Fqsk2puIYtCjQwqqkpDHf0N+0t7e3QWVnKAwJMUgoa0v04sULUCPrWjaytjKnR3msCQoHrTqP7ZeeorrzdaxxmyaqezrRH2XGHUcmd1dV9Vv/egyXH4dryLFtUG2Uy5fVZJkYCm0DCvU18OPHjwUQ0nJxmzZtVMkXLFiAp0+fYurUqeKzU6dOYdSoUTa9p1CfFuZ+z8vH5ipoG9dLuXxMPhbJ12Jqa1KwCX6u/7NVCUJbSPz8/CSd/WcoZCi0qk5ubGGsCQqbzzmC4NBIUYWUYPguV1V4frlPVbXui07hxO2XGlU9MKI+iviZvnzGUGj7UEiDfNeuXdGnTx907PghpCIgZgPu3LkjPtuxY4dYTh4yZAgKFSokwFCXWfueQmN/88akZyg0Ri3bTSslFB5/chxf/velhhi189bGgsYLrEokhkKJm4OXjyUWVIbsrAkKOy88iTN3X6lUSAmGyF8N6Puf+G7FqfuYsPmKmlofFfbB2i9qmKUgQ6HtQ+Fff/2FGTNmaPSDFStWoHr16li+fDl+/lkxW1G5cmX88ssvYk8RQ6F2BRgKzRpSbOZiKaHwSdQTNNuo6SOzT9k+GBYwzKo0YSiUuDkYCiUWVIbsrAkKl524h0lbr6qp0D//E4wPG6n4LF8VoN9+8b8bAh/h4I3niH6fAP9cWfBl/SLI4m76fkLKk6HQ9qHQkJ+QPUU0MaS+5qRhKDRHPdu5VkoopFr/eelPUPhFpVHs5nkN56X7KWpjFWcoNFYxPekZCiUWVIbsrAkKlbB3+GYYYuISUCp3FhEBxePtE+DPesC7l0DeykC7BYCfv+RqMRQ6BhQa23F4+dhDnEB2FJM79rEcOksNhVSH8NhwPIp6BC9XLxTKWkiOaum9J0OhXomMS8BQaJxe1pja2qAwTY2iXwGbvgRC9iiAsMWPQOG6kkrKUMhQqK1DMRQyFEo60FhhZukBhVZYTY0iMRTqaSVjl1UYCm2h2+suo81AIYCrD8OQZfcQ5H+8E4kePnAmMCyXfJjA3NZgKGQoZChUV4CXj80dVaS9PvJ9JG6H34absxtK+5aWLHOGQul8j9rM6WNyTFm+fHm1TkSbrFu1aiU+MyVQPEOhZL9J2TKyFSj8+b+bmLdf4f5ogusK9HXdpdCs+Qyg+ldq+pG7muCnkcjg4oSqhX2QN5uHQfoyFDIUMhQyFFrr8vHaG2vx/anvVQ1UIHMB/K/+/+DvY/5WGoZCB4RC8s/Vvn17HD58WNWpyBkr+ekzNVA8Q6FBrGHViWwBCml/of+E3Wo6fum6DWNcVys+qz0MaKyIcDFnXwjm7LuplnZRzypoUjqn3nZgKGQotCcovBt+Fzvu7EBYdBhyeuZE66KtkT9zfr2/g5QJeKbQKLnSLXFiUiJqrKqBd/Hv1O7RtGBTAYbmGkOhA0Ihxfckf1zbtm3T6D+mBopnKDT3pyj/9bYAhXdevEXDnw5piPVF1jMYGz8fSHgPVPwUcR//D6WmHER8onqQoRpFfbG6f3W9YjMUMhTaCxSSW5AOWzsgKi5KVSUfdx9sarsJvu6+en8LygQMhQZLla4J74XfQ+vNrTXuUTBLQWxvv93sezMUOiAUnjx5EsOGDROe/rNnz47GjRsjf37FW6OpgeIZCs3+LcqegS1A4cu37xEwTeGjMKVVKpAN/zZ43QkIAAAgAElEQVSLAbZ+A4Q/RHShRmhyoy0eJWVXS0fLx8fHNNSrNUMhQ6G9QOGKaysw++xsjepMrDERnUp00vtbYChMQqZMmQzWKb0Thr4NRZMNTTRuQ/sK17Zaa/btGQodEArplM2aNWvg4+ODa9euYefOncLJ68cff2xQoHiKEpDaAgMDceLECbM7pBwZUOxUR4rnqUtjubUIfBiJOy/fwc3FGZXzZ0b+bO4axe3092Xcexmt9nn78n4Y16QwXF8EI/Oh8XB9dhFXEgvju/jeCEpMjpdcKqcXlvcoY1A3I0h2cpJugDDoplaYSBnS3RAtKEyUPZstnj4mH3HkKy61Dak0BP3L9ze4uXim0GCp0j1h3z19cSb0jNp9BlUahC/Kf2H2vRkKpRvzbeagSepes3LlSuzevRv0X0MCxb98qRlWjCIEUDB5W7RXr16JSAYc+zgJ1LY0eyyHTd8ZjCXH7qrdelHPADTyz6H67N37BJSdvFejeLWK+WJFn2qKz9+GwWn7N3C6sQuhST6YENcb/yUGiK8mtiqNXjUL6q0ezRS+e/cO2bJl05vW3hOQDgSGXl76wwba+8uVLULhhpsbMOXkFI1uOqPODLQqojhcaIgxFBqikmXSvIl9g4UXF+Laq2vI6JIRtfLUwudlPpfk5gyFDIU4duyYmCEMCgqCqYHieflYkt+jrJnIuXwcHh2HClM0Ya9eCT8sU8IegDthb9Hwf5p7Cgv5euHQqPrq+m0bCgQuRaKTC3bkHwm3j/qgWZlcBmnMy8fJMlnrCUyDGlLiRLYIhQlJCfhs52e4/OKySo3KOStjWfNlRqnDUGiUXDabmKHQAaGQDppQEHiaBaGlZJod9PT0FLE/b926ZVKgeIZCmx0DVAWXEwpvPotE01+OaIjolzkjBtQtguI5MqN+ST+8fvcelaZq7ikMKOiNjQNrajbCwR+Aw7MUnzcYB9QbbVBDMRQyFGrrKLYIhcp6HHp4CC9jXsLPww918xnv7J2h0KChw+YTMRQ6IBRu374d8+bNQ0REBDJkyIA2bdqgT58+8PVVnEQzJVA8Q6HNjwViiTAsLAw5ciQv11qqVmGRsag6fZ/O2/WoXhDftyuLEesuYuP5R2ppZ3xSDt2qFdC4/mhIGJzO/YXaN35QfFe1H9BSv9sGhkKGQnuDQnN/ywyF5ipoG9czFDogFCq7ZlRUlNgnpG0DOUc0sY0fsJSllBMKqR5D1wZh84XHOqt07rvGyJ4pI9ade4jrTyPg5uqCmkV9QcvMqW36jutYdPSO+LiZy1nMcF0MH6dIoFQboM08wMM7zXsxFDIUMhSqK8BQKOVoa715MRQ6MBRK2S15plBKNeXJS24opFqvP/cQwaGRAg7J/Uxq2zmkDkrnyaJXoOi4BJRK5eS6snMI5nguRYH4e0CB6kDruYrYyVqMoZChkKGQodAR99MyFDIU6n3AGpKAodAQlaw7jTVAoVKhnkvO4EhImIZgp8Y1Qq4smm5qUid88Ood6s4+qHF91awRWJ93DXDnEOBTGGg9Dyisub+KoZChkKGQoZCh0LqfWVKWjs5XkEstQ1xvGXpfm3VJY2gFdaVjKJRCRXnzsCYo3HbxCQavvqAmSPtKefFLl4oGifQ2Nh5lJu3RSCucXPevDGz7Bri0FnDzAlr9ApTvopaWoZChkKGQoZCh0KDh1i4SMRRK3IwMhRILKkN21gSFVP1z91/j+K0XoHjHJXNmRrtKeY1S5bvNV7Dy1H21a2Z1KI8uVT/EfN37HXDiV/H9Hf8B2OLbH64uzqhW2AeV8mYCPRC8vdPed2hUYWw4sSM+GNNqLls+fWxuF+Q9heYqaBvX8/IxLx9L0lMZCiWRUdZMrA0KDRUj6OEbHA1RwGPxnJnQrmIyPO68/BTXnkQgg6szqhf2wUdFUsV6Pfk7sGecuNW+xABMi+uB+0k5Ma1NKbQq5c1QSL7A374VJ9OtKdSXoX1D6nQMhR7ImDGj1LJabX6O2PcZChkKJflBMhRKIqOsmdgiFO6+EoovVwaq6da2Yh7M7VrJIC1j4xMxYtIkTHddgqxOb/EgKQdmxnfDg5xNsOKzsgyFDIVq/YihkKHQoIHFhhMxFDIUStJ9GQolkVHWTGwRCvv8fRYHgp9r6HZ8dEPk9fZIU0+KoLIx8BFCnkdh9ZkHCHC+ie8z/IVSTg/ENcucP0GbwT8zFDIUMhR+UICXj2Udni12c4ZChkJJOhtDoSQyypqJLUJh61+P4fLjcA3dtg6qjfL5smrV8318IprPPYo7YVFq3/s6RWCM62p0cjksPo8rWBcZPv4ByFVO1naR++aOuISWluY8U8gzhXL/HtP7/gyFDIWS9DGGQklklDUTW4TCAcvPYe+1Zxq6nRzbCLmzanddsznoMYauCUpT689d9mKC+1q4JkQDnr5AkylApc9kbRs5b85QmKw+QyFDoZy/RUvcm6GQoVCSfsZQKImMsmZii1B48MZz9F56Vk03miGslN8b2TNnhJuLE0IjYsV/qxf1RYOSObDk2F1M235NQ+uqhXzQrExOVC3sg9Lvr8Jp3yS4PvmQd7X+QOMpChc2DmYMhQyFpAAvHzvGD5+hkKFQkp7OUCiJjLJmYotQSILdeh4lXNfQPsFlJ+/hZZRmJBSlsNPalYWPpxu+XnVeQ+vvWpZCvzpFxOfkp/BdxCtkOzcHOLVAkTZfVcWsYcFasraTpW/OUMhQyFCYydI/O9nux1DIUChJ52MolERGWTOxVShUirb+3COM2nBRp4bl82XD1kG18Mn8Ezj/4LUqbSFfL/z7dU14e7qpoFDlp/DiauC/SUDUM8DFTQGG1b+Sta0seXOGQoZChkKGQkuOOcbe6+nbpzj19BRi4mNQOGthVM9d3dgswM6rjZZM9wUMhRILKkN2tg6FCw/fxoxdwTqVy5vNA8fHNBRptl96gqfhMfD1yogW5XLBPYOL6lqNiCbPrwP/TQRC9irSVOiqWE7OnEuGlrLsLRkKGQoZChkKLTvqGH63s6Fn0X9vfyQkJagu6lSiEybWmGh4JgBDoVFqGZCYodAAkaw8ia1D4ZozDzFm0yWdKn9U2Adrv6iBR6+jsf7cQzwJj0b2TBnRpkIelMqdJW0oVH5zcDpweLbiX37+ilnDEs2tvGXNKx5DIUMhQyFDoXmjSPpdPerwKOy+t1vjBns77kVur9wG35hnCg2WyrCEDIWG6WTNqWwdCtede4hvN+iGwgU9KqN2MT80+eUwQsNjVM3h6uKE3d/URbEcisFfZ+zj4O2K5eSXtxTXNxgH1BttzU1rVtkYChkKGQoZCs0aRNLx4k93fopLYZrj/soWK1HBr4LBd2YoNFgqwxIyFBqmkzWnsnUoTGv5uE7x7GhVPo+IaVw4uxc2nn+EEes09x6ObFoSgxoW0w+FlCL8kQIMr2xQNKl/C8VycvYS1tzEJpWNoZChkKGQodCkwcMCFw05MAQHHx7UuNP29ttRMEtBg0vAUGiwVIYlZCg0TCdrTmXrUEh7BAetuqAhMZ04/qx68uCQlkuavrULY0Kr0oZBofIuJ+Yp4DApEciSV7GcXK6TNTez0WVjKGQoZChkKDR64LDQBf/d/w/DDw1Xu1vDAg0xt8Fco0rAUGiUXPoTMxTq18jaU9g6FJK+Xf88hVN3XqqkLpc3KzYMrImMrs6qz/ZcDcUXK9TjJdOXk1uXQa9ahYyDQkp997ACDJ98ANIaXwMNvwMyeFp7kxtUPoZChkKGQoZCgwYLmRIFPgvE8SfHER0XjaLZiqJjiY5Gl4Sh0GjJdF/AUCixoDJkZw9QSLKRQ+tnEbHInskNjUvl1KrkZ0vO4GhImOq7snmzYv2XNeDx4QSyzj2F2nKMCVeAYeBSxbd5qyjAsGgD7Lv+DP9de4bImHgU9fNC71qF4eOlcH2T0iiG896roYiIiUeR7F4CUOkQjNzGUMhQyFDIUCj3OJTe92colFhhhkKJBZUhO3uBQkOlIygMDY+FTyY3NPLPoXaZ0VCovPriGuDIj6pDKCGlB6PV+SqIRQZV/jR7uW1wbbX7ETT2X35O7TM6Db3rmzqGVifd0jEUMhQyFDIUptsAYyUZMxRK3BAMhRILKkN2jgaFuiQ2GQopU3JyTWB4ZpG4xeXEIliQ0Bo7Ez5S3XLTVzVRuYC36t908IUOwKS2dV/UEAdk5DSGQoZChkKGQjnHIEvcm6FQYpUZCiUWVIbsGAqTRTcWCkOeReKf0w/w8HU0fL3c0LpCHtRJPINbm6ahWKwizvKGhLpYEN8Gt5PyYFmfaqhXwk91w77LzmH/9Wcarb748yppLoFbqoswFDIUMhQyFFpqvJHrPgyFEivPUCixoDJkx1BoGhTSXsEGPx3Ci6hYtVbb8GUN7Lj4GF5n5+FL123IhGi8TsqMBQlt0OWb2Sjql/yg+X7HdSw+ekej1fcMrYuSuTKrfb7rylPsvhKKiOh4FPmwRzGft0e69RiGQoZChkKGwnQbYKwkY4ZCiRuCoVBiQWXIjqHQNChMyxVOQV9P5PP2xLUnEcgVfQsDXbeijcsJcZPgjOVxOEcPFKvZHo1K5cDD1+/Qc8kZ3H3xVlWIHtUL4vt2ZdV6graT0wSX+0fUS7cew1DIUMhQyFCYbgOMlWTMUChxQzAUSiyoDNkxFJoGhUuP38WUbYol4rSsRbncaFImJ85uXYieCZvg7/RQJF2e0BSlO09ElXLlxL+PhrxAVEwcCvh6oUye5LB7ynzT2nu4un911Cjqmy69hqGQoZChkKEwXQYXK8qUoVDixmAolFhQGbJjKDQNCqfvuI5FWpZ+UzZhnmwewjH2wJWByIxoMWtIf05IQrhbLmRtOhoTH1fD3qvPEB2XgFxZ3TGxVWnUKpZdrSfQCWU6qZzaFvWsgialtbvfobS3nkfh7xP3xExkVo8MaFEul4jyYogxFDIUMhQyFBoyVthyGoZCiVuPoVBiQWXIjqHQNCgcs+kS1pxRzPylZZndXTG6uT++23xFlSTA+aYAw8bO58VnBxIriYMoZxNLin9ncHFGyPSPxf/P2XcT5+69xr2Xb/HodbTGbfYOq4sSOdX3Hm4JeoKdl58iPDoOlx+H421svNp1f34WgKZlcuntaQyFDIUMhQyFegcKG0/AUChxAzIUSiyoDNkxFJoGhRM2X8GKU/d1tlhAQW+xvPvbgVsa6YZ6H0fnmA3Ik6SYAfwjvrU4jBKe5CVmF68/jcCGQE13NcqMnJ2AOzNaquWbVtSWlIk6V8mP2R3L6+1p9gKFcXFxcHZ2houLi6rOCQkJiImJgZeXl14dKEHFihVx/PhxkCZ+fn5wcnIy6Dp7SPTmzRt4eHggY0b5HapbSk976fvG6EW/k8jISPj4yOsKy5gyS5GWoVAKFVPkwVAosaAyZMdQaBoU/vzfTczbH5Jmi3lldMVv3SqJSCvLT2rCI0VR8U16hX5Om9HLZY/I52ZSPjFrmL9+b/xx+Dbexyfq7BHjWpTCgLpFVGm6LzqNE7df6LyG9jnO/7Sy3p5mDw/GBw8eoFGjRpgxYwY6dlSEwPr9998xZ84cAYRVq1ZV/b8uQRgKGQr1/mBsPAFDoXQvek5J9FR1UGMotP2GZyg0DQrXnHmAMZsua3SABiVzoH/dIqiYPxs83Vzw054b+O2g5kxhygvrOF/CQNdtqOl8VXwcmr8F+t2uhSuJhXV2sK8bFMOoZoplZ7Lasw7i0et3Oq8Z0qg4hjcpobfj2joU0mxgjx498OzZM3z11VcCCi9duoQBAwZgy5YtyJ49O0aOHIn8+fNj+PDhOvVgKGQo1PuDsfEEDIUMhZJ0YYZCSWSUNROGQtOg8PTdV+iy8KRG201sXRp9aiXDXOD91+iwQOGSRp/1c92JQRm2IVtSOBLggmXxTbEsoSnuJ2k/TDKyWUkMalBMlW2NGfvxNDwmzdvk9/HE9sG1xaETWpredvEJ3kTHoZAvxWYuJEBWabYOhUuXLsXNmzfFsjFBHUHh3LlzERERgQkTJohqBgYGYujQoTh69ChDYRoK8PKxvl+tfXzPUMhQKElPZiiUREZZM2EoNA0K6aqxmy5j9ZkHqgxqF8uOFf0+QurhhQ6arNSz/1CZyUdZX2NtmTPA+WXiI3J8TWC4NqEBniap7/dZ3LMKGpbKgZm7gnH27isEh0aKU8y67PfuleHq4oQvVgSqJfP2dMOx0Q1Ay95ktgyFt27dQu/evbF9+3bMnDkTAQEBAgrHjRsHf39/9OzZU9SR9hPVqlULwcHBansOU+vHM4U8UyjrIG2BmzMUMhRK0s0YCiWRUdZMGApNh0K6kk4GP30Tg2yeGVAqt6aPQWXu91++w5M30Ri54SIeazlJnLITrOpfHTVdbyDh1B9wub5FfPUyKQvWJDQQcPggKYf4jJxX075GOnFsqHUMyAc3F2esSgGzymtTurixZij8559/MHnyZI0q0+xg9erVBQDSDGD9+vUxduxYFRQOGjQIdevWRefOncW1NGtIwBgUFKQ6dEL7D1PbunXrsHPnTnFgxd3d3VCp7SIdhX50dXUVdXcUi49XnNinejuKJSYmgurt5ubmKFUW9aQDZ4b+prNmzWqQNrynMCTtzfYGKShTohcvXsDb21vnDIFMRbPobRkKzYNCYxtrx+Wn+HbDJQ1XMSnzWdKrKhr5K8APN3cj/txyuN7coQAZeGJtfAO88u+K0T3aoMjYnUg0YltzpQLZUNDXC5svPNYo+rxuldCmgsKPoTVDIfVZeoilNloqnj9/Pi5cuCAOl5BNmzYNFSpUQKdOnTB79mwULVoUvXr1Et+FhoaiTp06uHHjhgp6Dhw4oJHviBEjsG/fPtA+xcyZMzvU6eN3794hQ4YM4s9RLDY2FtTHDIUFe9CF+nZ0dDQyZXIcNzxiPI2IMPg3bWh/YChkKLTpMYGh0LJQSHeLjU8UYfBWnb6P9VrczhwaWR+Fsie7S9l0/hE2bliFzi6H0NbluChwLNzgXOVztDleFNeTChjcByliCjmwnrU7WOOaHUPqqCKqWDMU6qoswR/N/KW2tm3bCiB8+vQppk6dKr4+deoURo0axXsKdQjKewoN/mnZdEJePublY0k6MC8fSyKjrJkwFFoWCiNj4gWQnb33CjTBFxETh9AUh0O0nQ7+Zs0F1RJxgHOIgEP6o8goCXAWS8q0tHwpMdk9jY+XG169fa/Rt8gVjreXm1jKTmnkNPvcd43FIRQyW4XC1BVOuXxMew1paXnHjh3IlSsXhgwZgkKFCgkw1GW8p5D3FMo6SFvg5gyFDIWSdDOGQklklDUThkLLQuGAFYHYezVUrc2bl82FL+sVBZ0O9vXS3NNDh0LIMXVKK+18HwvLXEP2kHXwQKz4an1CPQGI5xL1u5zR1un+/KwKmpZRnHS2JyisUqUKOnToIOq1fPly/Pzzz+L/K1eujF9++QX69go5AhSGx4YjU4ZMcHFOdvJNGvFMoazDs8VuzlDIUChJZ2MolERGWTNhKLQcFMYlJKL4+F0a7U2HVIImNk2zH1C4uzn7NPfu7hteDwN+WYMuH2YOvZ0iRR5bEmphTUJ9nEwsY1Tf+rVbJbS2gT2FRlVKS2KOaJIsytoba7Hw4kKERYfBCU5oV6wdptZSLK8zFDrO/jqGQoZCreOqsYMlQ6G5jyf5r2cotBwUvn0fjzITFdFLUhot6V6f1jzNzhAbl4h+y8/iaEhytBJyQE1Lza1+PYYrj8ORx+mlCg5zO70Uee1M+AhrE+rjcGIFgzra7m/qwP/DCWp7mSk0qOJ6EtnrTOGTqCdotrGZRu2/rfotPiv9GUOhAx26YChkKNQYCEwJ/8RQKMUjR948GAotB4V0p2ZzjuBGqGJGT2nVi/hizYDqejvCw1fvEBUbj3zensjsrnCXcTQkDKM3XlbtEfRxilTBYWGnpyLNvsQAbEiog90J1dK8x+CGxTGiafKyM0NhslT2CoUHHhzANwe/0egTHxf+GLPrzmYoZCjUOybZegKOfZxGC5oa/omh0NZ/EhCuF8LCwpAjxwcXKLZfJZNrQD7ZCIbIVVF62aEbYRi76ZIq8kjh7F74qVMFBBT0xv7rz7Ho6B3cf/kW2Tzd0L5SXrXYxrrKdOt5lDi4MnP3dZGPJ2LFYZSvs52A31vF0nOwczGsf18DWxJqwj1bLhEir2SuLMiTzR1Z3NVdjjAU2j8UHnp4CIMPDNboVi2LtMTMOjMZChkK02sYtJp8GQrTaApTwz8xFFpN3za5IAyFydJZAgqVd7sT9hZOTgBBIdnzyFhU/2G/hs/BeV0roU3FPMJJNYWli4iJR1E/L3xZvyjqFvfT2u4U6i4qJg55vT3hmcEJCFoFXF4P3Dkk0ie4+8CldCvAvyVQQvuyNUOh/UPhq5hXaLCuARKT1H0+TqoxCR1LdGQoNAMKV15bic23N4M0zpcpHz4t9SmaFdJcqjd54Jb4Ql4+5uVjtS5lavgnhkKJf5kyZMdQKA8Upm7qnZef4qt/zmv0gK7VCqB8vqwYt+my2ncUju70uEbI9CEsnUFdh6CQ4PDaFiD2wxK2n78CDst2AHImH0xhKLR/KKQa7ru/D39d+Qt3I+4ii1sWtCrSCoMrJc8e8uljg35ZaokOPjyIIQeGaFy4vf12FMxS0PgMLXAFQyFDoVo3MyT8E/n2Sm0USoqWnm3RoqKi4Onp6VDhm7S1E0EhaUGRGhzdKMwTzRZSv7C07bjyDCM3XtW4bbsKuYWz611Xn2l8t+jTiqhdTD0esiHldop6BpeQ3XAJ2QXnu4rZQ7LEArWQUKod4st0QGyiwjVJxowZ9Wbp4eGhN40tJ7DXPYWGtAlDoSEqqaf58eyPWH5tucaF02pNE6e7rdEYChkK1frlhAkT9IZ/mjNnjkZfpsMpgYGB1tjH9ZaJYh7SA8+J1vAc3Ci8kb0/2A1pYgqdRoOjISBkSH7GpLkV9g6fLNL8LY1pUhRnH4Rj/43kk8fKfH/tXAb1TIDClOVyCb0I17sH4Hp7D1yef4BSV3fElmiF2BJtgSL19VYjS5a0Yz7rvdgGEjAUsvNqY7rpD6d/wOrg1RqXpFyWNyY/S6RlKJSOA+wizN2CBQtMCv/Ey8eW+Lmm7z14+ThZX0vuKdTWqgsO3cbc/SGIiUsQX7erlBdzulTE/IO3MHvPDY1Ljo9piLzZJJqlS4gFbu4FQj78RYYiussGeJRqkr4d0AZyZyhkKDSmm26+tRkTjk/QuGRVy1Uol72cMVlZLC1DIUOhWmczNfwTQ6HFfrPpdiOGQuuBQioJnSB+Eh4tTgMr3c7Q51+vOo8dlxQuZui7YU1KoHetQunTL17fxfsr2/G+Um9kMmOzffoUzvK5MhQyFBrb6yafmIyNIRvFZW4ubuhXrh8GVhhobDYWS89QyFCo0dlMCf/EUGix32y63Yih0LqgUFdDU9xk8lOYO6t7uvUHZcZ80CRZYoZChkJTfnDR8dGg8IE5PHPA2cnZlCwsdg1DIUOh1s7GEU0s9hu0mhsxFNoOFFqy0zAUMhSSAnzQxJK/OvnuxVDIUChJ7+OZQklklDUThkKGQm0dkKGQoZChkGMfy/pwssDN2Xm1xCIzFEosqAzZMRQyFDIU6v7h8fIxLx/LMDRb9JY8U8gzhZJ0OIZCSWSUNROGQoZChkKGwrQU4OVjWYdni92coZChUJLOxlAoiYyyZsJQyFDIUMhQyFCYrIAjbp1gKGQolAREGAolkVHWTBgKGQoZChkKGQoZCiMjI+HjY3yEJFkfYGbenPcUmilg6ssZCiUWVIbsGAoZChkKGQoZChkKGQqleQDbRUQTU6VgKDRVOeu5jqGQoZChkKGQoZChkKFQmucyQ2FIiDRKWjiXFy9ewNvbGy4uLha+s3XdjqGQoZChkKGQoZChkKFQmmczQyFDoTQ9SaZcGAoZChkKGQoZChkKGQqleQgzFDIUStOTZMqFoZChkKGQoZChkKGQoVCahzBDIUOhND1JplwYChkKGQoZChkKGQoZCqV5CDMUMhRK05NkyoWhkKGQoZChkKGQoZChUJqHMEMhQ6E0PUmmXBgKGQoZChkKGQoZChkKpXkIOzwUSiMj58IKsAK2qICXlxeCgoJssegGl5liH1OUCzZWgBVwXAVCDJwAc2gotOXu0bt3b0ybNg358uWz5WqYXfbo6Gh06dIFW7duNTsvW8/gwoULWL16NWbPnm3rVTG7/GvWrBEg1LdvX7PzspcM2rRpg7Vr18LDw8NeqqS3HuPHj0fbtm1RrVo1vWntJcG6desQHh6O/v3720uV9Nbj+vXrWLBgAebNm6c3rT0laNmyJf7991+4ublJVi2GQsmktGxGDIUKvRkKk/sdQ2GyFgyFmuMRQ6Flx2i57sZQKJfylr8vQ6HlNbfaOzIUMhSm7pwMhQyFugYshkKrHc4lLRhDoaRyWnVmDIVW3TyWLRxDIUMhQ2HavzmeKeSZQlKAl48t+1yS6268fMzLx3L1Pau5L0MhQyFDIUOhMQMSzxQao5btpuWZQtttO2NLzjOFxirG6VkBVoAVYAVYAVaAFWAFDFKAD5oYJBMnYgVYAVaAFWAFWAFWwL4VYCi07/bl2rECrAArwAqwAqwAK2CQAgyFBsnEiVgBVoAVYAVYAVaAFbBvBRgKbaR9Y2Nj4ezsjAwZMmiUOCEhATExMaDoDI5iiYmJiI+P13DaSX4LXV1dtepkr9q8f/8e7969Q9asWeHk5KSqJjmwzZw5s+g3jmDU9tocM1MoxIiICKGPo5qjaEBjIf0etPUDex8nqX7UzjT+Kc3e293Rxj567lGd3d3dNYYyqZ59DIVW/pQIDg7G999/jytXroiSNmvWDJMnT1YNer///jvmzJkjgLBq1aqq/7fyapldPNJg9+7dOHXqlMiLfhCjRo3CsWPHxL8/++wzDB8+XA2SzL6plWVAfaQo5dEAABTASURBVINcbjx+/FhA8PLly1G4cGE8ePAAX3zxBZ4+fSpKTBFOmjZtamWll644Fy9exIwZM3Dv3j14enqiZ8+e6NWrl7jB4cOH8c0334j/z5EjB/744w8UKVJEupvbQE6OoMHr169FP9+1a5dokSpVqmDs2LEoWrSo+Le9j5MECh06dIC/vz9+/PFHu+/7jjj2zZo1C9u3b0dcXBxKly4tuCBPnjySP/sYCq18UL906RIePnyIFi1aiNkgCtvVuXNnfPLJJ6DvBgwYgC1btiB79uwYOXIk8ufPL2DInu3EiRP47rvvhB5KKPzrr79w6NAhLFmyRHzevn17TJ06FbVr17ZLKV6+fIlGjRqJB0CTJk3U6kjhrcqVK4chQ4bg2rVrIszXuXPn7HamrF27dujYsSN69OghALl+/fo4fvw4smTJgurVq2P+/PmoWbMmVq1ahY0bN4o/RzFaQXAEDd68eSPatXv37mL1gACRPqMHqSOMkzQxQKE+AwICxJhgz+3uiGMfvfjSi/7+/fvFhND06dPh4uKCcePGQepnH0OhjT0dKLZjZGSkmCGaO3euWBabMGGCqEVgYCCGDh2Ko0eP2litDC8uLYkS8E2aNAmjR49WQWHXrl1BvhtpJpWMZoQePXok3qbs0Qh0qH4//PCDWvVoxrR8+fIgcPbz8xPf0awZvUSQnzp7NGp7mhkmn130QlChQgXxgnD//n0xq753715RbXpQEizTd3nz5rVHKTTqRP3AETWgelNseJo5tPdxkoBhzJgx4ndOL38Ehfbc7o449inbk1bHaDsQaUArQdTHpX72MRTa0KOB9ocQEH399ddidojeEmi5gJbLyJ4/f45atWqBptbpLcIejUCwRIkSYjm0U6dOKiisU6cOFi5cKKbVyehhsH79evEWZY82cOBAMStAy2b0R/2ClsxopqxBgwYICQlRVZuggJYZaFbZHo0gj16GqH4EgDQzRg9JmkGnQXTBggWqajds2BA//fQTKleubI9SaNTJUTWgmULac0xjpD2Pk/QSSCsBVF/aPkEz5ASF9tzujjj20ZkCWgGiPYU0ztOsMK2K0XYhqZ99DIU29Ggg6KFZwL///ltsJh40aBDq1q0rlpPJaNaQQCEoKMguD53s27dPgB+FMHvy5IkaFBYvXhx79uxR7RcjUPj111/tdqmQlkxDQ0PFbCkNFLR8NHHiRLF9gN4cqQ8ojR4Y9HZJ2wvs0V68eCFmiWmbxdu3b8UyMe2vXblyJc6fP4+ff/5ZVW3SjbZX0O/GEcwRNTh79iwGDx6MzZs3I1euXHY9TtJKAe0npv3UVF8lFNpzuzvq2Ldp0yYx3pORBrQKljFjRkj97GMotJEnw44dOzBz5kzxw/f19RWlpmVj2kit3FRPkEBvDTdu3LC7E6evXr0CzfLQsnCxYsXE0inVm0DR29tb7COjGaGyZcsKbWhDLv2I7HWm8OOPP8aXX34pZgnIlA8BAr969eqpzRQqYZHeNO3RaIM9zY7SDALNFNJeSmp/mi3dtm2beJFQGvUhgsSKFSvaoxQadSIdHEmD27dviwMXixcvFjMq9jxOnjlzRvT1DRs2iNOoO3fuBH1Ge6lpudFe290Rx76DBw+KpeKlS5eKPYX07KdDdb/88ot45kv57GMotIFHA50epDeEZcuWoWTJkqoSU0egfQU0CJDRoQt6Y7THPYVHjhwRh2y0GS0VkwY0Y9qqVSuR5LfffhMzafa6p5A2HdPhIyUU0ssC6UB7TgmMSa/cuXMLLbp16yb+7HFPIc0YEwTT6Xx6ayaj08a0jYBmzb/99lscOHBAfK7cb+lIewppj5mjaEBbJwgIabk4ZV+313GSVgfoVHVqo0kDGv/std0dceyjg5U0ntPWMTJ64aXxn7aK0SqJlM8+hkIrh0Ia1Pv16yf2D5QpU0ZVWnozvHXrljh1SbOItExCb42FChUSYGjvRkuFKfcU0pIygREtrdNhA4IlerOiGUR7NNozRLOmVG/aa0p76mhJgf6GDRsmBhDqB7QJnXSiJbVs2bLZnRTkm43aWNnWNKNMgyUtmdP+WvojdzU0k0izxrQXh/qJoxjp4wga0H5q2jbRp08fMSYqjU4i37lzxyHGyZTLx/bc7o449lGdaY/8okWLxOl6miA6ffq0ajuVlM8+hkIrfzrQkh/NbKS2q1evis5BvumUe6Zo8zxNJzuCk97UUEi+m+htivYV0r4yejjQ7Kq9Om6mQZ/2E1H708wAzYzQS0GmTJnEgSNaSqWlNDKaLVXOoFp5dzepeDQTSDMmNFNESyqkBUEyGb1U0d5bOnns4+MjTu3R4SxHMkfQgICf4D+1rVixQhw8coRxMiUU2nPfd8Sxj8avKVOmgJaRyciLAr3804qI1M8+hkI7eDrYu6d+Y5pIKq/uxtxTzrTktJaMXhBSG7kuIqfm9grGqetLB63IN6E2I1dGjvCypKsvOroGjjpO2mu7O+LYR4cK6SSytog9Uj37GArlfKLzvVkBVoAVYAVYAVaAFbASBRgKraQhuBisACvACrACrAArwArIqQBDoZzq871ZAVaAFWAFWAFWgBWwEgUYCq2kIbgYrAArwAqwAqwAK8AKyKkAQ6Gc6vO9WQFWgBVgBVgBVoAVsBIFGAqtpCG4GKwAK8AKsAKsACvACsipAEOhnOrzvVkBVoAVYAVYAVaAFbASBRgKraQhuBisACvACrACrAArwArIqQBDoZzq871ZAVaAFWAFWAFWgBWwEgUYCq2kIbgYrAArwAqwAqwAK8AKyKkAQ6Gc6vO9WQFWgBVgBVgBVoAVsBIFGAqtpCG4GKwAK8AKsAKsACvACsipAEOhnOrzvVkBVoAVYAVYAVaAFbASBRgKraQhuBisACvACrACrAArwArIqQBDoZzq871ZAVaAFWAFWAFWgBWwEgUYCq2kIbgYrAArwAqwAqwAK8AKyKkAQ6Gc6vO9WQEdCkRHR+Po0aPw9/dHgQIFWCtWgBVgBexOAR7nrKtJGQqtqz2ssjRxcXF48uRJmmXz8fFB5syZrbLstlaoBw8eIEeOHHj69CmGDBmCdu3a4dy5cyhbtiy+/vprUZ1Hjx4hISFBrWoeHh5wdXVFYmIismfPbmvV5vKyAlahgLbflrJgnp6e8PPzs4py2nohnj9/jowZM+LVq1c8zllZYzIUWlmDWGNxgoOD0bp16zSLNmXKFHTv3t0ai250meit9cKFC6hZs6bR15p7wd69e/Htt9/i0KFDWL16NXLmzIlPPvkEBOXNmjXDf//9BxcXFxQvXlzjVh999BE6deqESZMm4ciRI8iSJYu5xeHrWQGHU0Dbb0spwscff4x58+bZhSZyjnM0wVCvXj0sX74cQUFBPM5ZWY9iKLSyBrHG4iQlJeH9+/eiaDExMahSpQqWLFkCAhEymqEiWLEH27VrF9avX4+//vrLotWhQbpp06b4/PPP0a9fPwwaNAg9e/ZEtWrVRDnogbRixQoxC0gPrp9++gnNmzdXldHZ2Rn0RzOLBLRjx461aPn5ZqyAPShA4xyNd2Q9evRArVq1MHDgQPFvGuNorLMHk2ucI+1oBeTdu3dYvHgxj3NW2JkYCq2wUay5SAQv5cuXF4BSvXp1VVHDwsLw/fff4/Dhw6Dl5K5du6Jv375iIKWZr+3bt6NChQpYunSpGBAIaIYNG4aZM2fi4MGDKFSoEDp06CBmu8jomh07dohr6I2Slhvq1q2LiRMnqpZHaQZtzpw52Lp1q5hNa9iwIcaMGaOaJevTpw+++uorbNq0CTt37kT//v3Rvn17zJ07FydOnEBkZKS4ZvDgwShcuDD+/fdf0Kzn27dvxb+pHmvWrBGgRTN4KWcPaSm3cePGIj+q+6effoo///xTpYFSH7o31fnhw4eoWLGiKH+RIkU0mpjqOH/+fKEFLQUvWLAAsbGxGDp0qFi6pzJu3LhRXEdQSDMWBIqpjfQnqDx+/LhYhmZjBVgB0xSgMax27doCXJQmxzhH99Y1jmgb5wYMGCDGOVp9uHv3rniB//LLL0V90hrnpk2bJsZWJQTTfQncaEl98uTJkoxz165dQ9u2bbFlyxaULl2axznTuma6XsVQmK7y2l/m2qCQ9re1atUKWbNmBQ1G9+/fxw8//AAaZGhgJSAkACSYJGCJiorCuHHj4OXlJZYRCARPnz6NP/74Q8zSETwpr6FDFjTo0QwlDXIEjwRqZJQ/DXoETrQ/5eeffxYQ+csvv4jvCfgIQAnwKA/Ky93dXXxfp04dUd7//e9/Yr8ewSDt4/v1119x48YNkTcBbcmSJQWE/f7772ImT2kEigSENLMXGhoq8suVK5cAR1pqp7qePHlSPFCo7nQPmn28ffu2WAamcqS00aNHC13oPmSkM71RU96+vr5ioFbOzOqCQgLdypUrY9myZbIsgdtfj+caOaoCqaFQrnFuz549OscRbeNc/vz5MXXqVJQoUUL80XaUwMBAHDhwIM1xjl508+TJg/Hjx6uafPbs2QIq6SVVinGOgJResG/evAknJyce56zwx8VQaIWNYs1F0gaFx44dQ+/evQWgEYCRffPNN+INk2a3lIBHs3958+YV3xOk0cnaK1euCKCjATcgIEDAYufOnVXXrFq1ClWrVhXX0JIHgdLu3bvFhm9KP2PGDHTs2FF8T7A4YcIEsScwU6ZMAgppBpH22NEApM3oDZwGT9rbQkbgefHiRbXlY0OhkOCWYFhpNPNJs4I//vij+CgkJAQtWrQQS+8065nSKG2NGjUwcuRItc9pOcvNzU3tMyoPQahSa/qyQYMGYhaAjGZwaWaRZi/ZWAFWwDQFUkOhHONc0aJFxQqKrnHEkHGOXtRpZUM5Rmsb5wyFQnPGOXpxp1UM5aqHsmV4nDOtj6bHVQyF6aGqHeepDQppVoqWjuvXr6+qOc2I0ckygi0lFBIUKY1m4ijN33//rfqMZtgI8Gj2TXnN5cuXVbNqtIRMe3wWLVokoJBm6wgMlSef6X6XLl0SS8UETjRYtmnTRswkKo0gkd68CRxpWZZmB69evSqAzVwopGViJZjRviR6QydwK1iwoMibPqPlXeUMaspuQrOjBLT0ANBnVDcCSJo1VVqjRo3ErCsZ7YWipRkCbDZWgBUwTYHUUCjHOEe/aX3jiLZxjmp89uxZsQ2HXs7Dw8NVMEarGOZAoTnjHK2c0PYY5Yuyrpbhcc60fmvuVQyF5iroYNdrg0LaS0c/clqKpcMOSqPlV9r3RoBH0Hjq1Ck1KHzx4oUYnJSmDQpTguSbN2/ErCEtM3t7e6NLly5iaTa1Dz/l0jANlrSnUDmTSPehGUra10KzkTQ43rp1S5TbWCikpWSaiUu5fJxyppRmPmm5msBVCWvKepYpU0Ztlo8+JyikZRvlnkp9g2Vaewrpum7duqFcuXIMhQ722+TqSqtAaiiUY5yjF21944i2cY5enGnp97PPPhNjC3kjoD3VNENnDBTSKgq9OKdcPjZnnKOVHlr5oINy+kzXNhke5/SpZ/r3DIWma+eQV2qDQuWel23btokBLLWZA4UpD0zQIQzas0iblGmmkPbvkQsWmhnTZqkHSxrcaNmW9hTSHkiyWbNmic3USigk2Dpz5gxWrlypypIGVVrWVd6H9jcSdH333XdpQiFdTOBIb/m//fab3r5CMEjAS/tt9Jm+wZLKS3sUCQ7ZWAFWwDQFUkOhHOMczfjrG0e0QSF9RqsqtCpBphw7lVCobZwbPny48DKRcrzq1auX6uCbck9hSig0dpyjg4E0e7l582a9jcLjnF6J0iUBQ2G6yGq/mWqDQvqM9rQVK1ZMnHCjH/P169eF+wZaTjUHCmlwo70uuXPnFrOCL1++FKeSaUaS3jppGZgGMxoAyfEz/ZFvP7LUgyUtHRN40alomuGjwy2jRo0Sp42VUEgbsb/44gvs27dP3JPeagkGqY40G0qDJi2f0F5EfVBI+yEJWuketJcwIiICtBzesmVLsecxpZELGVr+Xrhwod7Oo2uwVM6m8kETvTJyAlZApwKpoVCucU7fOKINCmnMJO8FNCNH23TIywNt5VFCobZxjg65EbTRoZR8+fKBXvJptpH2IqY1U0gC6itfSpEJBmk8pMN8KVeVtDUEj3Py/EAZCuXR3Wbvqpwlo5k05WlYqgydJqPlT+WBDfqM9rTRARRDoZCWWgnoyD+f8hp6S6ZBioygk95wlQ5maZ8MvQnTzKHSyMmz8k1XCZQp9+nR6WZaLia4pFO9VMYRI0aooFB56pfeZskIFmnPIV1DB2PIqJx0PS3tUFmVb9B0qjjlPj9aQibIU56Gpmtpj+HatWvF8ndKozrSrCXNjNKpbF2ma7BUzmbQyWeObGKzPzMuuBUooM0ljRzjnL5xRNs4R+MwuZGhsYuMXk7J+wFt16FVDm3jHL1QTp8+XTWLR8vMtGeb3GmlhEJzxjnSj16KlV4meJyzgo6eqggMhdbXJjZdIhpsaOYtW7ZsZjl6TQmSNDtH+ZILGW1GgybNstGBk9SuXrSlp1BwNGtHZUzLyLULzXTSpmil0TV0Upr+jDE6YEIQSdelFQ6QYLtJkyZiDxAtkZtiSpcZNGtryDK0Kffga1gBVkDhMsrS45wh40jqtqEXZ1qVSCu4gLZxjupGY0nq1Qx97W5o+WhlhwDU1AABPM7pawnzvmcoNE8/vjqdFNA2u5hOt7KabMnlDi0j04ykKbGkldfTCee0ANpqKssFYQVYAa2rKPYuy+PHj8UqC7kQo5lIY43HOWMVMy49Q6FxenFqCyngiFBIb9q0F5OWoD09PY1Wmg7S0Cyo0hek0RnwBawAK2BRBRxxnCOB7927J7bJ0IFBY43HOWMVMy49Q6FxenFqCylAPgRpMzIthbKxAqwAK2CPCvA4Z4+tatt1Yii07fbj0rMCrAArwAqwAqwAKyCJAgyFksjImbACrAArwAqwAqwAK2DbCjAU2nb7celZAVaAFWAFWAFWgBWQRAGGQklk5ExYAVaAFWAFWAFWgBWwbQUYCm27/bj0rAArwAqwAqwAK8AKSKIAQ6EkMnImrAArwAqwAqwAK8AK2LYC/wci+KWk9apUnQAAAABJRU5ErkJggg==", "image/svg+xml": [ "204060800100200020406080−50050ResidualsTemperature (​oF)Temperature (​oF)Gas (ft^3)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "xs = np.linspace(10, 80, num=71)\n", "ys_deg2 = make_ys(mod = model_deg2, deg=2, xs=xs)\n", "\n", "fig = make_subplots(rows=1, cols=2)\n", "\n", "fig.add_trace(\n", " go.Scatter(x=heat_df['temp'], y=heat_df['ccf'],\n", " mode=\"markers\"),\n", " row=1, col=1)\n", "\n", "fig.add_trace(\n", " go.Scatter(x=xs, y=ys_deg2), \n", " row=1, col=1)\n", "fig.update_xaxes(title='Temperature (oF)', row=1, col=1)\n", "fig.update_yaxes(title='Gas (ft^3)', row=1, col=1)\n", "\n", "\n", "fig.add_trace(\n", " go.Scatter(x=heat_df['temp'], y=model_fit['err'],\n", " mode=\"markers\"),\n", " row=1, col=2)\n", "\n", "fig.add_shape(type=\"line\",\n", " x0=0, y0=0, x1=80, y1=0,\n", " line=dict(\n", " color=\"Black\", width=3),\n", " row=1, col=2)\n", "\n", "fig.update_xaxes(title='Temperature (oF)', row=1, col=2)\n", "\n", "fig.update_layout(height=250, width=550, showlegend=False,\n", " title={\n", " 'text': \"Residuals\",\n", " 'y':0.9,\n", " 'x':0.75,\n", " 'xanchor': 'right',\n", " 'yanchor': 'top'})\n", "\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The quadratic captures the curve in the data quite well, but the residuals show a slight upward trend in the temperature range of 70°F to 80°F, which indicates some lack of fit. There is also some funneling in the residuals, where the variability in gas consumption is greater in the colder months. We might expect this behavior since we have only the monthly average temperature. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For comparison, we fit a few more models with higher-degree polynomials and collectively examine the fitted curves: " ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "tags": [] }, "outputs": [], "source": [ "poly12 = PolynomialFeatures(degree=12, include_bias=False)\n", "poly_features12 = poly12.fit_transform(X)\n", "\n", "degrees = [1, 2, 3, 6, 8, 12]\n", "\n", "mods = [LinearRegression().fit(poly_features12[:, :deg], y)\n", " for deg in degrees]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ ":::{warning}\n", "\n", "We use the polynomial features in this section to demonstrate over-fitting, but\n", "directly fitting the $x, x^2, x^3, \\ldots$ polynomials is not advisable in\n", "practice. Unfortunately, these polynomial features tend to be highly\n", "correlated. For example, the correlation between $x$ and $x^2$ for the energy\n", "data is 0.98. Highly correlated features give unstable coefficients, where a\n", "small change in an x-value can lead to a large change in the coefficients of\n", "the polynomial. Also, when the x-values are large, the normal equations\n", "are poorly conditioned and the coefficients can be difficult to interpret and\n", "compare. \n", "\n", "A better practice is to use polynomials that have been constructed to be\n", "orthogonal to one another. These polynomials fill the same space as the\n", "original polynomials, but they are uncorrelated with one another and give a\n", "more stable fit. \n", "\n", ":::" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's place all of the polynomial fits on the same graph so that we can see how the higher-degree polynomials bend more and more strangely:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "mode": "markers", "type": "scatter", "x": [ 29, 31, 15, 43, 23, 71, 67, 72, 15, 64, 58, 48, 35, 16, 25, 35, 53, 69, 75, 72, 67, 46, 29, 25, 34, 47, 69, 72, 76, 69, 51, 45, 21, 48, 23, 28, 70, 51, 64, 76, 54, 37, 11, 75, 24, 64, 26, 18, 72, 72, 45, 66, 17, 56, 54, 56, 74, 69, 78, 72, 56, 21, 41, 30, 22, 34, 53, 59, 74, 78, 77, 64, 41, 30, 50, 24, 13, 38, 46, 65, 74, 76, 75, 68, 58, 41, 18, 28, 15, 45, 75, 55, 68, 67, 76, 55, 39 ], "y": [ 166, 179, 224, 82, 208, 15, 15, 8, 242, 18, 35, 78, 144, 216, 204, 130, 48, 16, 14, 15, 18, 100, 153, 190, 126, 69, 16, 15, 16, 23, 60, 106, 190, 79, 210, 178, 1, 44, 20, 7, 37, 123, 235, 15, 228, 17, 194, 164, 13, 0, 74, 23, 224, 43, 61, 51, 9, 11, 11, 19, 32, 176, 99, 144, 161, 116, 52, 38, 10, 7, 6, 15, 101, 140, 47, 168, 191, 101, 77, 18, 7, 9, 6, 13, 28, 98, 182, 139, 191, 79, 12, 29, 6, 16, 11, 32, 91 ] }, { "line": { "dash": "dot", "width": 4 }, "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "y": [ 220.23055438421662, 216.72447955965367, 213.21840473509076, 209.71232991052784, 206.20625508596493, 202.70018026140198, 199.19410543683907, 195.68803061227612, 192.1819557877132, 188.6758809631503, 185.16980613858738, 181.66373131402443, 178.15765648946152, 174.65158166489857, 171.14550684033566, 167.63943201577274, 164.13335719120983, 160.62728236664688, 157.12120754208397, 153.61513271752102, 150.1090578929581, 146.6029830683952, 143.09690824383227, 139.59083341926933, 136.08475859470641, 132.57868377014347, 129.07260894558055, 125.56653412101764, 122.06045929645472, 118.55438447189178, 115.04830964732886, 111.54223482276595, 108.036159998203, 104.53008517364009, 101.02401034907717, 97.51793552451423, 94.01186069995131, 90.5057858753884, 86.99971105082545, 83.49363622626254, 79.98756140169962, 76.48148657713668, 72.97541175257376, 69.46933692801085, 65.9632621034479, 62.45718727888499, 58.95111245432207, 55.44503762975913, 51.93896280519621, 48.432887980633296, 44.92681315607035, 41.42073833150744, 37.91466350694452, 34.40858868238158, 30.90251385781866, 27.396439033255746, 23.8903642086928, 20.384289384129886, 16.87821455956697, 13.372139735004026, 9.86606491044111, 6.359990085878195, 2.853915261315251, -0.6521595632476647, -4.15823438781058, -7.664309212373496, -11.170384036936412, -14.676458861499384, -18.1825336860623, -21.688608510625215, -25.19468333518813 ] }, { "line": { "dash": "dash", "width": 4 }, "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "y": [ 253.4795066988599, 247.39758384699238, 241.3863526499435, 235.44581310771326, 229.57596522030167, 223.7768089877087, 218.0483444099344, 212.39057148697873, 206.80349021884166, 201.28710060552325, 195.84140264702347, 190.46639634334235, 185.16208169447984, 179.92845870043595, 174.7655273612107, 169.6732876768041, 164.65173964721615, 159.70088327244682, 154.82071855249612, 150.01124548736408, 145.27246407705064, 140.60437432155587, 136.00697622087972, 131.4802697750222, 127.02425498398333, 122.6389318477631, 118.32430036636148, 114.08036053977852, 109.9071123680142, 105.80455585106847, 101.77269098894143, 97.81151778163297, 93.92103622914323, 90.10124633147205, 86.35214808861954, 82.67374150058563, 79.06602656737044, 75.5290032889738, 72.06267166539578, 68.66703169663646, 65.34208338269576, 62.0878267235737, 58.904261719270266, 55.791388369785466, 52.7492066751193, 49.777716635271815, 46.87691825024285, 44.046811520032634, 41.28739644464099, 38.598673024068034, 35.98064125831365, 33.43330114737802, 30.9566526912609, 28.550695889962526, 26.21543074348267, 23.950857251821503, 21.756975414978967, 19.633785232955063, 17.58128670574979, 15.599479833363148, 13.688364615795194, 11.847941053045815, 10.078209145115125, 8.379168892003008, 6.750820293709637, 5.193163350234784, 3.706198061578675, 2.2899244277410844, 0.9443424487221819, -0.33054787547803244, -1.5347465448596722 ] }, { "line": { "dash": "dashdot", "width": 4 }, "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "y": [ 226.0715923543893, 223.94937904485798, 221.6278481493415, 219.11472305936294, 216.41772716644525, 213.54458386211147, 210.5030165378846, 207.30074858528766, 203.94550339584367, 200.44500436107563, 196.80697487250654, 193.03913832165944, 189.1492181000573, 185.14493759922317, 181.03402021068004, 176.82418932595095, 172.52316833655888, 168.13868063402685, 163.67844960987787, 159.15019865563494, 154.5616511628211, 149.92053052295935, 145.2345601275727, 140.51146336818414, 135.75896363631674, 130.98478432349344, 126.19664882123729, 121.4022805210713, 116.60940281451846, 111.8257390931018, 107.05901274834436, 102.31694717176907, 97.60726575489906, 92.9376918892572, 88.31594896636665, 83.74976037775028, 79.2468495149312, 74.81493976943241, 70.46175453277687, 66.19501719648764, 62.022451152087626, 57.95177979110005, 53.990726505047775, 50.14701468545377, 46.42836772384118, 42.842509011732886, 39.39716194065204, 36.1000499021215, 32.9588962876644, 29.98142448880367, 27.175357897062383, 24.548419903963577, 22.108333901030164, 19.86282327978506, 17.81961143175164, 15.986421748452699, 14.370977621410987, 12.981002442149986, 11.824219602192386, 10.908352493061386, 10.241124506280016, 9.830259033370908, 9.683479465857488, 9.80850919526273, 10.213071613109491, 10.904890110920746, 11.891688080219524, 13.181188912529137, 14.781115999372332, 16.69919273227208, 18.94314250275147 ] }, { "line": { "dash": "longdash", "width": 4 }, "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "y": [ 227.03317984715346, 223.05137351116832, 219.5498400463221, 216.4075951777574, 213.51817186887203, 210.78867505776623, 208.13886430980966, 205.50026438632833, 202.81530372941, 200.03648086282857, 197.12555870909034, 194.05278682259635, 190.79615153892595, 187.34065404023923, 183.6776163368005, 179.80401516461706, 175.72184379920077, 171.4375017854506, 166.96121258364744, 162.30646913157676, 157.48950732276484, 152.52880740083646, 147.44462326999343, 142.25853972160672, 136.99305757693747, 131.67120674596703, 126.31618720235605, 120.95103787451109, 115.59833345278838, 110.27990911279363, 105.01661315482426, 99.82808755941602, 94.73257645901032, 89.74676252575188, 84.88563127539447, 80.16236328732208, 75.58825434071133, 71.17266346678554, 66.9229889172114, 62.84467204859749, 58.94122912311951, 55.214311025278505, 51.66379089474259, 48.28787967535101, 45.083269580210356, 42.04530547290534, 39.16818416485722, 36.44518162877495, 33.86890812823941, 31.4315912634068, 29.125386932815047, 26.942718211328895, 24.87664214420721, 22.92124445726796, 21.072062183188166, 19.326534203917902, 17.684479709223808, 16.148604571324825, 14.725035635692905, 13.423882927936859, 12.259829776780236, 11.252750853266036, 10.428358125928128, 9.818874732244069, 9.463736766009163, 9.410322981084676, 9.714712411050925, 10.442469905034443, 11.669459579721945, 13.482686187433785, 15.98116440032237 ] }, { "line": { "dash": "longdashdot", "width": 4 }, "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "y": [ 228.2689453121493, 223.72956976932045, 219.68400040202988, 216.08261568973057, 212.8587854932876, 209.93516291673274, 207.22899658181535, 204.65654518258958, 202.1366731524434, 199.59370324111347, 196.95959876439548, 194.17554525440784, 191.19299820341467, 187.97426055937177, 184.49265059652572, 180.7323177495071, 176.6877609645797, 172.36310108678282, 167.77115576691796, 162.93236233745648, 157.87359107160756, 152.62688820491877, 147.2281850639809, 141.71600661187568, 136.13020968528855, 130.51077816321396, 124.89669927247797, 119.32494220028076, 113.82955714935798, 108.44090993622723, 103.18506419844545, 98.08332024156317, 93.15191652211416, 88.40189672776233, 83.83914238074414, 79.46456785666288, 75.27447167471456, 71.26103488169957, 67.41295431647796, 63.71619550705128, 60.15484691781222, 56.71205422908298, 53.37101029674869, 50.11597340458303, 46.93328338762859, 43.81234216879585, 40.7465222177305, 37.73396340522214, 34.778215691072376, 31.888682049615284, 29.08081300210671, 26.376001088155874, 23.801120578518578, 21.387654689580643, 19.170349532945522, 17.18533099131656, 15.467617682737739, 14.047960136758604, 12.948933274110288, 12.180206242108227, 11.732910630034723, 11.573025047637032, 11.633691016093337, 11.806372092079812, 11.930765099914254, 11.783369322398187, 11.064616460094669, 9.384461134297283, 6.246328676908718, 1.029313915267096, -7.031478382090597 ] }, { "line": { "width": 4 }, "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "y": [ 208.12107223405184, 207.99346686919745, 207.7948301749046, 207.49986437777832, 207.0791803640288, 206.49985090882626, 205.72623789861248, 204.72106742336024, 203.44671184473924, 201.86662558793114, 199.94687187614224, 197.6576712016199, 194.97489914765993, 191.8814612649547, 188.36847597602053, 184.43620274905476, 180.09466177673806, 175.36390277045365, 170.27389382657594, 164.86401617676466, 159.1821664952452, 153.28348476947787, 147.22874199441804, 141.08243756519988, 134.91067066300985, 128.77886261354416, 122.74941763275984, 116.87941708420823, 111.21844692860014, 105.80665908220163, 100.67316462059881, 95.83484995509554, 91.29569615229758, 87.04666644875016, 83.0662078367348, 79.32138959273635, 75.76967516080532, 72.36129440523274, 69.04215159717188, 65.75717145040454, 62.453952114057586, 59.08656149929794, 55.61928310372224, 52.03009126514718, 48.31361541069401, 44.48334050061004, 40.572788885026796, 36.63543982727043, 32.743169942801444, 28.98304393997006, 25.45235384609606, 22.251900163759103, 19.477634265134668, 17.21094225258622, 15.508051283471843, 14.389285180066338, 13.829192472436091, 13.74892280930709, 14.01264319643434, 14.430270418339035, 14.769357438479176, 14.779617017414978, 14.234303172026387, 12.993508893345108, 11.095385460462978, 8.882354238350501, 7.17057552496027, 7.472271473426929, 12.281981810276022, 25.43947338806521, 52.583839559276214 ] } ], "layout": { "height": 250, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autosize": true, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "height": 250, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "margin": { "b": 10, "l": 10, "r": 10, "t": 10 }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.5, "xanchor": "center" }, "width": 350, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "width": 500, "xaxis": { "autorange": true, "range": [ 6.53511572226656, 82.46488427773345 ], "title": { "text": "Temperature (oF)" }, "type": "linear" }, "yaxis": { "autorange": true, "range": [ -40.67658278152413, 268.9614061451959 ], "title": { "text": "Gas (ft^3)" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAFoCAYAAAAhG4EVAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQd4VMX6h3+7m930XknoNXSka+gERUWEC3/EcgFRUQEVURRQ7ArqFQQpei9XFARBrhSlKdKkt9AhobeQ3ttutv2fOUs22ewmmeGkLOSb5+GB7PnmnJl3DsmbqQqz2WwGJSJABIgAESACRIAIEIFaTUBBUlir258qTwSIABEgAkSACBABiQBJIb0IRIAIEAEiQASIABEgAiSF9A4QASJABIgAESACRIAIUE8hvQNEgAgQASJABIgAESACNHxM7wARIAJEgAgQASJABIgAI0BzCuk9IAJEgAgQASJABIgAESAppHeACBABIkAEiAARIAJEgHoK6R0gAkSACBABIkAEiAARoOFjegeIABEgAkSACBABIkAEGIFaPaewWbNmuHDhQpW+Cenp6fD29oZara7S59wLNzcYDMjKykJgYOC9UJ0qr0N2drb0Xrm7u1f5s+6FByQlJSE0NPReqEqV1yE/Px9Go1H63kWpYgKpqanw9/eHSqWqOLiWRxQWFiIvL0/iRaliApmZmdL3eFdX14qDKyGCpJCksBJeo8q5BUmhGEeSQjFeJIX8vEgK+VmxSJJCfl4khfysWCRJoRgvWdHUUygLX6VnJikUQ0pSKMaLpJCfF0khPyuSQjFWJIVivEgKxXjJiiYplIWv0jOTFIohJSkU40VSyM+LpJCfFUmhGCuSQjFeJIVivGRFkxTKwlfpmUkKxZCSFIrxIink50VSyM+KpFCMFUmhGC+SQjFesqJJCmXhq/TMJIViSEkKxXiRFPLzIinkZ0VSKMaKpFCMF0mhGC9Z0SSFsvBVemaSQjGkJIVivEgK+XmRFPKzIikUY0VSKMaLpFCMl6xokkJZ+Co9M0mhGFKSQjFeJIX8vEgK+VmRFIqxIikU40VSKMZLVjRJoSx8lZ6ZpFAMKUmhGC+SQn5eJIX8rEgKxViRFIrxIikU4yUrmqRQFr5Kz0xSKIaUpFCMF0khPy+SQn5WJIVirEgKxXiRFIrxkhVNUigLX6VnJikUQ0pSKMaLpJCfF0khPyuSQjFWJIVivEgKxXjJiiYplIWv0jOTFIohJSkU40VSyM+LpJCfFUmhGCuSQjFeJIWAdOYme3FEz3Rl+bRaLTw9PbmokxRyYaq2IJJCMdQkhWK8SAr5eZEU8rMiKRRjRVIoxqtWS2FGRga++OILbN68WaLWuXNnTJs2DU2aNEFBQQHatWtnQ3POnDkYNGiQ9NmCBQvw9ddfS0LYpUsX67/Lw19dUrg+fj0S8hPwZuc3oVFpxN6IWhRNUijW2CSFYrxICvl5kRTysyIpFGNFUijGq1ZLIav8r7/+iqeeegoajUYSRPbZ559/joSEBAwdOhS7du2yEnVxcYFKpcLJkycxbtw4rF+/HkFBQXjzzTdRr149TJ48uVz61SGFh64ewku7X4LepEdTv6aY02cOGvo2FHsrakk0SaFYQ5MUivEiKeTnRVLIz4qkUIwVSaEYr1othaVR7du3Dx9//LHUcxgbG4spU6bg999/tyM6d+5csB+QM2bMkK4dPXoUkyZNwu7du2tUCrUGLR5b+xgS8xOt5XBVuWJKlyl4osUTYm9GLYgmKRRrZJJCMV4khfy8SAr5WZEUirEiKRTjRVJYghfrKWSiMH36dOzfvx+vv/46hg0bJvUGRkdHS72BLLHrkZGRGDVqlPR1cnIyoqKiJJFkPYllparuKbySdQXPbXkOKdoUuyL0rdcXn/T4BD4aH7E35B6OJikUa1ySQjFeJIX8vEgK+VmRFIqxIikU40VSeJvX4cOH8corr2DdunUICwuTRG/lypUICAjA2bNnsWnTJsycORMPP/wwJk6ciF69emHEiBFSbvbDslOnTjh+/Lh10cmHH35o1xI//fQT2HOqMmUWZGL26dnYcWuH3WMC3QLxUeeP0C7Qdq5kVZbHme9tNpuh1+ulqQOUKibAJFqhUJT7i0/Fd6k9ETqdDq6urrWnwjJqyhbtsf+PbIoOpYoJMNFRq9XS/0dK5RMwmUzSYlLGi1LFBNjPRNa5pVQqKw4uJ8LPz48rv8LM/uc7Wbp06ZLUI7h48WJpsYmjxIRuy5YtYH+zYWO2GGXMmDFSaGJiInr27Im4uDgryD179tjd5tlnn8Xp06ertPY5OTnSKupNNzbhy6NfosBQYPM8pUKJZ1s9ixfbvAj279qc2DcK1kPh7e1dmzFw152xYj+0SaL5kLHfuHm/MfLd8d6NYgLNfniL7gBx7xIpv2asI8LLy0v2D+7awI/9Mst2CWG8KFVMIC8vT/oeL1eieX8hdjopjI+Pl4SQDQkPHjy4TGJM8lgPIesNXLRokbQQ5aOPPpLiDxw4IM0/rOk5haws6enpkuSwBr2RcwOv73wdcelxdvVqF9wOX/X+CmGeYRW/JfdoBA0fizUsDR+L8aLhY35eNHzMz4pFpqamwt/fn3rtObDR8DEHpBIhtXr4mA0Rjxw5EmPHjsXw4cOtWJglnz9/XhpGZr/pszjWO+jh4QG2Lc3Fixel+I0bN0oxr776Kho2bCiJYXmpqucUlpZC9rXBZMCco3Ow7OwymFHcSct6CZcMXIKOIR3F3ph7KJqkUKwxSQrFeJEU8vMiKeRnRVIoxoqkUIxXrZbC77//XponWDotW7ZM+k1s3rx50nxB1uvGehGZPAYGBkrhS5cuxezZs6V/d+zYUZJFX19fp5PCogLtu7UPU/+eigxdhvTR+A7j8XL7l8XelnssmqRQrEFJCsV4kRTy8yIp5GdFUijGiqRQjFetlkIeVLm5udLiEUcTeu+2E03SCtIwfc90sK1rWC9hdcwpjEvKwf+O3ERCVgFCvN0w5L4ItKtbvjzztEtlxJAUilEkKRTjRVLIz4ukkJ8VSaEYK5JCMV4khWK8ZEXXxPCxowLnFObAW1P1iyuSsrUYMPtvZGv11mKolAr8+XovNAmu+Um/JIVirzNJoRgvkkJ+XiSF/KxICsVYkRSK8SIpFOMlK9pZpFBWJQQyrzh4HdPXnrLLMfXhSLzUu4nAnaomlKRQjCtJoRgvkkJ+XiSF/KxICsVYkRSK8SIpFOMlK7q2SeGiXZfw+eZYO2Yv92mCtwdGymJZGZlJCsUokhSK8SIp5OdFUsjPiqRQjBVJoRgvkkIxXrKia5sUbjyZgAkrYuyYzfpHW4zsWl8Wy8rITFIoRpGkUIwXSSE/L5JCflYkhWKsSArFeJEUivGSFX03SmFuYS6+P/09Xu346h3VfcySQ9gZV3zsXtdGAfjlxfvv6F6VnYmkUIwoSaEYL5JCfl4khfysSArFWJEUivEiKRTjJSu6pqWwQG9Ens6AIC++o7fYvobj/hyHAwkH0NSvKeb0mYOGvg2FGRy6ko6kHC2CPF1xfxPLlj7OkEgKxVqBpFCMF0khPy+SQn5WJIVirEgKxXiRFIrxkhVdk1L42spjWH/8llR+JoWTopvhme4Nyq3P/GPz8d3J76wxripXvNXlLYxoYTnz+W5PJIViLUhSKMaLpJCfF0khPyuSQjFWJIVivEgKxXjJiq4pKVy44yK++MP+qLsD0/sjzMetzDpN3DYRu27usrvet15ffNLjE/hofGTxqOnMJIViLUBSKMaLpJCfF0khPyuSQjFWJIVivEgKxXjJiq4pKXxx2VH8cSbRruxLnu2Cvi1Cyq3Tj2d+xNcxX0vH5ZVMwe7B+Feff93Vx+SRFIq9ziSFYrxICvl5kRTysyIpFGNFUijGi6RQjJes6JqSwvHLY7DpVIJd2Zc+1xW9mgVXWKezaWfx2o7XkJhnK5bsRJQX2r4gHZlXHaejVFhQwQCSQjFgJIVivEgK+XmRFPKzIikUY0VSKMaLpFCMl6zompLCZfuvYcb60zZl99CocOidaHi5unDVia1CfmPXG2BnKJdO7YLb4aveXyHMM4zrXs4SRFIo1hIkhWK8SAr5eZEU8rMiKRRjRVIoxoukUIyXrOiakkJW6K/+jMNvJ24hW2tAsxAvsA2kKxo6dlTZpWeX4svDX9pd6le/H+b2nSuLT3VnJikUI05SKMaLpJCfF0khPyuSQjFWJIVivEgKxXjJiq5JKZRV8FKZSw8ns3OUfxvyG4LcgyrzMVV+r5qQQr3RhDUx8UjI0iLQS4NH29ZBgKemyutaGQ8gKRSjSFLIz4ukkJ8VSaEYK5JCMV4khWK8ZEVXlxTmpyQhIKwOPHz9ZJW3vMwlh5MX9l+InnV7VtmzqurG1S2FZgCPztuNs7eyrVViq7/XT4xCaDmrwKuq/qL3JSkUI0ZSyM+LpJCfFUmhGCuSQjFeJIVivGRFV4cUpqWm4tf3pqIgJx33DXwM3YaMgKunp6xyl5f5YMJBdKvTrcruX5U3rm4p/P3ELbzy8zG7Kk17pCVe7NW4KqtaKfcmKRTDSFLIz4ukkJ8VSaEYK5JCMV4khWK8ZEVXhxTuX/8r9q1YYi2nxsMTXQcPQ6dHh8BFc3cMU8qCLJC5uqXwv3uu4OMNZ+1K+FyPRpgxqJVAyWsmlKRQjDtJIT8vkkJ+ViSFYqxICsV4kRSK8ZIVXdVSaNAXYtELo1FYkGNXTncvHzww4im0ix4IpYpvxbGsyt7OfPhqOlYevoHELC2CvV0xrGNd9GzGN/cwLikHP+67imtp+fBzV+PRdnXwSNs6lVEs6R7VLYXUU1hpTXdX3IikkL+ZSAr5WZEUirEiKRTjRVIoxktWdFVLodlsxpJXvkFm2gGYTcXz1koW2kPjjvujB6LDqLGAQiGrPhVlvp6ejz5f7oTJzGbTFadNr/ZEq/DyT0PRGUzo9cUOJGVrbfJ+P6YL+kWWv+F2ReUqul7dUkhzCnlb5t6IIynkb0eSQn5WJIVirEgKxXiRFIrxkhVd1VLICrfllf/gqrYOCg3nYdAyOcx3WGZPgwIdA4PRcsTT8I7uL6teZWVeduAaZqyz3R9RE7AHY+8bhKkDosp95rZzSXjuxyN2MU93a4BPh7aplPJWtxSyQtPq40ppurviJiSF/M1EUsjPiqRQjBVJoRgvkkIxXrKiq0MKE//aBu2f23DxEnDFpwPyzZdg0B4BzDqHZffReGPQe++jTrNIWXVzlPnbXZcwa3Os9ZKLVxzc6y2BWuGOWb0/wYMNHizzmWxPxVcdLMoY0iECX4/sUCllrQkprJSC19BNaE6hGHiSQn5eJIX8rEgKxViRFIrxIikU4yUrujqkMD09Hd7e3lCr1cg/cw5nN5/FmTg9MgvjYNAdA8y2ZxgXVSisSTs89NI4GH/6GVnr1sKrfzQ8u3WFV7/+UPl431G9/zyTiHHLjkp5FS458Gw8GwpVgfVeT0Y+iSldpkCtVNvd/+TNLAyev8fu8zcebIFX+jW9o/KUzkRSKIaRpFCMF0khPy+SQn5WJIVirEgKxXiRFIrxkhVdXVLot2U8lB4BQPeXgbC2Upkv7b+Bw2tjkJh4EEbdyTLrEaQMQfMLF+GXmyLFhM/8DL5Dh95xvdkWLGyBhWvwX9AE/WV3n5aBLTGnzxxEeEXYXXtv/Rks3X/V+nmnBv5YOrYrPDmP5quo0CSFFRGyvU5SKMaLpJCfF0khPyuSQjFWJIVivEgKxXjJiq4OKcy8ehJ+P5TYSLphD2DkCsDNVyp70tVsHFhzDFeO/QZjYVyZ9XFHXbS9fhMP/PGzTU9h0mczAQXgO2Qo3FryDTmfT8pBco4OB1LXYvmFhTCYbHsrPdWemNlzJvrW62tXnqupeYjPLICPuxptIyx1qKxEUihGkqRQjBdJIT8vkkJ+ViSFYqxICsV4kRSK8ZIVXR1SqF03CW7Hi/cpRFgb4KW9duXOTM7H/jWHELtnLUz6S3bXFUpPdHVrgx5LZlivGbNzcL5rV+vX6ogIaZGKiCCeSj2FyTsnIzEv0e6ZQ5r8A9O7T4W7i7sszryZSQp5SVniSArFeJEU8vMiKeRnRVIoxoqkUIwXSaEYL1nR1SGFxvndoUo9V1zOIQuBDk8Xf311DxC70TK07FcfBTl67Fm9B2d3rIKh8KY1TuPRA089GonA4UOsn2WtXYtb06Y7ZFAkiAGjRoH9u7zEjsib8vcU7Im3nzPoqw7Gv/p+hu51ustizZOZpJCHUnEMSaEYL5JCfl4khfysSArFWJEUivEiKRTjJSu6OqSQLTTxvbUbqiP/BjKvAZNst4TBD48CTAxZihwE9JkqzTvU64w4sGY3Tvy1Drq862j/0PuIfra9TX1vTpiInG3bpM+0ahe46R0vWmHDygGjR1e4SGXgkk8Qr1zlkOmuJ3YhwC1AFu+KMpMUVkTI9jpJoRgvkkJ+XiSF/KxICsVYkRSK8SIpFOMlK7q6pLBo9TEyr0u9gdbEvv7asvDEmsZsBNi8wxLp+pl4+AT5wy/Uw66+OX9tQ85ff+HPs0eRo1YhLCsPdTJzEZhbvKq4KJN3//6ou2B+mcw6f/IXMowX4R7xExTqLGvc860n4rXOL8pizZOZpJCHUnEMSaEYL5JCfl4khfysSArFWJEUivEiKRTjJSu62qWwdGm3TAUOLCr+lMkgk8KSiV2PfNRWJkvdJzc9Dd+NHwOUOKmk39lrdj2HdefPt9kYW3suVhpaLtripveXO6Qj7BRKLdzCV8PF+wxM2nDsG/U7fN2r/pxmkkKx15mkUIwXSSE/L5JCflYkhWKsSArFeJEUivGSFV3jUshKf3w5cGAhkHgaKD3fMHYDsPL2/EM2D7HEljY23rhmJfau+sn6UcN29yG6VUdIvYi3h5fV4eFout0y1FyUrgwdCiaG0uKUoUMxvzAC3+0qXuSi9juEruGdsHzUYFmceTOTFPKSssSRFIrxIink50VSyM+KpFCMFUmhGC+SQjFesqKdQgqLasDmFZYaNraZb8jiOjwFDCnRs3g77/7/rcCRDetQWGA5Qu/RV6cgMqq39G99fDwy166FytsHAaNHSZ/p8vKQd/Yqkv453IZf021/4T/nC7DnYhoMJhM61PPD5AHN4aZWyeLMm7mqpJDtyxhzPUMqRsf6/nisfThvkZw6jqRQrHlICvl5kRTysyIpFGNFUijGi6RQjJesaKeSwtI1cTTf8KU91s2vpfDEU5Zh5dt7Hl45fgQXD+1H32dfhIu67OHeg2tWYe8vq6BRNkR4ViEaxh9HSFQHm/mGbLub3O3b4DukeLWzLNgcmatCCr/8Iw4Ldly0efqEvk0x5aEWHCVy7hCSQrH2ISnk50VSyM+KpFCMFUmhGC+SQjFesqKdWgq1WQAbPt45E8i8YelFLD3fkC1SYXFFq5ZLLmIph8x3Lz2L3AzLCSksKVUh8A1oi/sGD0LLqIZw81SjaLsbNt+QHbHHtrbh3Rz7ThulKqSw48dbkZ5XaFOkAE8NYmYMuNNiOk0+kkKxpiAp5OdFUsjPiqRQjBVJoRgvkkIxXrKiq0MK0y4lwrg9GSo3FyjUKijUSig0Spt/KzXsc8fXpM+TjkDpAiialViVXHK+YRGFqdetvYZlgUm4EIsV777p+LLCBS6a5giPjELEqb3wPbEFSpPeGlvR1japBalYcW4FXu346h21S2VLocFoRtN3Njksy8VPH4GLSnFH5XSWTCSFYi1BUsjPi6SQnxVJoRgrkkIxXiSFYrxkRVeHFKaevgntT1dklbN0ZqW7CxT6TCiM2VBAB4VCB4W3HxThraBkEsmkU2mwCKi7x20JtYho8s0rOLxpHXS6bOhMBSgw5KLQZL99jULhCqUqGP4FajRMuomQtFibYrCFKX5Dh8CjxIkqL219CXtv7UUDnwb4vNfnaB3YWqjelS2F7OGNp22CqcSqbPaZUqHA5ZmPCJXNGYNJCsVahaSQnxdJIT8rkkIxViSFYrxICsV4yYquDilMibkO3S/XZJWzOjLnG7JRYMyV/mgNecg3ZiNHn4EcfTqyClPhogpDYL4SjRMuwz+r+KQVtqWN39Ch2NPDDzNOzLIWValQ4qnIpzCp0yS4qly5qlDZUmgwmdF0ehk9hZ89Ahcl9RRyNcw9EkRSyN+QJIX8rEgKxViRFIrxIikU4yUrulqk8OA16NZel1VOZ8ica8hETmEacgwZyDMUQpmVgdAbx+CZfh1Kb2+8/W44LmXan9lcx7MOPo76GN3qdKuwGpUtheyBA+b8jQtJOTbPbhbqja2v96qwPDqDCdPXnML2uGQUGkzo3MAfbz8ciVZ1fCrMWx0B1FMoRpmkkJ8XSSE/K5JCMVYkhWK8SAoBGI1GsBfH3d3djh67ptVq4enpKXTNUTNUhxSm3UyGa5YCKrMC5kITzHojTLf/NutN1s+Krlljiq4VGiHF6S1/O1symo1QueTDrW1DHCiMwaasrcgrTEST2JvY2VaBFF9Lb9zw5sPxZuc34am2b7eiOlWFFP5+8hYmrTwOo8ksPUalVODrkR3wWLuKt6WZtuYUfj5kK/RtI3zx+yu2J87UVJuQFIqRJynk50VSyM+KpFCMFUmhGK9aLYUZGRn44osvsHnzZola586dMW3aNDRp0kT6esGCBfj6668lIezSpYv13xVdK6sJqkMK2dnH1mPuxN4Fh9EWkTRKMmm6LYrS15I43r52eT/MpzfCrDfDDA1MwR1grtenOEarg+nGaZiUoTDq3WE2WISpspMpPw1piiSc9bmFU4GpyPEuwKhez6NbswccPqoqpJA9KDNfj1PxlmP7mNT5eai5qtrzix24kW7Z+7FkOvRONEK8+YbEuR50h0EkhWLgSAr5eZEU8rNikampqfD394dKVT17uoqVzrmiSQrF2qNWSyGr/K+//oqnnnoKGo1GEkT22eeff46TJ09i3LhxWL9+PYKCgvDmm2+iXr16mDx5crnXysN/N0qh0OvETkthW9qM2WR7TB77bGfx/D9T1Lswtp8AU3YhjOxPTiEMKfnQpxTAkFIAU37xCmSh55cRXKApRGBkBFyb+sGtuT9UfhbBqiopvNMyR83ajvhM+0U4B6b3R5iP253ettLykRSKoSQp5OdFUsjPiqRQjBVJoRivWi2FpVHt27cPH3/8sdRzOHfuXOlYrxkzZkhhR48exaRJk7B79+5yr9VqKSyr8mx/Q7Y5dlEaOBPoPr5MVCatAYYkiyTmXU1H2pmbUOTq4anyggLyF2u4BLjBtYkf1I28oQ1WIqheiNj/miqKnrTqONYdi7e5e5NgL2x7w3JaTE0nkkKxFiAp5OdFUsjPiqRQjBVJoRgvksISvFhPIes9mj59uvQnMjISo0ZZjmpLTk5GVFQUYmNjJVEs61p53fn3fE+ho3ePHae38klAm2256uYDTDptu78h60l087Mcq3f7tBRHt8rP0EFjMEGfki/1KEq9iwm50Cflwmy4c1nU1PWCW6sguLcOgDq07DmIYv+1xKOTsrV4638nseu8ZaPvlnV8MGNQKzzQJFD8ZlWQg6RQDCpJIT8vkkJ+ViSFYqxICsV4kRTe5nX48GG88sorWLduHcLCwjBx4kT06tULI0aMkCLYD8ROnTrh+PHjePvtt8u8VrQg5f3337driRUrVoA9pyqTXq+Hi4sLFIo7l6TKLp9Clw3N2dVwPfZfGOrej/wHv7I+gl3zXdRW+trs6oPCVv8HbfdJ0r9FkjnfgCPz/4Pc5Fx4q/3hqwmGm7sf/BEgchso/TRQNfeBS3MfqOrWjCBqDSYYjWZ4ujrXfCH2CxN7r2geE98rpdPp4Opa83NB+Upbs1FsQZ/ZbJa+d1GqmAATHbVa7VTf5ysudc1EmEzs+6lR4kWpYgLMIdj3eKVSWXFwORF+fn5c+RVm9j/fydKlS5cwbNgwLF68WFpswhLrDWQLTsaMGSN9nZiYiJ49eyIuLg5M+Mq6VgSSDUWXTqNHj8bp06ertPY5OTnSKmqn/ebKjskr0RvosvtLqPZ8aWVi9q2LwvExd8Tox9dfRE5aqjVv9PhX4P72J1BoQqAKbAZVQBMoAxpBwbmPodLTBZoW/nCN9Ie6iS8ULs4j2ncESGYm1pvD3is2/5ZSxQTYb9y83xgrvtu9HcEEmv3wdrQDxL1d8zurHeuk8PLykv2D+86efnflYr/Msh1EGC9KFRPIy8uTvsfLlWjeX4idTgrj4+MlIWTDxYMHD7YSW7RoERISEvDRRx9Jnx04cABTpkyR5hSWd6085LVy+Liid7Ci+YaJpwD2hw0tV5DMJhNunD2F8wf34lbsWTz97mdIX7YU6T8uhSmneO9AlX9DSRJz6rWFv09TqBQV904oXJTSIhX3NkFwaxUApVvFeSoq7912nYaPxVqMho/5edHwMT8rFkmrj/l50fAxPysWWauHj9k8wZEjR2Ls2LEYPny4lRyz5MuXL0ufbdy4URpOfvXVV9GwYUNJDC9evFjmNZJCsRcQrOfwwELLH5ZKzzdc9zJwfIWld5EtTmFy6Fdf6CHG7BzkbvsLKd/Mh/7WLSmvUanA1jZNoFCqEObeEHU9WyDcoyk0Sr5VvmyhinvLALi3DYLKt3qGCFkf+/KD13AtLR++7mpEtwpFZJi3EAs5wSSFYvRICvl5kRTysyIpFGNFUijGq1ZL4ffff4+ZM2faEVu2bBm6d++OpUuXYvbs2dL1jh07Ys6cOfD19ZW+Lu9aWU1APYUVvJysRzDMMr9QSkwYZ5USwJHLgchBYm95ieistWslObyRl42YhqE292Erm4Pd6iHCs5kkiR4qDuFSAK6N/eDRIRge7YKhqMJ5gP/37X4cvppuU+Y1Lz+Ajg3875iHSEaSQhFaAEkhPy+SQn5WJIVirEgKxXjVainkQXW3nWhS2ZtX8zCqsphS+xvCr56lJ7Fkit0IRD4qXITds77C4ROHYDbllZnXXxMqCWI9z0j4qPlWALu3C4ZH+2C4t+aL5y34wctpeOLfB+zCR93fAB893ob3NrLiSArF8JEU8vMiKeRnRVIoxoqkUIwXSaEYL1nRd2tP4Y64ZKw/dgupeTqXFBruAAAgAElEQVTU9XPHU90aoF1dS49pRenItQysOnwDCVkF0qkcwzrWRVTToIqyWa6zvQ3ZsDLbFJttaTNkIdDh6eK8bLubHx61DCcXDS2Xs6VNyYeajGZcOZmMI6u3IjE+DsbCizCbbM8sLhnv6eIryWFdrxYI1NSpsPxKdxdJDr2iwuES7FFhfEUBm04lYPxy+wU4j7Stg4VPd6woe6VcJykUw0hSyM+LpJCfFUmhGCuSQjFeJIVivGRF341SePRaBoYtsl1J7eXqgp1T+iDIq/y5dOzItj7/2mk9B7gI3qbXeqJVHYEtZ9gwcuwGy7BxSekrmm9YdGPWYzhyBXcbFZ1o4uPlhwnzJiMsPgwBGQUwFcaV24PopvJAhEdzNPHtAH+17RC0o4ezXkOf/vWhDq949ds32y9i94UU6I0mtK/nh9ejm0vzBx21A3vWcz0aSXsZVkciKRSjTFLIz4ukkJ8VSaEYK5JCMV4khWK8ZEXfjVL45R9xWLDjol29Z49oj390rFsuj2UHrmHGOvsteN56qAXG920qi6XUi8hWLpdMYzYCDXsUf1Jq+5vSDyx5zN3ZtLOYsmsKUtMz0TylC7pdaACjMRPGwnMwm+zPIy66l5faH4282qJFSDeoCsvf14mtXvbuXVc6TcVR+nxLLBbtvGRzqVfzYCwd21X67PmlR/DX2STrdSaLq1+6H81DOeY+yqMt5SYpFINIUsjPi6SQnxVJoRgrkkIxXiSFYrxkRd+NUvj+b2fw476rdvVm89jYfLby0re7LmHW5li7kPF9muCtgZGyWEqLULZMtfQgsqFlR/MNv+1hWazSZ5pl3mGpoeXSZx/rjDp8fnA2Vl/4GcFZJozYF4K62V0RH9wABeYEmPTnYTblOix3ZK9piH6kDfKPJaPgVCpMBYYy66ep7wOfvvXg1tJ2Y+3+X+3CpRT7+8fMGIAAT8vegH+eScT19Hz4uKvRLzKkwt5aeZBtc5MUitEkKeTnRVLIz4qkUIwVSaEYL5JCMV6you9GKVy6/yreW3/Grt7LnuuGns3Knxv4x5lEvLjsqF3ef/1fewzvVH4vIzfooi1t2KrlkquSi+YbFt2ICeGkUzZiWFoKWejNjAL0nrcEbhEroVRnIDjLjD4ngb3tm0k9iE2T6wD5V2AsIYhKdX30CWuCNq+PhDoiQnpi3qFEZG+/DmOmrsyqqOt4Sj2HHh0sZy/fP3MbErK0dvH7pvZDuJ87N5KqCiQpFCNLUsjPi6SQnxVJoRgrkkIxXiSFYrxkRd+NUsgq/Mzig9hzsfikEDZszIaPedKEFTHYeDLBGsp6t74f04Unq7wYjvmGjqSQPbTjx1uRUZAL15CNUPsftCmHyuSCoTf7IPJEA6R4q6EvPA1XVXP0ObwYCrMJvkOHInjiBIscmoGCUynI2nEdhoSyh6BdAt3h3acuXj9zA3/GJts8j83bPPJutDwWlZSbpFAMJEkhPy+SQn5WJIVirEgKxXiRFIrxkhV9t0ohq/Tp+Cxk5BcizMcdzUIrXjBRElRcYg6Sc7QI9HRFq3CBBSZyaJeWwtLzDY8vh3n/IuS1HQWvHuNsnrT6yA28u+40dAYTVB6X4VVvFUzKLClGpVBhlfJFYO4SFBYYkRTSEWaFCnXjd9ncwzu6PwJGjYJH1644/NuviFuzHS397keoW9lD7iYvNZabdfghLxesf9FNrcKnQ9pgWGX1qsrhSXMKhemRFPIjIynkZ0VSKMaKpFCMF0mhGC9Z0XezFMqqeE1lZotR2HY2bN7hS3ttS8HmG7LNslliW9oMnGkz/KzVG3E+KRdqlQL1g1SYeXAm1l9aj1c7vooX2r4gZSvaCLvolBRH1XTv2hVb1IXIy7Vsd+OnCUbPNiPhkVH2NjVmdxcUdAhCvX4N4O7tPOcMU0+h2ItMUsjPi6SQnxVJoRgrkkIxXiSFYrxkRZMUysLnMDPbqqVAb0TjIE/+eXel5xuyO7P5hhUcn3cw4SC61elmV47y5DDe3xsn6lvmDLKkcnHBS//+CWqDGjk7byLvSCLMepPDurG9DtmcQ6+oCCjU5a9srnyy9nckKRSjTFLIz4ukkJ8VSaEYK5JCMV4khWK8ZEWTFMrCZ5P5QnIuXvjxCK6mFZ9I8saDLfBKP46tbkqflMLOUx6yyLZwK5+2nLMscFoKk8PMNWuRf/iw9V56lRIZr43HyX27UFiQj3bRD2PACxOs19kq5dw98cjdd6vMFctKTzV8+tWXNsKuyURSKEafpJCfF0khPyuSQjFWJIVivEgKxXjJiiYplIXPJvOU1Sew+uhNuxsee28A/D04hlwzr8O8/VMgdiMUT6203d+QDTmvG2+5N+s97DPV9iSVCqqRf+iQdL4yk0PfIUMQPmsmtHm5OLb5d0RG9UbaM5a5htYFKYDUWyitWP77BkxZhQ6foPJzhU90A3h2DAGUisqDyXknkkJOULfDSAr5eZEU8rMiKRRjRVIoxoukUIyXrGiSQln4bDI/vmAvTtzItLvhuglR6FDP8ebQpYPZ6uPs5BsICG9ke4ltis3mIxYlJoVsr0PBxOSQrUIu2qaGZWe9ibemTbfeia1WDp/5mfXrvb/8hNStcWgX2BtqOD4xxiXIHb4PNYR7W87jAgXLXVZ4WVJYaDBh46kEpObqEObjhsfa12yPZiVVV/ZtSAr5EZIU8rMiKRRjRVIoxoukUIyXrGiSQln4bDKX3ian6OLW13tzr452uCUNW3zCFqGUTKXnG7KeRL8Gtr2LDqq24fIGrD6/Gh898BEa+FhWHV/sHw19fHyxFN7uSWQf6LVaLHzhaRgKdVAp1Ij07YJI/+5wgdohOHYySsDw5lD5l3/cYFHmDSdv4UJSLtw1KmmPydbhfOdXF+V3JIXZWj2GLthns+k2O55v/YSoymvsu/ROJIX8DUdSyM+KpFCMFUmhGC+SQjFesqJJCmXhs8ns6Ai9jvX9sWb8A9wPKWufQmlV8oGFwPEVlnmFJecbss2yWU8i+5ttmN19vCWmVEopSMHgtYORq8+FRqXBuLbjMCrgYcSPfhYlVys33faXtSfx4JpV2LNqmc2dNEo3tPTrjkhf+wUuLFDhooTPgw3g3av8zcBfW3kc648XyyjLu3h0Z0S3rPjs5vKk8Id9V/HBb/abm88deR8e71C7ewxJCrn/K4KkkJ8VSaEYK5JCMV4khWK8ZEWTFMrCZ5d51eEb2B6bjPxCIyLDvPFSnyYIvH0cHM+TypRCQDra7/KNW/BGHlq2bINH29Wx3LLkfEP2tZsPMPWG3ePG/jEWhxOLF5ywgMa+jfFx1MdosOeSNOfQOzoaodOLh6Vj953Hlm+Xwlh4GjDbHpPnrvJCG/8eaOTdFgrYr0RWh3siYHgLsL9Lpxvp+ej5xQ67zx9sFYp/j+rMg0qKcdRTOHNzLL7bZXteM4ud9nAkXuzdhPve92IgSSF/q5IU8rMiKRRjRVIoxoukUIyXrGiSQln4Kj1zWVI4aeVxrCvVqzZjUCs816ORpZewvPmGmdehzUvG+5dWY9OVTQ7LPLz5cLzR6Q24a81Q+XhbY1JWr8Oh7/fhekQ3FOrPwqg7DrPZ9pg8X00wugcPgp+meJubkg9hPYY+AxrYbGFz7Homhi4stU8jANFhXkdS+J/dl/HpxnN29azUowwrveWr54YkhfycSQr5WZEUirEiKRTjRVIoxktWNEmhLHyVntmRFGYV6NH+wz/tntUmwhcbXukBsD0OWW8hG1pmqfR8wy1TgQOLpPmGOxp1xUdJO5FaUHxEYNGNg9yDMKvnLOu+h8bsHFyK7g/2t17tiev1+uNGeBQKDbEw6o7AbCo+Jk8BBZr7dkYb/55wUdjPN2RzDNlcQzbnkCV2nnOPz7fb1emh1mH47p+duLk6kkJ2VvOgebuRlle8YrpBoAc2v9YLHhoV973vxUCSQv5WJSnkZ0VSKMaKpFCMF0mhGC9Z0SSFsvBVemZHUljWUGuEnzv2Tu1XXAbWW3h1t+1WNSXnG96OzHlsNj4vuCKdhuIoRYVH4aOojxBocEfSZ58ha906a5hFDqNxM6InCg0XYNAehtlkOW6PJQ8Xb3QKfAjhHo6HaT06hsDvsSZgm2C/8csJ/Bpju4XPkjFd0DfScY+jo7KWtfr4VmYBfj+ZgNQcHcJ83fCPjhF82wJVeos61w1JCvnbg6SQnxVJoRgrkkIxXiSFYrxkRZMUysJX6ZkdSaHBZEbLGVugN9qeMvJAkyCseMHxYg9rwcqZb7gnfg/e2/se2AKU0qmpX1OsfXyt9LH2XKwkhzYbYKu9cK3+AMSH90Kh8RIMBbthNuVab1PPswXuC4wGm3dYOrGNr/0GNYbHfSH440wi2Kbf7moVejQLQovQ4qFrHri0TyEPpeIYkkJ+XiSF/KxICsVYkRSK8SIpFOMlK5qkUBa+Ss9c1pzCb7ZfwFd/nrc+T6lQ4D+jO6N/Rb1qbGiZnZbC/map1P6Gealx+NfKgfjV2wvmErVZ/OBiu+Pz2B6HSZ/NhDY21hqpl+TwQdyM6IXCwpMwag/CbNZK112UGrT374MmPh3AhpdLJ9HtaxzBJikUewVJCvl5kRTysyIpFGNFUijGi6RQjJesaJJCWfgqPXN5q4/PJWQjNjEHapUSXRr6I9THjf/5bGiZyeHAWYBbib0A170szUU84uaKD4ICcU3tgn71+2Fu37ll3tvRucqFGm8kD56C8yk+MGiPwKA7wo5Eke4R4BqGbsGD4KMOtLsnOz9Z2r6mR1048MYK60dSWCEimwCSQn5eJIX8rEgKxViRFIrxIikU4yUrmqRQFr5Kz1yeFFb6wxzMN1zU7RkM6fUu6nje3u6mnIemzJ+P9B+XwpSTA6W3N5pu2wad2RVHNl/FyR0XYSw4AIPuBAAjVC5B6N3pFYRkaKXj80onafuaES2gDrPfvqa8epMUir0VJIX8vEgK+VmRFIqxIikU40VSKMZLVjRJoSx8lZ65WqWQbYjNVibfHlqONwchSjcPT3atj5n/aGup2w+PWk5KYZthNyx1qgrTvewcpM6fL212HTB6lJVHzs107HhtEW76R0Kn3QVXr2549sv/g1pvQsavF6C7ZH8cIDs72btHhN32NSSFlfeakRTysyQp5GdFUijGiqRQjBdJoRgvWdEkhbLwVXrmapVCAAcup+Hrxd/j/1R/44Y5GF8bhkl1+vqJDhjSyGjZA7EoMSkcucJ2+LkMAqwXMXX+Auhc/XCl4aPw0Ojx0OoPrdH5x5KRueEyTHmWIeaSqeT2NWy4PLtAD7bSOsLf3S6WegrFXkGSQn5eJIX8rEgKxViRFIrxIikU4yUrmqRQFr5Kz1zdUljWkXDjejXG9MJ5xXsfspoyKRyz0a7Ou27uQu+6va2fs3OU2XnKJVPQxAkInjjR5jNTgQFZGy8j72gSbFa53I464q3EjJws5Ny+OLZHI7w3qJXNPUgKxV5BkkJ+XiSF/KxICsVYkRSK8SIpFOMlK5qkUBY+u8w5WgP2XUqFVm9Ek2AvsA2mRVJ1S+Hyg9fwztrTdkWc0LcpplwZCySWuDZkoe0eiLEbsPXUUkzOP4dOoZ3wwf0foKFvQ+lebKXyranTpDOV1eHhaLp9m80z2FxENuTsHd0f8btOIPu3a/BW+9uVIwtmzIMWf8DSo8g26y7JlKRQ5O0CSAr5eZEU8rMiKRRjRVIoxoukUIyXrGiSQln4bDKzo9vGLDkEdgJJUXqhV2O880hL7odUtxReSMrFgDm77Mq37Llu6NksyDLf8MBCIPEkMMlWHrU/PILHjFeR6GI5JcRFocLoNmPwcvuX4apylT5jK5WV3j6S/BUl1pN4ZehQaT6ie9eu2OYBZGakobXfA9KJKI7SQRjwKQrwwZMdMLh9uDWEpJD71ZICSQr5eZEU8rMiKRRjRVIoxoukUIyXrGiSQln4bDK/tvIY1h+/ZXfDQ+9EI8TbIkkVpeqWQlaeDScTsHT/VcRnFCDI2xVPdK6Hp7rVty0qW6lcciubzOuY92NP/MfPx65K4V7hmNp1KvrW6+uwuqwHseiUFLY34tVgP5yPCILRbIa3OgAPd3wJimSjXV42jJzdOxzdHm5KUljRi1TGdZJCfnAkhfysSArFWJEUivEiKRTjJSuapFAWPpvMjy/YixM37FfVrpsQhQ71LGf+VpTuVArZsW4bTyUgNbcQdXzdMKxjXXi7uVT0uDu/vmUqzscsxrvBgTin0Ti8T5R7HXzQcybC6hSfZcx6B8937WoXn++qxol6IfAKj8Cwf81HzM4EeO5LhI+DzQs92gfDb0hT6ag86ikUa0KSQn5eJIX8rEgKxViRFIrxIikU4yUrmqRQFj6bzGzoeGec/ZFx29/og8bBfPvv3YkUsh6+QfP3ICOv0FqepiFe2PxaT2mj6ypLsRtgPrAIq9OO4+vQcOQYLSeZlExuZjNeVNfBsw/MgKpRL+kSGz5mJ6PkbLOdZyhdUynh5umJgFGjcaR1f7juTUezXPteQ5WPRtrXUBeihFqthru7/crkKqv3XXxjkkL+xiMp5GdFUijGiqRQjBdJoRgvWdEkhbLw2WT+NeYm3viFbdZcnHo1C8bS5+x7xsp66p1I4aKdl/D5luKj54ruPXdkBzzeIaLyKljWnRJPIcOvLr44/AU2XN7gMKqh0h3/enQZWgS0sF5ni1FSvplvc6ZyycxsIUrwKxPhUqcbMjdegbmwlBwqAE2nIHg9VB8e3nzSXfUwnPsJJIX87UNSyM+KpFCMFUmhGC+SQjFesqJJCmXhs8u89WyS1FtYoDegeag3XujZGCql/bm/lSmFH284i//uuWJ3yxmDWuG5Ho0qt4IV3O148nHM+PstXM1LsIl0U7li07DNCHYPtnzONs72qy/NU3R0bF5R5qKVy4Z0LdJXnEPhzVy7EqgCXBH4dCtoIryqta5348NICvlbjaSQnxVJoRgrkkIxXiSFYrxkRZMUysJX6ZnvpKfwP7sv49ON5+zKMv+pjhjUruLj6iq7EkazET9unYRvE3ah4PYeg5M6TsJzbZ8rfhTbFJudx9zhaaD7y0BYW+nIPLbpNTs2ryjVnT/funL5yG9rkLoxTlqlrFDYDosrVAr4PtwIXj2qoWe0soFV4/1ICvlhkxTysyIpFGNFUijGi6RQjJesaJJCWfgqPfOdSGFaXiGGLtiL6+n51vKwhS1sgUtNpuT8ZHy6YzLO5yXg9+F/wEV5e+HL8eXAuvHFRXPzsWx34+YrbVOTvvRHSRDdIiPRYNlSa9y271fi+J8r4a8OxP0hjzvc19AtMgABT7SQFqFQsidAUsj/VpAU8rMiKRRjRVIoxoukUIyXrGiSQln4Kj3znUghK0ReoQGbTyUiLVeHMF93PN6heC+/Si+k4A2zC7PhoymxdQ07T/n2ecvSrdi5ykMWFd9VmwX9rQQYdYBby0jr56k7D2LrNzuQ5JEO6M+jfUBfNPPpaFcapY8GQc+0hKa+/XY5gkW/58JJCvmblKSQnxVJoRgrkkIxXiSFYrxkRZMUysJX6ZnvVAorvSBVeUPWU7hzJpB5w/KUSbfnFxY9k107sAiIHAT0mQqtZwTc1CpcGzVaOiklw78FTjcbiDzjUYRpPNAteBA0SjfbEisAnwEN4NO3PhzsalOVtXPqe5MU8jcPSSE/K5JCMVYkhWK8SArFeNlEG41GaLVaeHryrcYkKZQBuwqy1gopLOIWu8HSYzhwli3JovmGtz8dp5+Ma25dMHP3Arhfvyx9alK6IOOVhYg5fAAuuuOIChmMQFf73lFNQ28EPtMKKi/HeylWQRM69S1JCvmbh6SQnxVJoRgrkkIxXiSF7JSJDRvw+uuvY9WqVejY0TJEVlBQgHbt2tnQnDNnDgYNGiR9tmDBAnz99deSEHbp0sX67/LwkxSKvZxVHV2rpNARzOPLMefv6TABmJCRBb3ZHVHaeciGhxS9vXUuTEv+LZ2bzOYbxl9Jwe6fYpAY+ytaeTdFS7/uUJTqGjRrgJDRbeHahG8D8apu45q8P0khP32SQn5WJIVirEgKxXjVein8+OOPcYjt4ZaSIolep06WEyESEhIwdOhQ7NpVfFati4sLVCoVTp48iXHjxmH9+vUICgrCm2++iXr16mHy5Mnl0icpFHs5qzq6tkvhlYPzMCT2P5IUhhqM6JNaB4szit/hf49oiv4bHgQ6PwfVA2OQrfSTNq++sDYGuzfvhI8qEfcHPwo3lX1PufsDYQgc1BQQ2CKoqtu7uu9PUshPnKSQnxVJoRgrkkIxXrVeCnfs2IHu3bvjySefxIwZM6xSGBsbiylTpuD333+3Izp37lzpyC8Wz9LRo0cxadIk7N69m6RQ7P2r0ejaLoWjNo/CseRjNm1gyGsOXcJQmPT+2HrfPjQ7N996XXf/6zD1ehvxgx5DQVIa4po8jGSfHHQP7I4Qt1LnN7MTU3yA+hO6QuXLdxZ1jb4MVfBwkkJ+qCSF/KxICsVYkRSK8ar1UliE67HHHsMHH3xglcL9+/dLQ8rDhg2TegOjo6Ol3kCWpk+fjsjISIwaNUr6Ojk5GVFRUWAiyXoSy0rUUyj2clZ1dG2Wwlu5tzDs92HILbTfoJpx16UMwDnln1Bl316gAkDb533o6z2O9A8+tJ6MkuNdDzHNuqG+tzva+kXZ7WlogAH+I1rDt2NIVTen092fpJC/SUgK+VmRFIqxIikU40VSeJtXaSlkordy5UoEBATg7Nmz2LRpE2bOnImHH34YEydORK9evTBixAgpN+s1ZMPOx48fty46KepFLNkc7H6HDx8WayHBaL1eL4mpUlmF5/AKlslZw81mMxgvjaZ2LozIKszCwjMLsfn6Zphvb3xdsq3qGUx4PzUV3Qq0MLt6I33U39L+huz90u76GzmffwhDej7MUOBK/SikRQSje2AUPFzst6dRdwqEa/86tWo4WafTwdW1dvaSiv6fZ4v22P9HNkWHUsUEmOiwqRwKBf8JThXf9d6MMJlMYO8X40WpYgKV5RB+fnzzyhVm9j/fCVNpKSxdxJ9++glbtmwB+5sJX5MmTTBmzBgpLDExET179kRcXJxVxg4cOGBXy3/+8584ffp0ldY+JycHHh4e5fZYVmkB7qKbs28UrIfC29v7Lip15Rf1ZOpJfHLoE1zOtqw2Lp0GFprxZlg/aHp8KP3QZhKtyLoBzcJOSDntjfQ4T5j0ShRqfHAishci67RBuHtju/u4hHnA54lmYEfl1YbEfuPm/cZYG3iUV0cm0OyHt7u7e21HwVV/1hHh5eVFv/xz0GIjQmyXEMaLUsUE8vLypO/xciWa9xfiu1YK9+zZI/UQst7ARYsWSQtRPvroI4kwE0A2/5DmFFb8wjlTRG0ePnbUDkvPLsW8mHnQsZ2sS6UOIR2wIGqB9I1C+sHN9jfcadneRp+nQsr5MGTFWX7fSwhujvyWPdDOvxuUpXoyFGolAv6vOdzb3T6X2ZleiEouCw0f8wOl4WN+ViwyNTUV/v7+9Ms/BzYaPuaAVCKEho9vwyjdU8jmB4aFhUm/6bOhZNY7yHrg2LY0Fy9exPDhw7Fx40Yp5tVXX0XDhg0lMSwv0ZxCsZezqqNJCu0Js+PyZh2aha3XttpcHNdsNtKSQ6BxUeGBZqHos7lv8YbYLHLIQuQXNkPKN/Ot8w3z6kYhot9YGLONdg/y7BQKv6FNoXCRN83hpwPXcDU1D95uavRvGYI2Eb5V/dpw35+kkBuV1GPPeu5re689LzGSQl5SAEkhPysW6TRSyEaVt2/fjoMHD0rSxebxsS5ftqCjadOmaNWqlbRFTFUNLwwZMgTvvfeedZ9CtnfhvHnzpPmCrHdk8ODBGDt2LAIDAyXCS5cuxezZs6V/s70NmSz6+pb/A4mkUOzlrOpoksKyCR9MOIj39r0HtiClniYKZ088ZhP82SP18ZRmN3BgIaDNsp6nzIKy1q5F4ofvIaBpBoI6uSHd9TMUJNexe5jR0wT1Q4EI79rmjpr6yf8cwP5LaTZ5V47rju6NLf9HazqRFPK3AEkhPysWSVLIz4ukkJ+V00hhTEyMtIiDDc1269ZNmq/XuHFjuLm54cqVK5IkHjlyRPqarfxlG0hX10KK3NxcafGIowm9dKKJ2MvmbNEkhRW3yDcxCzB7TSDMBtt5l5F1fLDltZ6WGySeAsLaFt8s8zqMX7SXvlZp2C6IQF73jcj42wSYbCfGG80GZNTNQNuXB0MlsMgg5noG/rFwn10FRnaph1nDbDedr7iWVRNBUsjPlaSQnxVJoRgrkkIxXjXeU1i0cpctwnjxxRcRGhrqsAbshJEVK1bgm2++wcKFC/HAAw+I1dQJoqmn0AkaoUQRSAorbo+kbC26fbbNLjDIyxVH3o12fIMS8w2lAL96MI7djyuDn4Sm9T+h9LY/Ii9NkYB2Hw6DQlP2lk4lH/bXuSQ8/+MRu+f3bxmK/47uXHHFqiGCpJAfMkkhPyuSQjFWJIVivGpcCllvG/vmGR5u/4PCUVXYyhj2w7yioVoxDNUTTVJYPZx5n0JSWDEptldA5IzN0BksPX5FqX09P6yfEOX4Bmw4mQ0rS0PL2dJ8Q31wH1z75yjoE5OBTk/DO8I+r4u/GwKeaQlNRMWrBE/FZ+Gxb/bYPX/U/Q3w0eN3NhxdMQ2xCJJCfl4khfysSArFWJEUivGqcSksKi7b1oXNk2jZsqW0oop9k2BzDC9fvoyuXbtKp47c7Ymk0LlasDZJ4bmEbHyz/SLO3sqGh0aFAa1D8Xp0c64G6fPlTlxNy7OJ7d0iGD8+29Vh/tlHZ2NM6zEIcAsAji8HIgdJ+xuylDJ/PtIXfwdVh1ZQh46DSlFqj0iFGT79IuAzoEmFZRu/PAabTiVY47zdXLBy3P1oHW6/T2KFN6uCAJJCfqgkhfysSArFWJEUivFyCin89ddfMXXqVM4IoF4AACAASURBVKnkbCHHL7/8Ip0uwrZ4YV+npaWBnVE8cuRIsdo5WTRJoXM1SG2Swv5f7cKlFNvTS94aGInxfcqXr2ytHu0++NOu4eoHeODvt/raff5z7M/47OBn8HDxwPPtnsfoVqOhUZUQv9vzDdlcQ50pDPEF70Gjsj8iz8VXj5BJvaB0L38z423nknEtLQ9ebi7o2yIEwd7OswciSSH//3eSQn5WJIVirEgKxXg5hRSyU0L69esHti3MkiVLpN5B1nPITgBhcwz//e9/S3/YGcPlHSMnVvXqjyYprH7m5T2xtkgh6yV8eK79udzdGgdi1bjye+CTc3To+ulfdhgdzSnUGrSI/l80snRZ1vhwr3BM7jQZDzV8yPJZ5nXLsDLrQWRDy34NkF7nJ+QfywRQ6nQGQy58erlD3bcTlCp3uHrcXaddkBTy/38nKeRnRVIoxoqkUIxXjUsh2wSaHRlXdEQc++bQvn17PPHEE/jkk0+k2hSdGLJr1y7uuYdiGKonmqSwejjzPqW2SOHJm5kYPH+vHZb76vth7fgy5gWWiL5/5jYkZGlt8vdpEYwfSg0fs82vvzz8pUP894Xch6ldp6JVYCvLdTbvMHaDNKycnx2CxJmLoW48DAq1h21+sxkXcw7hZO4NtI0ejZ5PdoCLWt7ehrzvh9w4kkJ+giSF/KxICsVYkRSK8apxKSwSPrYvYdGxKk8++aS0LyD7uygxofr999+lfQvv1kRS6FwtV1ukML/QiPYf/gm90XaxCO+ijN+O38L0taeQqzNIDdgg0ANzR96HDvVsz7Y0mU343/n/Yf7x+cjQZtg1tgIKDG4yGK91eg3B7rYnmhizc5C2ZAUKTmugCmxqlzdVexP7UjZDE9Qfj7zyOMKb8p2rWZNvHEkhP32SQn5WJIVirEgKxXjVuBSyTavvu+8+fPnllxgwYIBU+tWrV6NFixZo186y31hGRoa02IQdNVfWljVi1a6ZaJLCmuFe1lNrixSy+q88dB2fbopFjlYv4WAbPC94qiMCvUot9CgDlsFkRszFBLi6qtG+QflH1OXp87DoxCKsOLcCepPleSWTu4s7nmv7nLQYxVVlOwdQv2Qsknb4A3UeB0odkaczFuBAyu9IMbqiTYf70fv5vlD7BjjXS1WiNCSF/E1DUsjPiqRQjBVJoRivGpdCVlw2jzAnJ0c6Ls5RWrNmDebPny+tRr6bE0mhc7VebZLCIvLsSDg3tQphvm7CjVF0ug/vqUI3cm7gqyNfYdt1+30O2cOfjHwS07tNty+HNgvZ/56HzGudoFTbbprNgmOzDuFU5hF4et2Ph57sgAb9egnXpToykBTyUyYp5GdFUijGiqRQjJdTSKHJZLI7oYT1ILLGdHV1lban0ev1d+XehCWbg6RQ7OWs6ujaKIVymIpKYdGzjiQdwacHPsXFzIvWx7soXfDHsD8Q4hFSZpFMeXokfLUd5vxS8wzZ6IEuEXuS10Knqo9WPZ9A76fbOt1CFJJC/reNpJCfFUmhGCuSQjFeTiGFpYu8b98+fPXVV1LPYe/evcVq5MTRJIXO1TgkhWLtcadSyJ7C5huuubAG847Nk+YbsqHjNzq/wVWA7D8vIXt7vN3qZL1Jh4MpG3FLmwBX74HoP7Y3Iq++C0Q+CnR4iuveVRlEUshPl6SQnxVJoRgrkkIxXk4lhex8YyaD7LzjiRMnYvjw4dJ5x/dKIil0rpYkKRRrDzlSWPSkXH0uFp9ajOfbPA8vTcUnlxTlK4zPReqSkzDlGu0KfSnnGGLStkGhaYumHu6IDvkWbgF+QPeXge7jxSpZidEkhfwwSQr5WZEUirEiKRTj5RRSeOrUKcydOxenT5++J2WwqElICsVezqqOJikUI1wZUij2RNtok9aAjNXnUXAmze42WYWp2JP8K/KMJnh590Vv/9/R4uH7gT7T5DxSVl6SQn58JIX8rEgKxViRFIrxqnEpjI+PR58+fdC0aVMsX74cAQHOu5pQDK19NEmhXIKVm5+kUIxnTUuhtbdxfwIyNlyCwmi2qYDBrEdM6lZcyT0NF7eOaNj2QQx4oQs8fG+vsGYbZrv5WYaXqyGRFPJDJinkZ0VSKMaKpFCMV41LIStuTEwMvvvuOxw8eBBjxozBU089hZCQsiegi1XReaJJCp2nLVhJSArF2qMmpHDDyQT8fSEee/M/QlTwcHw+8J9g+x0eP5YI3ao4RMB+I+sbebE4mLIJJqUX3N0HoFv3CHT8Z2fg67aWTbP96lt6EJkc3j6TWYwEXzRJIR8nFkVSyM+KpFCMFUmhGC+nkMKiIsfFxWHx4sVYt26dNJ9w8uTJCA4uf080serWbDRJYc3yL/10kkKx9qhuKfxh71V88PsZuIb8AU3gDqmwXor6WDjwE7ATUp5cuA/9r2sxEGq7iuTqM6Xh5KzCdLi4dUGIKhyDvD+At3+2JdbNB5h6QwyAYDRJIT8wkkJ+ViSFYqxICsV4OZUUFhX95s2b0t6FDz30kLRp9b2SSAqdqyVJCsXao7qlcMiCvTiRcB1eTb8AFJbTVIpSr7q98EqH17H7rBKquEz0u5wPF5PtcLLJbMTx9O24mHsBoaYodDyxAAEt8hDUOgeqB9+ynW/IzmRmfxr2EINSTjRJIT9KkkJ+ViSFYqxICsV4OZUU7t+/H56entaTTEpWhS1EGTduHHg3zhXDUD3RJIXVw5n3KSSFvKQscdUthX2+3Imb+v1wj1hRZkGHNRuGV+57Bb75nkhbegb6pHy72KTCPLjsmgVNXpJ0TaUxQfXCK1gY1hNn4rPgoXHBZ4oFiEzaAIS1taxYroQtbUgK+d8vkkJ+ViSFYqxICsV4OZUUsqPu2FzC0aNH29TCaDSiU6dO+OWXX9C8eXOxGjpRNEmhEzUGzSkUbozqlsLR3x/CrvMpUKoz4BqyGS4+pwDY9gaySri5uGFUq1EYG/ks9H8mInd/gl3dzAXpKDi4CMbMa9Zrl33D8V3bx3E1qA72uL0KH5QQyiELgQ5PCzMqmYGkkB8fSSE/K5JCMVYkhWK8nEIK09LScOLECenMYz8/P+sZyKwqTAjZmcfr16/H4cOHoVbbzx8Sq3LNRZMU1hx7R0+mnkKx9qhuKfz7Qgqe//EICg0mSw+f2000jtyGRN05hwX3d/XHW13fQv+C+6Wta9gWNjbJbILu3DoUnv/DRi7jw4PRu9NpqD1v74HoVw+YdNo2b+IpSy+iQCIp5IdFUsjPiqRQjBVJoRgvp5DCq1evYubMmWWebdy5c2eMGjUKDz/8sFjtnCyapNC5GoSkUKw9qlsKWenScgtx6Go69AYTmod5IzLMG7tu7sKco3NwKfOSXQVmdJ+BES1GwJilQ9rSs2CbXpdOxtQ4FBz6DubCXORr1FDAjNwHfNErjPVEAugz1X6+IVu5zOYbst5DzqFlkkL+94ukkJ8VSaEYK5JCMV41LoVsG5o6deqgfv36+OGHH6BQKOyGj8Wq5LzRJIXO1TYkhWLtURNSWFYJ2bF5ay+uxYJjC5BSkCKFNfBpgN+G/Aal4vY2NSYzsrZcRc7um3ajzmZdNvIPfYvdgVpku7liR1AvRPXsgKn+2y1CWHKrmnUvA8dLzGtkUjhkUYXwSAorRGQNICnkZ0VSKMaKpFCMV41L4YsvvogHH3wQw4YNk+YM+vr6SquO78VEUuhcrUpSKNYeziSFRSXXGXX44cwPWHJ6CWb1nIU+9frYVUp7IQPpK+NgytPbXDPDjHOZ+3E6Yw/Yv0NbtMET73wI/YkTSJm/AKHTpsGtUZ3i/Q2LcnPONyQp5H+/SAr5WZEUirEiKRTjVeNSOH36dGnF8dSpUzF79myHC03EquS80SSFztU2JIVi7VFTUnjseiYKjSY0C/FCgOft00lKFT1DlwE2p7CsZMwtRPpP56C7enufwhKBabpb2Ju0FnXat8TQt9/Hxf7R0MfHSxG+jz6I0GbnoUrcZ8nhaL7hD2wT7NtnLZfY0oakkP/9IinkZ0VSKMaKpFCMV41LIRs+fuaZZ6RSMzl0c3Mrc8Pqn3/+GV5eXmI1dKJokkInagxafSzcGNUthSduZmL8TzGIzyywlvWjx1tj1P0NhcsuZTAD2duvI3vbdaDUnoZ6sw6BT0XCcHw7kmbOtLl/o7Vr4VbHA9g5s/g0lKIItrchm29YlNhpKS/tkYafSQr5m4mkkJ8VSaEYK5JCMV41LoWsuFlZWfjrr7+wceNGuLq64oEHHnBYiyeeeAIajeOeArFq10w0SWHNcC/rqdRTKNYe1S2FLy47ij/OJNoU0kOjwukPH4JSoRArfIlo1luYvvwcjDmFdvdQ4Cqyf/scMFlWIvsOGYLwWbaSaJOp9HxD1lM4ZqMUQlLI30QkhfysSArFWJEUivFyCiksKvKRI0eQmJiIQYMGidXiLokmKXSuhiIpFGuP6pZCtnn11bQ8u0LueLMPGgV5ihW+VPSZm6dwacl+dMxraXcfla8C+X/PgSH1Bppu2waVj7cUo8s3IP6XTVBt/xXhMz+DOiICYEPHV/cU36PEfENJCjMOA7GbLCuWK/G0FFmVd8LMJIVijZKamgp/f3+oVCqxjLUwmqRQrNFrXArz8vLw/vvvY8KECWjUqFG5pWeFZSuU+/Tpgw4dOojV1AmiSQqdoBFKFIGkUKw9qlsKH523G2du2c8BPDi9P0J93MQKXyr6mU3P4ETKCfwjvT+eTR4CF7PtD1eFRgXvKE/4PNReynk55jBObL2EhCvBqH99Kxpd3YjQ8S/Bf9QoqNJPAMeXA1d32+xvKEnh5rHF0sikkK1sJjm0azuSQrHXmaSQnxdJIT8rFlnjUqjX6/HGG29g8+bN+Mc//oGBAweiQYMGqFu3LlxcXJCQkIBr165JG1fPnz8frVu3xoIFCxDBfku/yxJJoXM1GEmhWHtUtxR+s/0ivvozzqaQPZsFYdlz3cQKXip62/VtmLRjkvXTZtr6eOfmCwjVB9rd17NLGNyiQ/Hf11+CLi8bKk1zuHhEw0ObizZn/ws/RQZCp0+XhplLp7QzOxG4+nHbjyedssxLpGRDgKRQ7IUgKeTnRVLIz8oppLCouDExMWDH3LEhZEcpLCwMb775pjS0fLd2mZMUir2cVR1NUihGuLqlkJXu+71X8Pf5VBQajGgT4YtX+zeDl6uLWMFLRbOVyotPLsaquFVgW9qw5G5yxZRbY3B/jqVnsGTSqvKx/dpy5OjTpY8VCne4ePSHi7oZ6sbvRJPL6+HV+T4ET5wAj65drVnz17wKj5M/Ft+qxHxD64dbpgHdX671okhSKPZKkxTy8yIp5GflVFJYVGytVovr16+DnXLC/s16DRs2bCjtX3i3J5JC52pBkkKx9qgJKRQroVg02/T62xPf4pe4X6wZH8noiReThkNjtj1O02g2ICbtL1zOOWGNVambwcUzGu66ArQ69yP8si7Cd+hQSQ7ZfENp+LjgAnBgIRC7ERi5HIgsMV+aDTmvG2+5Xy0fWiYpFHt3SQr5eZEU8rNySikUK/7dFU1S6FztRVIo1h73mhQW1T4hLwHzYuZh05VNYCelNNDVwbs3x6FuYagdoBt5sTiUuhkGk2XlskLhJvUasmHliFt70fTSWmg81QgYNRrG/xuO0NDb92Bb15QeNi69SIXzpBSxVrs7okkKxdqJpJCfF0khPyuSQjFWsqNJCmUjrNQbkBSK4bxXpbCIwtWsq5h3bB62Xtsq9RROSByJBzPvt4OUZ8jCnqQ1yCxMtl5TqptA7TEArgY9Wp/9AYHGBPiu/BlhTZo4hpx4Cvi2h+210vMNYzcAYe1qxdAySaHY/0WSQn5eJIX8rEgKxVjJjiYplI2wUm9AUiiG816XwiIaZ9LO4ItDXyAmOQaTPV7Egyfvg1lvsoFlMhtxIn0nzmcXz4G29Br2hUrTEg39MtH+5e6o2yC8bMhs+Jidqcy2tHE035Btis16GNmQM5t3KHPV8re7LmHTqQTkaA1oFuqNl3o3Rsf6ZZ8CI/Z2yIsmKRTjR1LIz4ukkJ8VSaEYK9nRJIWyEVbqDUgKxXDWFiksonIo8RDqetVFiM4faT+dgz7Bfs/EW/mXsDvpfzYglepGUHs8BDdvHwwY0xoN2gYiZf58mHJyEDRhonXfQ2sm1mvIUliJk1FKzjdk19x8LNvduN3Z3OrlB6/jnbW3n3P7wSHertg/rT9UyjvfCFzsDSo7mqRQjCRJIT8vkkJ+Vk4nhTdv3gT70717d6kWbCPrlStXws/PDyNGjICHh4dY7ZwsmqTQuRqEpFCsPWqbFJakYzaakbXxMnL33bKDlm/IwdG0P8AEsShZeg37QKVphSatvVHv57egTE+UhLCsLWxsblzRfENtliWcUxJf+ukotpy2PR2GZV85rju6N7bfikfszZAfTVIoxpCkkJ8XSSE/K6eTQiaAW7ZskTaoNplMePzxx6HT6aQtaNiEbfZ5dSej0SitgmbnMpdO5V1zVE6SwupuvfKfR1Io1h61WQqLSBWcTUPGqjiYdJZj8Eqmm/nnEZO6FQXGXOvHll7DAdAYgeYXfkFo8lEovb1tTkpx2Aqsp5CtWk48bblcer4hO4d55yygw9OWoeWSvYwObvjsksPYEVc8B7IoZOlzXdGrWbDYi1AF0SSFYlBJCvl5kRTys3I6KXz33XfB9iOcOHEi9uzZg2effRa7d++Wegg7deqEU6dOwc1N3kkGjvBs2LABr7/+OlatWoWOHTtaQ9gm2V9//bUkhF26dLH+mwWUd62sJiApFHs5qzqapFCMcG2TwpQcHbK1etTxdQc7c7koGbN0SFt+DoXXc+wAslXJJzP+xoXso9ZrCoXr7V7D1mh47Q/0GNcdWb0fgslsRsPACo7rY/MN2Ukp7CSUkqlovmHRZyWO13PUqv/6Mw7zt1+0u3RgWn+E+Vb+91SxNwsgKRQjRlLIz4ukkJ+V00nhF198IQkYO/LuhRdeQL169fDee+9JNWLH2q1ZswaNGzcWq2EF0R9//DEOHTqElJQUSfSYfLJ08uRJjBs3DuvXr0dQUJC0cTYrz+TJk8u9Vt7jSAortelk34ykUAxhbZLCCctjsPFUghUQ2zR78oDmxcDMQO7eeGRtvQazg17DdF0iDqVuQlZhijWPm/cT6J78J6b2eR4Xki29iRF+7pirPYKGQZ6WI/Nun7NcbsvcwXxDrd6IF5cdxa7zlvJoXJR466EWeL5n8ffTPJ0BF1Ny4apSIrKOj9jLITOapFAMIEkhPy+SQn5WTieFu3btwttvv41+/fph9erV+Ouvv6TNq9lZfKyn7ty5c9LRd5WZduzYIc1hfPLJJzFjxgyrFM6dOxfshyD7jKWjR49i0qRJUs9leddICiuzdar2XiSFYnxrixQu2XsVH/5+xg7Oxld7onW4rSwZswuR+dslFJxOdQjzZMYunM86AqibILBHVxxLU2JNdvHc6ND8dPzw52dSXrbhdei0afCO7l9+w7CtarZMBTJvWOLY8PHAWcV52Ipltt0NW7XcZ6rNljaJ2Vow+asf4AG1SmnN89OBa3j/tzMwmszSZ81CvLDg6Y5oHuot9pLcYTRJoRg4kkJ+XiSF/KycTgrZHD12BvLGjRsxbNgwREdHS7U5cOCA9PmHH34oVjuB6MceewwffPCBVQqnT5+OyMhIjBo1SrpLcnIyoqKiEBsbK4liWdfKO4KPegoFGqQaQkkKxSDXFimc8r+TWH3ktnCVQDTniQ4Yep/jM9e15zOQ9msczFl6O6j5xmz86XYR/276X5gN3tCl9URhRnfArMbnexahXWrxAhWWmR2Vx+TQrWVkxXJ4YBEwZJHtXoZF8w2LcpeWxlJ3ZSLY5oM/UFBoO09ycPtwzHvyPrGX5A6jSQrFwJEU8vMiKeRn5XRSKFb0yo0uLYVsXmOvXr2kVc8ssR+IbGj5+PHjUm9mWdeKFqS88847dgX85ZdfcPjw4coteKm7sf8ArDdVqfx/9s4DPKoq/cO/ycykV5JAKCGhd6R3EBFBUBQUFXUXWdcustjFrrur/nftBRQbsBasoIACUgKhd0ILEEJICAlJSO/T/s93h8nMZGaSczKTmPKd51Fg5rvn3vveO3feOeU71laAet1hE66cJjORGHp7ezfhs2i4QydWKpWqya49Lkrq3+vO4IeDjjN1/zO9Byb1jHBdjd6Eym0XUbnL2mVsG3zaNxWftPkBx/zPwGTwg1fSX/DFqi8RoCt3WmfArNsQ+Pd74BUUKHroSlzIon5QVRRWbVM66U1U9r7FZR3JOaW46bODDu93CvfDinutY6ylDkIymBoETCaTx3uCJA+jyYTTc16r1SqfRy41E6DnPN1fxItL7QR0Op3yjHfXIShrjEhRmeiTX0OhNDTUbUx/Vi8kavUx0YT2U10KqTWwS5cumDNnjnIYdDxjx47FyZMn8dJLL7l8zwKSxilWL3feeSeOHr08m1CEVh1iiouL4efn1+y/uOuAxmETeliUlJQgKKhhusg8ccx/Zh3UmkM/OJq7RK8/noVHvkuwQ01drXGPjUFEYO0/IPRZZSj+9Sx0adZZyLaVbQs6iM8ifkdSygMIqNRhxpl43Hp6A7QG+wTZtA3NVA578AGE3Hmn0KVXXTwK7U+zoSo4b473CUbFQ/vtUtdoNjwPk28IjP1mwRQSjfT8Mkx4Z7tD/f3aB+PH+4YJ7dfdIMoyQZ9HenZxqZ0ANVIEBga6/cVd+56afgT9mKUMIsSLS+0E6DuRnvHuSrSPj0/tO6OlQmuSwmPHjmH69OnKDGQ6IPoCom5bOsiZM2cq3buiOxI6Gpug6lK4aNEiZGRk4NVXX1WiqAv7ySefVMYU1vReTfvl7mPZq1K/8dx9LMe3pXQfE5VlO89h5cF05JVWIiY8AHePiZVO3ZKxNQnYkQtDfoUDaD2M+AF6LEUFOhceweSKQxhWDgTuP+T0otB4w3avv6Z0LQsVy2oplKqm+nhDmrlsKZTS5trXccuS49ibkmtX9eOTeuCRCV2FduduEHcfyxHk7mNxXtx9LM6KImkOB/04qy/Xqn40NUohzf49deqUMpGDUsFQbsJbbrkFn376KbZu3Ypvv/1W7uwkoqtLYVJSkiKiNL6RJHXevHmIjY1VxLCm91gKJaD/yaEshXIXoCVJoRwZ59EXL15E6/BIFG09j6K48zBVG7NHWxXCiFOXNiO5cD9MMKFn3wHoGrcTxnTHJNm+PXui08oV7h1a9fGGodHKSilZRRV4f+NpHE0vgK9WjfE9IvHAlS7WbXbvCJxuzVIoB5WlUJwXS6E4q0YnhTRWj2YbP/TQQ1i6dCnOnTunpKQpKCjAkCFDsH37drRu3VruDAWjqYWS9mWbp3DZsmV4++23lRro9XfeeQchIeZlpmp6z9UuuaVQ8GI0UBhLoRxolkI5XiSF9MOWiqGoEgW/n0XpAccE0ooc6i7hcO5mZBvSMeftRahY/h1yly5TlsazlJhlS8VbCl0d6rt9rbOWKaZ6fkMlL+I284xmwdVS5Kg4j2YplKPIUijOi6VQnFWjk8JPPvlE6Z796quvEBcXh9deew0//vijsqrJqFGjlITWloes3GnWPZpXNKk7u8a+JUuh3BViKZTjZSuFli0r04tx5qvjCMpz7FKmGH24Ee1nD4W2jT8MhUW4+NprKFi5Ej5XjUXnRYvtDuDCgmcRMHwYQqZPFz8wWh6PUtpQiyH9vfp6yisfBA59YxZCJyltxHckF8lSKMeLpVCcF0uhOKtGJ4Wpqan4+uuvsWDBAtCFpBm+NECUCrWyUe7Cply4pbBxXT2WQrnrwVJo5kUrkby9/hQOpuVD7aXCqC7hTrtanUmhhXhpQjYKfjvrdLwhVEDAkCiETI6FV6AWaQe24p4d/8CQAVNx/xX3o2NQR5Tu2YNzs+9SqqNxhpFzH5ZvRaR8hqEdrTcB/dt2vCG9M2cNEDtG7kapQzRLoRw0lkJxXiyF4qwanRRWP/T09HSsXLlSaR289tprm/zsIZZCuZuzvqNZCuUIsxSaeT309QH8ZrPaCb1237jOeHZqLzugNUkhBZr0xhrHG6q81Qi+KhofeC/Dt0nLlbq9VF6YWXEvpv4YB/9z1gTb/kOHIuZ/y+QuaPVoSohNeQ8t5fJ4Q7uwxMuS6OGuZZZCuUvHUijOi6VQnFWjl0K5U2n80SyFjesasRTKXQ+WQoCWi+v5wloHcLRc3fZnJkhJoSVYGW+4NgWlBy4CThJ2ZWvz8GXrldjtcxCDT7VDn6JHoIJaWUc59txaqEwGdFqxovZk17VdbupOplnLuxaaxx06G2+45Dpz1zLNWqZxh7YtjbXVX8P7LIVy8FgKxXmxFIqzajRSSEmdaW3j7t3Na4vSknKUfsa20Aoi//3vf+XOrpFFsxQ2rgvCUih3PVgKgdySSgz65x8O4EL9tTj04qQ6SaFlIxpvmL8yCZVp1sklthVmGi/g2MXNuFSZB43fGKi9+yCgNBMB6tXo/eZz6BPepyqcxhuGzpgu36VsqYHkkMTPtiy/A6CWQksZcId5NRUPFJZCOYgsheK8WArFWTUaKZw0aRL+/ve/47bbblOOntZA/sc//gFKVk2FPgCff/65kvi5oXLnyGEUi2YpFOPUUFEshXKkWQrNvEa+vhEZBfarkIzoHI7l941wSwotGyvjDX8/C4OLyShpJYnKTOUyVSg0vsPhpYnG4XabgaFZuG/Qvei2Iw0khVRovCHlN6Q8h24VkfGG1ccoSuyQpVAC1uXvxLCwMF6kQAAbS6EAJJuQPz1PIa3AMXDgQPzyyy/o3bt3lRQ+//zzykxkKpaUNDQjub27Dzc5Ph6NZin0KE63K2MplEPIUmjm9dOB83j6xwTojea+3vAAb2WN4NFd7ZfAq21MYU30zeMN01G0ORUmneNKJ7TtkbytOF14AAZ1W2j8xqLEX43zuZmohgAAIABJREFUfbdg/vIT0KWn21Xf6q7ZiHh4LtTBdVy9h7qWqVuZ/isvBKL6Ag9UWwWFJqlQ3IiHpFPasBTKfRa5pVCcF0uhOCuK/NOlMDk5GZMnT0ZCQkLVEkdHjhxRElVTShoqlBaGuo9XrVql/NlUC0th47pyLIVy14Ol0MqrqFyPExmFyuzjAdGhyp/ViztSaKmLxhsWrk1BiYvxhnpjpSKGiQW7YdDEKt3K7TMT0O3MCqgN9q2ZJIRtnn1WLoWNs1uEupYtKWss71NuQxpvaFueSRXOdchSKPdZZCkU58VSKM6qUUihRfjWr1+PTp06OT16moU8fvx4pVu5Xbt2cmfYiKJZChvRxaCccHq90godHh7euA6skR4NS6HchfGEFFr2qMsoQR6NNzxX6PQg9CYdkgoP4ET+Lhi0vRDq0wtdj/2E8NzjDvG+vXqizYIFdR9v6OwIahtvSC2INcxYZimUu7dYCsV5sRSKs2oUUkgHMXv2bPTq1UvJT+isLFy4EIsXL8ahQ87XBZU75T8vmqXwz2PvbM8shXLXg6VQjpcnpdCy55KEbGSvOgNNkc7pwRhMepwpOoTjBXth0PRClLEVuh/5Fr7llxziQ2bMUPIbuj3ekGqmdDbUgkhdy1Sq5zek9+LeMHct0wSVaoLIUih3b7EUivNiKRRn1WikkFoA77nnHjz66KO4++674evrq5wFfWkvX74cr7zyCp577jnMmTNH7uwaWTRLYeO6ICyFcteDpVCOl6el8GBqPu7/3z5lneKp0OJv8EFbeDk9qFJ9IdJLk3CqMAGV2h7okpuHmNOr4WXU28XTaijt3nhd7sRcRVtWS6Gu5Oqzkmm8IU1EoUJCSOluaMWUy4WlUO4SsBSK82IpFGfVaKSQDmTDhg148MEHlaO3jBtMTExU/k2i+NRTTzX5mVYshXI3Z31HsxTKEWYplOPlaSl84Kv9WHs00+4gpqi88WJ4GAw5ZS4PLrPsLE4XHUeBqjV6n9yDyJzDSqwxwBefvjwEMwfdhdHtR0NFS6nUR3E23nD+EbschyyFcuBZCsV5sRSKs2pUUkgHk5eXp0w4OXjwoLK8XWxsLIYNG4bOnTvLnVUjjWYpbFwXhqVQ7nqwFMrx8rQUTnx7C5Kyih0O4o/5V6J9VhmKNqZBd7HE5UEW6XJxujgR+aUa9E/4ETuv9MbCwblKfExwDGZ3vBkjf0hE5F1/k06EvSv5Eo6kF8BLpcLgmDBl8k1VoRnLa22GBlXPb1heAOMXU1A56B74jrhbDnILjWYpFL/wLIXirBqdFModetOLZilsXNeMpVDuerAUyvHytBTOWLgd1IVcvex4ZgLahfopL5clZKMw/jx0aY7yaNlObzLhQGkyFl2xFJnanKrqbok34pZt5vQ3PnfcjJj5TwulsHl/42m8/ccpu8P61/S++MuIGOtrlpQ2NLZw1rdAVD/n0khdy+OfMY895OKSAEuh+M3BUijOiqVQjpXb0SyFbiP0aAUshXI4WQrleHlaCj+LT8a/1pywO4hx3SOx7O5hDgemu1CCgs0pKDt6CSqT825hE0zYG3gMv7TajDT9cfznCwMCbLLY7Jkai+5PvIiR7UbWeOI9nv8dFXr7XIoRgT7Y9/xEMWC24w1pC5LC8c4nHYpV2PyjWArFrzFLoTgrlkI5Vm5HsxS6jdCjFbAUyuFkKZTj5WkppL0v35uGraeylTWY+7QLwcNXdYGvVu3ywCjPYf7ms8jbng5fldZlXIEhEz5HN0KXugMw6FDqAzz8kAYlvkDnkM64/4r7MbXTVIftC8p0uOKV9Q6vUzdy8uuO8Q6BmUeAj8fYv1w9vyF1P/uGmmctc1EIsBSK3wgsheKsWArlWLkdzVLoNkKPVsBSKIeTpVCOV31IodwRWKOf+e4wKg+kY6YqAB1dzFimaIOhDJXntmNJx034tZ+1q/ru2Ntw29pShxQ2bkuh8i2UCt3eJdDsWwxVr2n2M5ep29myUkpoR/N6zCMeFE6KXVdejX07lkLxK8RSKM6KpVCOldvRLIVuI/RoBSyFcjhZCuV4NSYp3HnmEm7/dJdyAkOhwa3wxghoXM43pq7lff5H8XPEJhwOOIWfz14P3fIVyvaRc+cibPbsqvGGbncfA6DZx8bSPAQGBtoLX/VJKqHRwPyjcheiGUazFIpfVJZCcVYshXKs3I5mKXQboUcrYCmUw8lSKMerMUkhrdf8+PfmVDSWMiw0AIt7dUDJ/oswVTpfX5lic33z4L9rDXSpOwGjOWk2JbyOfGSusmSe0ESTWtC5TElT23hDyn1IXdA9qy2xJ3epmlw0S6H4JWMpFGfFUijHyu1olkK3EXq0ApZCOZwshXK8GpMUPvT1Afx2JMPhBH54YCQGtw3B6i8PokdSFgI0QS5P0qQrhS4lHpXJm2EqM6ey8R82TFky75BPpOuUNALYXEohSV/c60DiavNqKdXHG658EDj0jTnnIU1OITmsYTk9gUNpEiEsheKXiaVQnBVLoRwrt6NZCt1G6NEKWArlcLIUyvFqTFI458s9iDuZ7XACS+8ehiu7R8JkMmHtL7+jdPMBdFF1RYRve9cnazJCn3kYlWc2wZBzUomjJfNIDtXBQcgqzcLZgrMY3na4MLBak1fT2MKUeLtVUGA73tCyJ1ophcYdNvPCUih+gVkKxVmxFMqxcjuapdBthB6tgKVQDidLoRyvxiSFr/12Aou3JjucQPxTVyG6lb/d6yd3xAO5ekQWt0PZkWyYDCaXJ24sPK/IoS5tN9SBvoiYOxdL+1zCF0e/UBJi39rjVszoOgNB3q5bIKnyWqXQ2RFQCyKtp2wpzsYbUteybU5EuUvYaKNZCsUvDUuhOCuWQjlWbkezFLqN0KMVsBTK4WQplOPVmKTwUnEl/r50Lw6lWWcUz7u6Gx67pnuNJ0UpbYp3XEB2/Hn46l3Loamy5HLX8iZ8NrkC63qbxx5S8VH7YHLsZNzW4zb0j+zvdH91kkISPpqIQt3HVKrnN6SuZxqTSFJIybCbUUoblkLxzyJLoTgrlkI5Vm5HsxS6jdCjFbAUyuFkKZTj1Zik0HLkJzIKUVJhQMdwf7QO8hE6oR/2peHJHxMwDVrcAR9E15DSxmgow5ZWR7A6LB7H/c441N+jVQ9FDq/vfD38NOZVWKjUSQotG5P80UopJH624wkt4w0tcTTecNZlgRQ688YbxFIofm1YCsVZsRTKsXI7mqXQbYQerYClUA4nS6Ecr8YohXJnYI5+YeVR/G/XuapNR5lMmF+ei3Z+nWqs7rRvKvabNqPTrj34YYwRxzpaV1YJ0AYoYkiC2C2sm3tS6OwoaLzhGx3t35n1teOYxCY6KYWlUPxOZikUZ8VSKMfK7WiWQrcRerQClkI5nCyFcryaixS+/OsxLNmRUnXy7cozMOPi7wj28kP3kKHoFNQPmhpWSzFVFEGXshVHKuPw2ZXFSGljlcNhUcPw+eTPPS+F1Hq49hkgcY35uJ2NN1xyOY0NtTA2sZQ2LIXin0WWQnFWLIVyrNyOZil0G6FHK2AplMPJUijHq7lIIaWyoZQ2tsXPoMMLoZnIPLoBGpjQKbAfuocMQYAmpEZICZoDWNphc1XX8jvj38HEmImel0LLUZAc0rhDGldoOyu5+vJ6lNJm/hG5C/wnRrMUisNnKRRnxVIox8rtaJZCtxF6tAKWQjmcLIVyvJqLFNJZL4o7gx/2pyG3pFKZrXzPmE64cUB7FOeV4PePvkLasY0wGUsR5dcJnYOuQHv/bvBSebkERl3Lm6L24dmx98KvT+/6k0JXR1B9vGHsGGDO5VZFucv8p0SzFIpjZykUZ8VSKMfK7WiWQrcRerQClkI5nCyFcryakxTWdub5mUX4/ePvkXFqM0yGfPio/dApsL8iiEHaMJebU9cyKpPgP2MgvIcPQFBQzalrajsO4fep6zhlmzW8+nhDmriS+Jt5nWUSxkZWWArFLwhLoTgrlkI5Vm5HsxS6jdCjFbAUyuFkKZTj1ZKk0EImO60IGz5fi8ykrTDqziovt/GLUeSwY0CvGgEaS5MQOrUXgq8d4TKuuLIYgd6BchfCRfSpxGMwbHoN7fL3YdWE9fjLiBhrpK00Utfy9EWNSg5ZCsVvAZZCcVYshXKs3I5mKXQboUcrYCmUw8lSKMerJUqhhVDq8Vxs/XYvcs7Fw1B5DDDp4KsOUMYddgkaAG8vX5cwTbpsBI1si5AZI3CprBLf7ElFWm4pCtV7sLf4Y1zbaTJmdpuJQW0GyV0Qm+hdyZcwa/Euu+1HdgnHt/eOMK+l/HG11kEab0hy2EgKS6H4hWApFGfFUijHyu1olkK3EXq0ApZCOZwshXK8WrIUWkid3J2JnT+fQEHWfhjKD8JkLIBapUFsYF9FEIO14a6hGssQjxL8x8sHeTDBP2Yx1P7WVVliQ2IVOZzedTpCfGqe4FJ9J8/8lIDle9Mc9v3zQ6MwKPlj+5VSnI03XHt5neU/qWuZpVD8s8hSKM6KpVCOldvRLIVuI/RoBSyFcjhZCuV4sRRaeR3akIqD61NRfOkE9OUHYdSnKm92CLsFw/wCoPVpDcCaqsaWtMlkxD5dDpb0+AzJvuedXoQbu96IW7rfgisirxC6SH9fug8bT1x0iP3sriGY2KuNebwhjSuk1VKcjTdc+ZB5W5JCGnfY83qh/XoqiKVQnCRLoTgrlkI5Vm5HsxS6jdCjFbAUyuFkKZTjxVJoz8toMCFxV4Yih3kX0qCvSEC34bfguof749Lv8ShZcwwqv25Qqb1dgj7pl4JfWm1GfNAB6FUGh7gw3zBM6zwNkztNRv8I50vq0UYv/nIUy3ZaE3JbKlr1yBj0a2/T6kgpbap3G1efpELL59GYwwYsLIXisFkKxVmxFMqxcjuapdBthB6tgKVQDidLoRwvlkIXvEzAmUPZOLDuHMbf2QOR0UFVKWm8jpzApf/FQ+XdFSq/Vi6BF3gV4tfwrVgdthWF6mKHuHC/cMTdGudy+2MXCjFr8U4UleurYqb2a4uFd9YyTpFaEC1Jry1bVh9vmLgaiOpfr2MQWQrFP4ssheKsWArlWLkdzVLoNkKPVsBSKIeTpVCOF0uhOK/qax+X7t6Dc9/HocLQERG+7V1WZIQBm0P24edWG+26lu/qcxeeGPJEjQeQXVSBzSezUFyuR0x4AK7uRV3YAoXEMO51cxezs/WUaXk9WmZP6Vqun9VSWAoFrtPlEJZCcVYshXKs3I5mKXQboUcrYCmUw8lSKMeLpVCcV3UppC3Xf/IBjmxah1Dv1ugZMhwdA3tB5WLcIcWf8k/FirANStfyT9N/RpfQLuIHUJdI6lom+aPVUiyFxiFaxhvSa77BwPyjgIfXWGYpFL9gLIXirFgK5Vg5RBsMBpSXlyMgIECoJpZCIUwNFsRSKIeapVCOF0uhOC9nUmgyGnFiWxx2r/wBuelpuPnRl9GqMAIF609CpfF3WXmZbyXajO2GwBFt4RWgRUZBOfy91Qjx04ofUF0jKZUNpbSxFJqEcu0b1n+TSFJxM70NS6H4BWIpFGfFUlgDq7KyMvTvbz9Q+Z133sH115tnmX300Ud49913FSEcOnRo1d9rws9SKHdz1nc0S6EcYZZCOV4sheK8nEmh7dbJB/ag86BhMBQW4eJrb6D0YBa8u1wNr+Aaupa9VIjz0mOpvgxnYMSk3m3w0Z2DoFU7Lr/34aEPERsci2tiroGP2kfowKn7Oa+0Em2Cfa3CaZmxbFktpfp4Q+p2jnvDvA4zTVCpY0oblkKhS6QEsRSKs2IprIFVRkYGZsyYgS1btlRFaTQaqNVqJCQk4L777sMvv/yCiIgIPPHEE4iOjsZjjz1WI32WQrmbs76jWQrlCLMUyvFiKRTnVZsUVq9Jl56O7A8+hAkR8OlxLcpP5ta4syMw4HtUos9VMXhicg+72LzyPIz/fjyMJiP8Nf6Y0HECrut8HUa1G+Vy/eZ/LD+EXw6lV9Vz79jOeO46mxVbqLUwJd48ptC2WMYbWl6rnu5GEBlLoSAolkJhUCadESa9EYUVxfDz84OPj9iPI+EduAhUmUwmk7uVNMT2iYmJePLJJ7Fq1SqH3b333nugL8gXXnhBeW///v2YP38+4uPjWQob4uJ4aB8shXIgWQrleLEUivOSlcLqNSdt3oG0H/aiU2BfaLxcp7Qp1KjQYUKMuWvZX6NUs+TYEry17y2Hg23l2wrXdroW13W6Dv0jrb1G3+1Nw9M/JTjEf3//SAzr5HrGtJL30EPjDVkKxe8tbikUY1V27BIufX0C6o4B8O8XgaABUcrwi/ouTUYKd+7ciUcffRQ333yz0ho4ceJEpTWQyrPPPouePXti9uzZyr+zsrIwevRokEhSS6Krwi2F9X17ydXPUijHi6VQjhdLoTgvd6Vw76qfsfWrLxQhpGX0ugUPQoDG9SonKo0X/K+IRODY9pi56w4kF1hXSnF21NFB0ZjaeSpu6HIDvowrwpfbUxzC/jW9r/36ydUjKFUNdR9nHjW/42y84bv9zF3L9J7tBJZqdbEUit9bLIVirPJ+PIWSfdaE7vTDKXR6V7GN3YhqMlJIord8+XK0atUKx48fx2+//YbXX38dU6ZMwdy5czFu3DjceuutCgr6shw8eDAOHTpUNemExLF6+eGHH7Bnzx438NW+qU6nA3Vzq1TOVweovYaWE0GN1iSGWm39/xpqDlRpYhXdV15ejmOymsP5efoc6MvI29t1q5Wn99dU60vNK8eh8wUwGE3oFRWEnm3EJu7Znm/qkXzEf3UMhopDMFQchslUho6BvdEtaCAifDvUiKYyygs7OxzH58ZvkV2WXSvG/r53YvtBmxnHl7d4eUpX3Ni/9rQ2mvO74Hvwc5Re+RKMwdZj89v1Lnx3v1u1/8peN6NkkmMLJgXQc56fW7VeKiWAnvP07KLvRS6uCZR+kAhTqTVvp+8tMVB3DqozsrCwMKFtm4wUVj+br776CmvXrgX9Sd3GXbp0wZw5c5SwzMxMjB07FidPnqz6wty7d68DkDvuuAPHjh0TAlXXoKKiImU8AH8AaidID4qSkhIEBwfXHswRCiu6rxpqrElTR56XlwfRB2NTP9e6Hv+qhEw8/qPNbF0AT17TDfeOjZWqMjO5EAd+S0X6qXxlO0PFUegr9sFkyEWId6Q5pU1AT3ipXPfkaKL8cXFgBX7WrMOG1A0orCx0egzP9v0MC37IcXhv46NjEB3mJ3XcVcHlBfBeONic4uZy0V//AYz9Zzmtr6CgAIGBgTX2TNXtQJrfViTQlCUkKKjugtP8qNifkS69BHmfXG7BprfUKkQ+PxQqdd0bl0R/EDdZKdy2bZvSQkitgYsWLQJNRHn11VcVsrt27VLGH/KYwqb10eHuY7nrxd3Hcry4+7h2XtM+3IYj560iRFsE+2mR8NKk2jd2EpGfVYqETedxbMcFGCuNMOqSoa84DKPuLHzVAegaPAjdggfC28u1vGki/RA4oQP2RpzA6uTV2JK2BRWGCmVvPVr1wI/TfsQP+9Lw44HzuFRciQ5hfpg9MhYTetbeSujypChVzZKpQH6aOcRZfsO1z5jXhx7xIHL0/soPjpqGK9UJYDPciLuPa7+ohX+cQ+HGy+mSAPj0DEPknL61b+iBiCYjhTQ+MCoqCqGhocqYQWod9Pf3B6WlSUpKwsyZM7FmzRolZt68eYiNjVXEsKbCYwo9cAd5sAqWQjmYLIVyvFgKa+c14NX1yC/VOQTuf/4ahAd6o7hCj+V7UpGWV4ZQfy2u7ROFXm1rb9k/mJyLf32wFwMqNGhlVMFkLIKhkrqXj0BlKkVMYG90Dx6iJMZ2VTSt/RE8IRroE4g/Uv/AmuQ1GNt+LP7a+6+1n1hdI2jc4a5F5lQ14xdYayFppPGGl0tl52ugvnkx1AE1TGyp6zE0s+1YCmu/oBc/OAhdunW5yKBpsQgZbZ5DUd+lyUjh6tWr8f777yvjBWnsxg033IC7774b4eHhCqNly5bh7bffVv4+aNAgRRZDQlwPbKY4lsL6vr3k6mcplOPFUijHi6Wwdl4T3opDcnaJXaCXSoVT/54CjZcKU9+Px/EL9t24qx4Zg37ta37WUoU3LdyBA6l5iNV7YWCFBl10aqhgglGXosihQZeMKL8Y9Aodgda+HV3LYYQfgsZ1QMCwqKqYw2n5WHX4Ai6VVKJdqB9mDY1GdCvHhNqXyi7hSM4RjI8eXzuMmiKolZBk8XIxBrWHaf4RbikUoMpSWDMkQ1ElMv692y4o/MmB8AsPFKDrfkiTkULLqRYXFyuTR5xN3OAVTdy/If7MGlgK5eizFMrxYimsndeiuDP4v7WJdoF/HRGDf07vi02JWbh7iePY7PvGdcazU21yArrYTVG5Hl9sO4uk7GIE+mgwrkMYQtMrcHRrOirL9DCZSpWxh4bKRISq1Yocdgjo4XIpPXWID4LGtkdaxwBMWbjdbq9RIb7Y+NiVCPCxn8yw9NhSvLnvTQR7B+PqmKsxJXYKhrcd7jL/oUtiH4+2zloGUHz1f+A36h6rFFKybPqPEmK7uVpK7VetaUWwFNZ8vUr2ZCLv59NVQV5t/BD+UL8GGzve5KTQk7c/txR6kqb7dbEUyjFkKZTjxVIoxuu3IxnYcToLeoMRgztF4JYh5m6rn/afx+M/HHao5OZBHfDWrVeIVe4kyqAz4tTeiziy+Tyy04qUCJPhEgyVJ+BrvIj+oVMR7ecPeDmfrVqpNiGu5CyWeamR4m2dYfnerAG4cYD9Cis3rrzRId1NmG8YJsVMwpROUzCozaAa13O2O3zKc7hrIZCfipx7DtqPKVx+B5C4xhwukNKmzvCa4IYshTVftEvLjqPs+KWqIO/RrREyKZalsCHudZbChqAsvg+WQnFWFMlSKMeLpVCcl7M8hduTcnDnZ/bdWlTjvKu74bFruotXXkNkxpkCnNh+ASd2ZFRFdUv6CYNvHwVN1CiU7MuEscyapsO2KoNJj8SSRHyk9UWCT2u8emMfZcKJpZzKO4Wbf725xuPsG9EXo9uPxk1db0K7wHZi50RSaDvRpNp4Q6WSOWvqvISe2EE0nSiWwpqvVfrz25WVTCzF/66uCOjciqWwIW5xlsKGoCy+D5ZCcVYshXKsKJqlUJyZq+TV1H1M3ciWQuP3fnhgJNqH1jH1i4tDqijVI3FnBo7FX8DUG4IQ1DUa6uAgmCoMKN6VgYLfqYvb+bJfBpiwDnr0ntEdY4Zb8w6mF6dj2fFlWJeyDjS2sLZCrYYfT/wYfpraz80ueXW18YaI6gs8YN+9rYxHpK5l39rHYtZ2nE3tfZZC11es/GQecr60pqKhFUz8H+nJy9w11E3OUthQpMX2w1IoxskSxS2FcrxYCsV51bSiycYTWUjPL0WInzeu6d0G/t6ucw2K79EaqTealEktroqhsAhnJk2GV9gV8Oo5Bd4+rpPy+nYPQfCkzvDuYB2kT2sq783ci7Upa7Hh3AbkV5hzKVYvHYM64sfrf8XzK48i7mQWKg1GDI1thQVTeqFbG/tB/3ZSSLkNLaulUEqb6QvNXciWQmMNl1xnFsKe1wPjn2lR4w5ZCl1/KvJ/SULxTmsrecCQNlBNbM1SWJcHSV22YSmsC7X624alUI4tS6EcL5ZCcV7uLnMnvidr5Iu/HMWKg+mgCSndWgfikau74YYrnHfhFm3YiIIVK5C3ZQvKuo1BSMw1CPCNdLlb75hABE+MhamNF3b+9C36XHk12nTupsRvS9+m5D/clLoJZfqyqjrmDpyLM6dG4vt9l3MVXn5nYMcwrHholN2+XC5zRwJI6Wxsi+14Q3qdWgynW2cy14VdU9qGpdD11cp4bTcMhZVVAeF/6YWKDhqWwoa6wVkKG4q02H5YCsU4WaJYCuV4sRSK82poKfws/iz+tea43QHSyqCUH7FVgOulCXXp6chfsQIFP6+AXhUFv27XQh3qevUVXaAee5PX4HzJSYRHd1TksM/4iVD5BuB8QREO527FunOrsTtjN1bNWIXbPjyNjIJyB3AHX7gGYTbHJbz2sch4Q4qhVsRm2rXMUuj8c6i7WIKL7xywvumlQvtXRqGgpJClUPzR5V4kS6F7/Dy9NUuhHFGWQjleLIXivBpaCh/4aj/WHs10OMCldw/Dld1dtwDabmBpPSxNuACfHlOhjujh8oSLdHlILNiNlOIjoCH9KX7ROBHYA2f9O2HWyE54dHIUIvwiMOzfG5BVZF49xbbse34iIgKtYxpJChcnLca5onNKDsSJMRMR6efkuKlruWrWcpq5FZEmodgWSopNcZZZy80spQ1LofPbsiguDQVrU6re9O0Whoi/90V+fj5Lofijy71IlkL3+Hl6a5ZCOaIshXK8WArFeTVFKbScnaX1sGjdbniFD4cmynW6nDJDMU4V7EVS0SHojZWo8PLBqcBuuP7mGzHz2pF4+JsDWJNgHeNF++jeJgjrHx1nB5Ok8JZNtyCnzLoGc6/wXrgq+ipFEnu1cpLHkeQwNMa+e9ky3tC29mcutxyKX75GHclS6PzyZC06jMpz1sTwodO6IHB0O5bChrybWQobknbt+2IprJ2RbQRLoRwvlkJxXg0thSLdx+fzynDqYhG8NV7KhA8fjZfdCe0/l4e80kpEBfui7+UVVqj10Lf/SBRtSkNpQjZgNDmFoDNW4HThAZwq3IcKQ6kSE9a2AzqOHI//XWqNLanmsYa0pN9L03pjRGfzSlqWEp8Uj4e2P+QScFRAFMZ3GI/xHcdjeNRwaFzkXFQmoJAYWkr18YbUgtjEu5VZCh1vE2O5Hhde2QnY3J5RTw2FppUvS6H4Y8v9SJZC9xl6sgaWQjmaLIVyvFgKxXk1tBTSkTlMNJnQDTcMME80Wbw1Ga/9dqLqBGg83yd/GYxhnVrBYDTh9k93Yc/Z3Kr3p13RDh/cPtDuhPW55UiPI5ACAAAgAElEQVT+7CB8L+lAS/c5K5TrMLkoQelaLtWbW21UKi+07dEPvSZMRL9RY6DWah02/Xz/53j36LtCgP01/krr4f+N+z/H+LjXzQmxyy+3GD2wDYiyrrGsvKeks7kTGPFgkxRElkLHy156MAu5352seoPW+Y56bLDyb+4+FvpYeSaIpdAzHD1VC0uhHEmWQjleLIXivP4MKbQcXfWUNDqDEX1eWodKm4S+FHt1rzb4/K4hWLIjBS//eszh5FyNRyz8bRMubUiDWtMRXi5a7EwmI1JLTuB4/i4U6qxdwhpvP8QOGIlhN0xF2249q/ZJ3ccqfxW2pG9BXFocdmbsRLnecYKKZQNaWu+zSZ+5viDUtUwthtVnJdN4Q5qIYimzvjantWlChaXQ8WLlfpNobsm+XGht75CpnVgKG/q+ZilsaOI174+lUO56sBTK8WIpFOf1Z0ph9aM8m1OCq96Mczj42PAAxD05Hi/9egxLd1gH6FsCX72xL2aPjHF50pXJaSg5VICCgwXQ6KwrSFTf4EJpEo7n78Sligt2b7XqMBJ/e+s55bXqs48rDZXYcWGHIohbzm+xG2tI8QuGLcAdve4QvyAUSbkPl9vkO6TXmuB4Q5bCapfdaMKFV3eBupAtJfL+/vDpZE5szi2Fch8Tt6JZCt3C5/GNWQrlkLIUyvFiKRTn1ZikMLuoAkP/vcHh4Du28sfWp67Cm+tP4sNNSQ7vv3PbAMwYaL/2sTMC+YUVOLDyFKKTCuFX6VoOs8vP40T+TmSUJSvVhLa7BX9/5y6nUmi7HxNMOJJzBHGpcdicthlJ+UnYdOsm57OTa7pE1HpIq6VYupadjTekMYnUtdyIV0thKbS/yBXJBchenFD1opevBu1eHAFcTuDOUij+3HI7kqXQbYQerYClUA4nS6EcL5ZCcV6NSQopmXW/l9e5lMJDafmY/pH9MnKh/lpsfmI8wvxd5zikCst0Bkx9Lx7UGkkjBWdV6nCHyhdB2gCXsPIrs5BYsB/e+f648i99EDJjhkNLYU2kL5ZeRBv/NuIXA8ArO19BZkkmxkcNx6SCSwjb+yUw61vH8YZrF5jrpckotFLKCNeTX6QOwIPBLIX2MAvWnEVR/PmqF/2viESr261DE1gKPXjz1VYVS2FthBr2fZZCOd4shXK8WArFeTUmKUzOLsGEt1x3H9NZbU/Kwa+HLyCnuBIdQv1w+/CO6BkVVOsJ/7T/PB7/4bBdHM1p/mBgDAadzoWh2PVye/ryAgQNCECrv1yJS/m5CAsLg+7Uafj26gmYTFjyxMOI7BiL2AGD0XngEPgF122dY2ppHLd8XNVyfCqo0CeijzJZZUL0BHQLM6/MgurjDUkKx1+WxFpJNFwAS6E968y39kGfbV1Jp9WsHvAf0LoqiKWw4e5NsBQ2IGyBXbEUCkCyCWEplOPFUijOqzFJYUGZDle8st7h4Gnm8ff3jxQ/KSeRn2w5g9d/T3R45/4ru2DBlJ4oO34JhevPQJfpmMDaspE6UAvVwDBEXNUJKdOmgvIkll05Gpvzrcm4afWUOW8urNOx7ru4D39b+zeX27YLbIerwvvjqt3LMKS8HGpLWpPq4w1pZjPlRaSu5T+xsBRa4dOM+Mz/7LW+oALavTQS1IVsKSyFDXizshQ2IGyBXbEUCkBiKZSDZBPNUiiOrjFJIR31cyuO4OvdNrNuAbx96wDcNKj2MYM1nfXKQ+mYv/yQQ8hL0/rgb6Oty+VVnMlH4eY0VCTlu6xOHaJB2cE/oDu7GQkhBqSGB1fFDr5+Osb/9Z4aL0Da8Vyovb3QrmuoXdyy48vw373/Fbp4gV5aXF2uw78ix9jPXKb8hpaVUqhrmbqV/6SUNiyF1ktZvP0C8ledqXqBJpfQJBPbwlIodOt7Joil0DMcPVULS6EcSW4plOPFUijOq7FJIR3570czcCLDnLx6ZOdwDI4JEz+hGiKnfbANR9ILqiI6RQRg5cOjEeLnmI+w8nwxijanouzYpRr3nVuWhtPFCUgpPqrEzXzun2gX3hrnZt+FoIlXw3/YMARdfXVVHaf37ETcV/EoL20Hb/9otO0SgnbdQ9GhexhaxwajQJePjakblYkqtC5zhcF1y+W4DuPw0ejX7HMYUith3BtV+8v3jsIs/0+Vfw/vHI5np/ZySAZeF7h7U3LxaXwyqMuf+F3fv52dXFOdLIVmsia9ERff3g9qLbQUSkND6WhYCuty93lgG5ZCD0D0YBUshXIwWQrleLEUivNqjFIofvTykdRieLGgXFnPeGr/tvDTqmusRJ9disKNaSg9lFVjnNHLgNSykxj6+CyU792ECwuerYpXBweZ5XDiRGw6fgjJh/cp76lUvvDSxl7+rxO8fQMR1SUE7buHoX33UIRE+2Bnxg5FELee34rccmvSbtr+5VEv4+ZuN9sfV7Xxhu/qbwb9Zylzenvh5f55bnUtl1YaMOqNjcgv1dntu3qLLkuhGU/hH+dQuNG+9Tvq8SHQRPqxFMp/hD2zBUuhZzh6qhaWQjmSLIVyvFgKxXm1NCkUJ2Mfqc8rR9HmNJQcuAjonS+hV7WFPhMVp3ZAf+EgjMUXq142qVRY168zjC7mtHhpouClIUnsBPq71kejtCSSJLbuGoKLAcnYlhGv5ESkdDdbbtuCVr6t7A+UEl5TSptdC0GzuUeXv49C+Csx6oAzeESzGvMrdgOhHeu8WkrcyWzM+XKPA0pKC0TpgSyFpRBK66DdWEIA/gNbo9VtPRz4cfdxXT+dddiOpbAO0OpxE5ZCObgshXK8WArFebEUirOiyJyMLPic06NsfxYq04pq3dhYlAF9xiHoMw4iuzITu7qKjY20tiJ2UloSVSo/XFKb4B2kxchh7RAWq0Kv3rHQ+jpv6TSW5uOOf32KXcbeVccYFPsR4JcGH5MJg8srMLysHMPGPYe+gx+o9TxsA9Yfu4j7/mdu7bQtU/u1xcI7B3lECiv0RhSV65QW3aZccr44ivJTeVWnoPJRo+2TQ+EV6DhkgaWwAa80S2EDwhbYFUuhACSbEJZCOV4sheK8WArFWSlSmJOjpKRRq9XQZZWiZHcmaD1bY7WuVGe1GsvzkVNwAinlZ5BiygAtsSda7FsR21Zt1mtUWwya2RW5JZVoE+yDAB/rbFbK6Ui5HZWi0iOkxwswqhxbOQO0QRgYORhjOozAcG0YunadWuNhuVp55olJPTB3Qle3pfDJHxPww740pR7KQ/nIhG74+xjzUnBNqZQdzcGlr6zreCvnc2MXBI40r/NdvbAUNuDVZSlsQNgCu2IpFIBkE8JSKMeLpVCcF0uhOCuKrL7MnWXrsiM5KNmTifLT1lahmmo26ctRmHsc6eVnkOSTg7LSQuEDMbcixsDLuweKu/bD4gLrWMN7x3XGc1N7KXXtOHMJT/+UgLTcUqj9z8I/5hOhfYSZgKFhPfHaxIXwCYh0ug2tLEMrzFjKhJ6t8ensIVBfXp2DXq9L97Gr9a03PT4enSNdJxoXOrEGDDLpjMh8cx8MBdaJQt4dAtF67kCnR1F+IhF5B/aj1cyZ8PFpmNZRlclkqmUgRAMSa+BdsRQ2MPBadsdSKHc9WArleLEUivNiKRRnVZMUWmqhdW3LT+aBJLH8ZC5IDoRKtDeyvc7jyMn1yM5IF9pEre2K1W2uRZLWYBf/7b0jMLJLeNVr1LJ3PPcwVqZ8icPZh1GmtyZQdrWjdno91gUMBGZ94/JYNiZmYUdSDqJCfHHv2M4OcXWRwse+P4SfDzie/4d3DML1/a0tpEKA6hB0+mIxMgvLlBVy+ravWxJy2m3B2hQUxZlbOy2FhFAdbELxpo0oP3ECbRbYJxxPefxxtH3tNZbCOlw36U1YCqWR1esGLIVyeFkK5XixFIrzYikUZyUihba1mQwmVCTlKWltyk/kwlBUKbQzY0UBSkvScanyItKQi9zKiygzOI5f9PG9Er1OrMe5gFCcCWmHhIguSA5phydvGoI5o2NRdCkHWh8f+AZaV3wxmoxIzE3Ex7s24I+zO6H2S4FKU+xwXNOLSvDPie8DPa+3vkc5ECn3IYDr3o/HsQvW1k0/bzV+e2QsOtm05tUkhacuFinpbHy1akVgfTS0vgzw1I8J+P5y17HtQS36y2BM6RslxK+mIFpfm7rUqYWsb7tgtAu1zgB+7PvD+PmAdRm6MV0j8NU9w6X3SauWXHx3P+j6W0rgyLYoXv8uijZurHqt68YN0LY3jzHVVRiQsuA5dHz9FZZCaeJ12IClsA7Q6nETlkI5uCyFcrxYCsV5sRSKs5KVwuo1V54rRNmJXJQdzgbNZpYpJaZKnCk5DbU+H9TpV2EsRddzKdAWXYKpvADGMmsXcmVEG4QP6It9Kh3OZKXDPyQUXQYPw/DptyKkjVmsXvzlGJbtTFH+7uWdjUD/0xgUsBnRGdOhqYhCjPcFDJhwB8I7BCK8fSD8g72BJdcB5QVIiL4TN8R3tDt8tV8q2nc4geeuvg4DWw9Ea//WLruP/7P2JBbGJVVtHxnkgy/mDEW/9iFYuPkM/rPOceWZ3c9ejTbBvjLIHGJXHb6AR749aPf6Gzf3x6yh0Yg/nYO/fr7bYZtXb+yD2SOtyc1rOoDSvXuVFsCy48EwwdpSSyvhtHliCC48Pt9OCsOffhYFfSchaX8WUo9dQs/WWbhiQnuEjh7t1nmKbszdx6dPi7KqU1xubi6CgoKg1TrOKqpThc14I5ZCuYvLUijHi6VQnBdLoTgrd6XQdk80SYVaD6kVsTJVfDxhTUdrqiw2C2J5vvJnSoARRShDmaEYlYZyTJn7GHyKy2AsK8VnZ3TYll5SVR2108WUpWGwzhtaBELl5Q+Vygfm7DkqaLyBUGMKgjQ5CPLKgdGrFAtNk1AKbyXGO+gYtEHHlb+rTF4I8wlFh4AOaO/XHl3DuyLSNwLUPFdSocdb606a40hIL//Zt10Iru/XFsv3pCI9r0x5nTrFs2BEBoyYPaU7brrSsYta5uqNemMTLuTbd53TRJZDL07Csp3n8OIv5gTktuWuUbF45YY+Dq9bBJDGAlYkngD9SUXTYSj8htxrF0/pZygNTfaHH+Lios+QHdEfWZGDkBvRB0ZYZ4+36RKEafP6c0uhzEWtayy3FNaVXP1sx1Iox5WlUI4XS6E4L5ZCcVaelELbvRpLdIoc0tJ6FecK7SYnyB1d84/WhPtC08oP6jAfaCL94RMbDO9oa/d4TQQ6LVgDZzMrjr86GWuPZoK6j6uXh6/qiicnm3MKFqxYgdxly6oEsHqsSuOLgIn/hOpyFzu9r+4QhOIRbVFwsQwFSWlIPGGf8NtBQv9vBAJDzHkl67twSyG3FNb3PSZcP0uhMColkKVQjhdLoTgvlkJxVvUlhdWPgMYeUldzUVI+Du46jz42rUlyR9syolVaL/jEhsC7UzBoTWH6z1np9MwaZSxh9XLslcko0xkw9d+/o012KroUXEDnggs4EtEZD7z+j6plFkkKbVeqcaho2FwEtbNfz3hjoR7FRvE5vtfP64eY3s5nfHv6arIUshR6+p6qc30shXLoWArleLEUivNiKRRn1VBSaHtEc785iNUJF9AXakTBC+FQYUrnCPQP8VcmrhgLK81/lunlTqSZR2fpMnGp4gKKkIUSZMOoMuJcTgl89OaWOoNJC1VZED7pdyNS3rgOeoMJ9z+xGE/8/m4VmUNtu2DY98vRJTJQeY26iM/OmOFATh0WC58r7oQ6NMbuvVPlRpwot58ZXn1jGqvZ6YoIxPSNQFA7LwQFB3D3cUPcm9x93BCUxffBUijOiiJZCuV4sRSK82IpFGf1Z0gh7fOTLck4kl4ArVqFUV0icMuQDk4PmiavGIsqYSBRLKyEsdj6d5PenBqn8lwqjKWlMBYVAWo1smN7olJvhBZ6+FUWwZiXA4MKMHipYKJ2NZPyf/Pflf9bX6v+b7sYeMPPFInMtqm4oC2ybIke540ILVPBEBqDgpLsqpp9tFp0a9MeqbmlOKzzvbw3IMc/DNHwwvAgNQKKzDOU61JyKzKQVZ6G7Mv/acsr0PmiGvePuw/UUrj5ZBaeXroDP655oap6WpKQOLSO7YLWsZ1w9T0P4XS/K5T3te3awbf3AKjbjIOhpNpSgwBKjSZsKtLDZgJyVb1RnUMQ0zccMf3CEWnT9c3Jq+tyZeu4DUthHcHV02YshXJgWQrleLEUivNiKRRn9WdJodwRikfr0tOrUqLQVobCIpwaNqyqgnKtBmXeGpR6ax3+LNeqQWs5uypemrboVNQBVy6dB22gFgd/uAMH2vbApAdXK5sU+vlgW3er3AaXVWLMKfu8fhQ3Zfqb6N7OCxWq53HDtrYI1oYjSNsKYT5RaO0bjUjfaPETtonM1+WiorgMS6Ja470nx2Lx/lS88Xsifl/5hBJV5OuN+B7Wuv2CQ/DQp18rrYWURqbsWBEK159z2UK7s0SPLJ0JrdoGICI6CJEdA9G6YzAiY4Kg9XG+NCFLYZ0uZd02YimsG7f62oqlUI4sS6EcL5ZCcV4sheKsmpsUujpzEh9jUSES18bh4oUcBKYlK8vnhRkrUJ5oTRdDsjhvwiPwM5ShszEdU/yTYDiQhUqNGt4GDbpklyI2bg3Czv0GrHxI2d2J5eYl3kp8tDgU0wY6tRf0Xl7wr9Rh1GnHpNUkheGRZxGk/RLTtjtPXh3h20ERRPoz0qcDNF7echeVJpH4qbGtrBwxyXHIKMvFee8S+GuoJdNcOg8ahhlPv6iM9cxbkQRdpnXmtu3OUgxGfG2oQIKXARNHReOVm/oKHwtLoTAq9wNZCt1n6MkaWArlaLIUyvFiKRTnxVIozqqlSKGFyL/WHEfcyWyle3lAdCiemNwDHVuZZ8bO/yweybsOKgmzqYQFeOO7+0YgZPFbKD+VrLxG+RRDPngfYd9NAzKP2EmhKHWSQu+ITfCJXI8BF67GiHM3ACYaP0md1dQlTt3aRqWbm/6kTu9gtRciNBqEa70RrtHCx6vu3c6ix5kNPfblxmG1xg+Jgd1R4eWDxyd1V9ZtFi0shaKkPBDHUugBiB6sgqVQDiZLoRwvlkJxXiyF4qxakhT+c/VxfL7trB2cwTFh+OnBUVWvbUrMUsYABvtqcFXP1srScLaFVjQpT9mL4G+mKi8bKr1Qka+FYfL7KE/LsYbmnAJ8Q4HA1lh3NBPeRw9VvffUmAfh02YNvFvFI7g8AtP2tUdecCCMan9ojQEo8veHj94PPnp/+Bj84E1/1wXD26hR6qhUAa28vdDeT4MAoxFhAAJt1meWu/rOowsGRuCtjV+hT4E5pY3OS4vtYSPRaew1eP9252sdO6uJpdATV0OwDpZCQVANFMZSKAeapVCOF0uhOC+WQnFWLUkKJ7wVpyxDV73seXYiWgf7CEGrWuau4Bhw6Gvg0DdAz+sc11N+o6OyUgpix2CDzzW457Bj69qqR8bAx/8iTuSewMnck8pSfScunUCxznGJvrL0O6AvtKaGWTClJ+6/sgv6vbweReU6tIIKg6HBFVDjCmjQSUmVLV/ioceVDw7CiaIS7Pn3XHgb7ZcxLA2PxT9eeQHBkW2EKmcpFMLkPMhgMKC8vBwBAQFCtbAUCmFqsCCWQjnULIVyvFgKxXmxFIqzaklSOPqNTUivtvoHnf/2pyegfZh1veCa6DmsfZyfapa/qH7WzUgWL483pBdNPsG4O/QLbD5nFaw5o2LxspNVRSg+vTjdLIi5JxB39qDy99LUv8NYYRUxWkJvQs/W6PH876i4PAvb9rjvnrwfacdOol9pN/Qp64IeZeZl7Uq8KgA1reaiRm6FAWUGL1SYVCiBCV+jEnuhx5Ynr0JW4hFsff+fTlFotN4Y95e7MfBamzWkXUBjKZT7LFZFf/TRR3j33XcVIRw6dGjV32uqjqWwjrDraTOWQjmwLIVyvFgKxXmxFIqzaklSOPebA1idkGEHp22IL3YuuFoY2JnMAuQWFqN/57bw0bhojft4TNV4Q6XiEQ8C176BYxcKUViuQ4xXDtqF+gGh9mstuzqI+d8dwsqD1gkrtw/riNdvMkvo7Z/uws4zl+w27ds+BIGdPsSxS8eEzsukD0T5hdugL+kGWrN573MTle3eW7ET+35bhX5Fx6A2OeYm7NC7L6598FGEtHbdashSKHQJ7IMSEhJw33334ZdffkFERASeeOIJREdH47HHHquxNpbCOsCux01YCuXgshTK8WIpFOfFUijOqiVJ4dmcEjz63SEcSstXAEWF+OLlaX1wbd+oWoHlFFfgwa8OYG9KrhKrVXvhuam9MGe0uQXOrqRsA+JeB+hPKvOPKAJ48mIRCst06Jn4EYJ2val0LWP8AvOftRRa3/hSSSVaB/mgTbBvVTSdy9M/JeBkZpHyWmxEAP49oy8e2TEJOmPNy8/Z7rLk7DxEaDvhpWl9cF1/64zogjIdTiWdw4nvFyP71HGHo9T6+GLsHXdh4OTrASfpfFgKa7uyTt5/7733lES+L7xgTjC5f/9+zJ8/H/Hx8TXWxlJYB9j1uAlLoRxclkI5XiyF4rxYCsVZUWROTg7CwsKgVjvPNSdXW+OPziwoh85oRHSY+Hq8L/96DEt2pDic3OGXJiHET+v8pKlrOSUeFX1vx5wv9ygtesEoxTbfecqfVWX6QmDAnW6BI2mkycqWbvA1yWuQXJCM03mncTr/NM4Xna+x/t+m7Ub05VnYrgITNvyOuGWfQVdR4RAS238gbnzyBWi87SfmsBTW4bI+++yz6NmzJ2bPnq1snZWVhdGjRyMxMbHGDylLYR1g1+MmLIVycFkK5XixFIrzYikUZ9USpVCOjjn6lo93VrUS2m5PM5dpBnNN5aPNSfjvupNKyEz1Vryp/dga7hsMPFMtwTWNUfR1vtZxXY6dtqkwVCApP0n5Lzk/GafyTuFM/hlklGSga2hXrLhxhVDVhTnZWLfoXaQeNc9Kti0VUb4IvnMsOkd2Q+eQzujZqidYCoWw2gfNnTsX48aNw6233qq8QV+WgwcPxqFDh6omnTz99NMONf/888/Ys2dPHfYovolOp4NGo4Gqhizv4rU170jKX0ViqNW6+NXYvE9f+uyIlZeXl/Ifl9oJ0AB372q/wmvfqmVGGI1GJZ9cS2n5cvcq83O+doIPfnccu1LM3c625Zs5V6BXm5onhz636jR+O25OGj1JvQ9/V/+O4V4nlH+XD5+PshHzq6r0KjyPkC/HoLL3TFT0mgl9hxG1H5wbEeWGcmSXZSM6UHwVlczSTDz/5d0YeiIMWr398zsrrALrhl2EQU05FoEOAR3w2bjP4K8Vb5V1djrUki1SVCb65DfxQt3GXbp0wZw5c5QzyczMxNixY3Hy5MmqL8wDBw44nOVtt92GY8fEBpLWFVFRURH8/PwUMeRSMwGaPV5SUoLg4GBGJUCAWnPoS9vHRywVhECVzTokLy9P6eLjUjsByuJAYujv794XUe17ah4RBQUFCAoK4h9oNVzOJTtT8drv5tY+S+kcEYC186w5Dl1t/uKvJ7B8n333bW+vc/i02260vv5FmEKsQqb+4zmo9y6uqsrYfQr0M5c1qhst7nwcHo9/HP7lalyztw3CiuwbQkgM/xh2ETq1Cf4af2yavsntxhLRH8TNQgoXLVqEjIwMvPrqq8qF37VrF5588kkeU9ioPga1Hwx3H9fOyDaCu4/leHH3sTgv7j4WZ0WRLW1MoRwda/SiLWew7mgGist06NMhFA9d1RU92gTVWt0fxy/i3mX77OLCA70R/9QE+HvbjOOkbuN3+5lT3FiKB8Yb1nqAkgEHsg7gu8TvcK7wHDKz0zBuWyBCiu3FMCekEutGZKJ7RG8snby0wX78NwspTEpKwsyZM7FmzRpERUVh3rx5iI2NVcSwpsJjCiXv5HoOZymUA8xSKMeLpVCcF0uhOCuWQjlWDnkKBTenlDKUDie/tBIxEQH426hYUOoYu0ITU5ZMBfIvjzF0Nt5w+R3mlVIozY1tbkTB46iPsPSsFKx85UWU55hnZlsKiaHhpn7451WvsRTKgl+2bBnefvttZbNBgwbhnXfeQUhIzQNNWQplKddvPEuhHF+WQjleLIXivFgKxVmxFMqxqqsUSu2FUtnsWmiWPkpZYykkjdSSaCmUymbWNx6flCJ1rJeDS/Lz8N3LzyAvw5pPkd4adt89GDZmCkthXaDyiiZ1odZ4tmEplLsWLIVyvFgKxXmxFIqzYimUY9UgUujqkNY+A+xaZH03qi/wwHa5E6jHaBLD5S89hfxMc4Lwa+57BB0HD1fmJTTU2PFm0X1c12vELYV1JVc/27EUynFlKZTjxVIozoulUJwVS6Ecqz9VCj8eDWQetR5w9fGG1MKYuMbctSy4Worc2dceTWL4zfNPYODk6zBk2k2ckqZ2ZJ6LYCn0HEtP1MRSKEeRpVCOF0uhOC+WQnFWLIVyrP5UKaRDTVxtbi3MTHDMb0jjDUkKqfS8Hhj/zJ8y7rCitAQ+/uY0PZynUO7+ciuapdAtfB7fmKVQDilLoRwvlkJxXiyF4qxYCuVY/elSaDlcGl9o2xpYfbwhxc1ZI7SEnhwBuWiWQjlebkWzFLqFz+MbsxTKIWUplOPFUijOi6VQnBVLoRyrRiOF1Q+7+nhDmoRCUmhbqIWx53UN2rXMUih3f7kVzVLoFj6Pb8xSKIeUpVCOF0uhOC+WQnFWLIVyrBqtFNJpHPraPGuZxh06G2+45DrzydI6yw2U0oalUO7+ciuapdAtfB7fmKVQDilLoRwvlkJxXiyF4qxYCuVYNWoptJwKTTihlkLbQkJIr1vKgDuA6TYzmeUwCEezFAqjcj+QpdB9hp6sgaVQjiZLoRwvlkJxXiyF4qxYCuVYNQkprH5KzsYbPrDNfhJK5hFzt7JvzfmR5WjxRBNZXm7FsxS6hc/jG7MUyiFlKZTjxVIozoulUJwVSx87PpUAABnOSURBVKEcqyYphbRsHs1ajnvdvFqKs/GGluX1LLOWPZTShlsK5e4vt6JZCt3C5/GNWQrlkLIUyvFiKRTnxVIozoqlUI5Vk5RC21O0dCHbdi+TMC6/0x7EM6keaTVkKZS7v9yKZil0C5/HN2YplEPKUijHi6VQnBdLoTgrlkI5Vk1eCp2dbm3jDamlkUodupZZCuXuL7eiWQrdwufxjVkK5ZCyFMrxYikU58VSKM6KpVCOVbOUQupWppnL1LVMpfp4Q5rRHPeGddayRNcyS6Hc/eVWNEuhW/g8vjFLoRxSlkI5XiyF4rxYCsVZsRTKsWqWUmhBQGJIE06ufcMeCo03pMkqljLra/OKKQKFpVAAkqdCWAo9RdIz9bAUynFkKZTjxVIozoulUJwVS6Ecq2Ythc5QuDnekKVQ7v5yK5ql0C18Ht+YpVAOKUuhHC+WQnFeLIXirFgK5Vi1OCmk1kNaLaW80Ayqen5DGm9IYxKp5ZASYlcbd8hSKHd/uRXNUugWPo9vzFIoh5SlUI4XS6E4L5ZCcVYshXKsWpwUWvCQHNLYwzm/2S+TR6/ReENLGf8MMH5B1T9ZCuXuL7eiWQrdwufxjVkK5ZCyFMrxYikU58VSKM6KpVCOVYuVQleYqo83ZCmUu6E8Gc1S6Ema7tfFUijHkKVQjhdLoTgvlkJxViyFcqxYCm140aSUJVOtXcu+wcD8o3ZdyOVrX4K6y5XQdpsgB7qO0SqTyWSq47ZNfjOWwsZ1CVkK5a4HS6EcL5ZCcV4sheKsWArlWLEUVuNFYwqpa5nS1sSOtV9Pmd57oyN0d65gKZS7zeoWzVJYN271tRVLoRxZlkI5XiyF4rxYCsVZsRTKsWIprIEXSaDtRJO412E49gv092yBj4+PHOg6RnNL4enTdUQntllubi6CgoKg1WrFNmjBUSyFchefpVCOF0uhOC+WQnFWLIVyrFgKJXi92w+lw+ZBPXg2S6EEtjqHckthndHVy4YshXJYWQrleLEUivNiKRRnxVIox4qlUIJXeQHyy03w8/NjKZTAVudQlsI6o6uXDVkK5bCyFMrxYikU58VSKM6KpVCOFUuhHC9OSSPHy61olkK38Hl8Y5ZCOaQshXK8WArFebEUirNiKZRjxVIox4ulUI6XW9EshW7h8/jGLIVySFkK5XixFIrzYikUZ8VSKMeKpVCOF0uhHC+3olkK3cLn8Y1ZCuWQshTK8WIpFOfFUijOiqVQjhVLoRwvlkI5Xm5FsxS6hc/jG7MUyiFlKZTjxVIozoulUJwVS6EcK5ZCOV4shXK83IpmKXQLn8c3ZimUQ8pSKMeLpVCcF0uhOCuWQjlWLIVyvFgK5Xi5Fc1S6BY+j2/MUiiHlKVQjhdLoTgvlkJxViyFcqxYCuV4sRTK8XIrmqXQLXwe35ilUA4pS6EcL5ZCcV4sheKsWArlWLEUyvFiKZTj5VY0S6Fb+Dy+MUuhHFKWQjleLIXivFgKxVmxFMqxYimU48VSKMfLrWiWQrfweXxjlkI5pCyFcrxYCsV5sRSKs2IplGPFUijHi6VQjpdb0SyFbuHz+MYshXJIWQrleLEUivNiKRRnxVIox4qlUI4XS6EcL7eiWQrdwufxjVkK5ZCyFMrxYikU58VSKM6KpVCOFUuhHC+WQjlebkWTFHJhAkyACTABJsAEmEBzJnD69Gmh01OZTCaTUCQH1YnAY489hr/97W/o169fnbZvSRslJyfj//7v//DJJ5+0pNOu87m+//776NSpE6ZNm1bnOlrKhkajEVOmTMG6detayim7dZ4rV65Eeno6Hn74YbfqaSkb0zP+n//8Jzp06NBSTrnO53ngwAF89913yrOeS+0EXnnlFVx99dUYM2ZM7cEeiGAp9ADEmqpgKRQHzFIozooiWQrFebEUirOiSJZCOV4sheK8WArFWVEkS6Ecr0YfzVIofolYCsVZsRTKsWIplOPFUijHi6VQnBdLoTgrlkI5Vk0imqVQ/DKxFIqzYimUY8VSKMeLpVCOF0uhOC+WQnFWLIVyrJpENEuh+GViKRRnxVIox4qlUI4XS6EcL5ZCcV4sheKsWArlWHE0E2ACTIAJMAEmwASYgIcI8EQTD4HkapgAE2ACTIAJMAEm0JQJsBQ25avHx84EmAATYAJMgAkwAQ8RYCn0EEiuhgkwASbABJgAE2ACTZkAS2EDXj2DwYDy8nIEBAQ04F4b965KSkrg7+8PlUrlcKAFBQUICgqCl5dX4z6JBjo6un9oiSg/Pz+HPVIOelr2LiQkpIGOpunspqKiAt7e3nb3WFlZGTQaDbRabdM5kT/pSPnecg6eJi8VFRUhMDAQarW6Koif83I3Kj/nHXnR88nZc74h7i2WQrn7t9bo1atX49FHH1Uytg8aNKgq/qOPPsK7776rCOHQoUOr/l5rhc004I8//sB///tfZGVlKeJ3xx134MEHH1TONjU1Fffffz8yMjKUf//nP//BpEmTmimJ2k8rJSUF//rXv7Bv3z4luG/fvnj66aerVsnZsmUL/vGPfyjvtW7dGh9//DE6d+5ce8UtIOL333/HvHnzsH79emX1F3rYPvnkk9i2bZty9n/9619BGQKc/ShpAXiUU6TnEj2fLCU6OhqbNm1S/sn3luNdkJeXh5deeglbt25Fq1atMHfuXNx0001KID/nrbzoeXX77bc7AKRn+xNPPMHPeScPmF9++UW5h+gHflRUFJ566imMGjWqQe8tlkIPPvlpmaM9e/YgOztbubCDBw9Wak9ISMB9990HuuARERHKB4IevPRl1FILyXPHjh3Rv39/ZTmt8ePHY8OGDYiJicG9996rCA99mR8/fhw33nijIkQttRWM7qfdu3cry7RRWbRoEQ4dOoTPPvtMaXkeMWIEFi5cqDw8vvnmG/z000/Kfy29ELfbbrsNubm5WLFihSKFX3zxBeLi4vD555+jtLQUM2bMwKuvvtpgS0g1xmvy4osvonfv3goLKtQyTy2ofG85v1o333yz8lmbP3++XQshP+fteVFLqk6nq3qR/n3dddcpQn3llVfyc77a7UU/WEeOHKk8w+nzSD9oadWq3377DUeOHGkwh2Ap9OBTevPmzcoXNP06euGFF6qk8L333lPMn16jsn//fuWBEh8f78G9N+2qZs2ahbvvvhtjx45VRHHHjh2IjIxUTmrOnDnKL/EbbrihaZ+kh46eBIfkZtWqVQqnl19+WWkJo0Jf5CTUJD7t27f30B6bZjXUIkEi/dZbb2HZsmWKFNJ9RjnlJk+erJwUtaqeP39eaYltqYXWN6bPF62valv43nK8I/bu3au00lNPh22XMUXyc77mTxC1OtOSbcSOhsHwc96eV3FxMQYOHKh4AbUSWu41arVvyHuLpbAevgmmTZumfFFbWgqfffZZ9OzZE7Nnz1b2Rl2mo0ePRmJiosODpR4Op9FXSS069Mt7165dSvfeVVddhdOnT1cdN7Fs166d8kuppRaSvVOnTikthEuWLFFaUadPn660Pq9du1ZpPbSUCRMm4M0337QbvtDSuP3888/KL+1PP/1U+aH27bffKlJIPzo++eQT5Zc4FYr54YcfFMluqYVEmT5f9EU0fPhwpbWCxmDyveV4RyxdulTpvejWrZvyJ4n0xIkT4ePjA37O1/wJoh/311xzDe68807lhxg/5x150VAO6uW56667QPcatarS/dWQ9xZLYT18E1SXQhpzMm7cONx6663K3qjVkISRvuBb+qQTGjj7wAMPoE+fPkrrKYkyfUkRG0uhMYXUpUXd7i21nD17VhFB4kNf3M8//7zyQ+Orr74CrRDw9ttvV6EhWaShCXTPtcRCwxGoi4+kpk2bNnZSSF/m69atqxpzSS2qH3zwQYvubidONE6OJuTQEA4a+E+Mvv76a763qn2A6FlEPzRo3HjXrl3x5ZdfKi3z9KXNz3nXTxt6btH34sGDB5WJOfycd87Kwom8gIaY0RAheoY15L3FUlgP35rVpZC6jbt06aJ0g1LJzMxUWixOnjzZ4mfWUisgfYlTNx51x1y4cEEZb2LbUkhjnugDQmMNW3qhL+7ly5crLYPbt29XWrqoG5lav2xbCkkSBwwY0OJw0bgl+pxRy/PMmTOV87/++uuVMb7UOkgTlogdTdahQmNbqVWxJbcU2t4kNAaMJsItXrxY6dHge8v+I/Taa6+BuvnoTyr0JU73G30W6VnGz3nnj5wFCxYoY8KfeeYZJYCf846cLD1m9EODGo3omU7PepoUR93uDXVvsRTWw9dmdSmkLyGaSUsD2qlQNynNgGzpYwqpqZwYUHcozUCmQtJDX9g0s69t27bKazRGk/7jMYXmm5XSYNDMdhLC/Px8ZYaaZbYodb/TWJ2WOqbQMi7H2cf63//+tyKB1GJPokjlww8/VH6kteQxhdVZ3XLLLQoj6m7ne8ueDn1h0w9WixSmpaUpLWA0/otadfg57/jJswyXskwk5Oe8c+n49ddflWEu9B8V6kUjOaRuZBrf21D3FkthA0hhUlKS0mqxZs0aZdwOdQPGxsYqYthSCz1Av//+e/zvf/+rmlVMLYU065G6ZkgIic/hw4dBX1L00A0NDW2RuGgsIZ07pZsh6aMuY+rGotmONPaLxqe+/vrryhgdavGih8vKlStbJCtnJ207ppB+eRMb+iFCs49pZjtlDaDZ7y2x0BcPdenRlw+1stKPNGqRpyEJlD+U7y37u4IkkMbsUgsqpX2ioQc5OTnK54+f884/QTRJglpUbcc9UyQ/5x3vLfqBQUM3qMuYhlBRKzQ1ItEYzIZyCJbCevgmoDFd1OVpm6eQZj9axn3R6++8806LTbFCyGlsV/UyZMgQ5VcS/bKknIVnzpxRQqgVx9KyUw+Xq9FXSa1bNIbQ19dXmV1MYwX/8pe/YNiwYcqxU7oeGnNC71HeNEpPQ+MNuZgJkBSSDNIPMeoeJZb04KXE6TTjnWaTttQE6Xq9XvmyOXbsWFUOVcoZSj8w+N5y/gmi2f/UnUeFhrpQjlBLXlB+ztszs6Q1IiGkCUy2hZ/zjvcXDdv48ccflXkHlD2Cnk+UxodKQ91bLIUN+M3ZENnIG/B06n1X1E1KA25b6he2LWC6d4gHdbNXT4VhiaMJAi01l6PszcgrmtgTo3uL7itqHXRW+N6yp0KtqiQ8znjxc17u08jPeUde9IPV2STUhri3WArl7l+OZgJMgAkwASbABJhAsyTAUtgsLyufFBNgAkyACTABJsAE5AiwFMrx4mgmwASYABNgAkyACTRLAiyFzfKy8kkxASbABJgAE2ACTECOAEuhHC+OZgJMgAkwASbABJhAsyTAUtgsLyufFBNgAkyACTABJsAE5AiwFMrx4mgmwASYABNgAkyACTRLAiyFzfKy8kkxASbABJgAE2ACTECOAEuhHC+OZgJMgAkwASbABJhAsyTAUtgsLyufFBNgAkyACTABJsAE5AiwFMrx4mgmwASYABNgAkyACTRLAiyFzfKy8kkxASbABJgAE2ACTECOAEuhHC+OZgJMgAkwASbABJhAsyTAUtgsLyufFBNgAkyACTABJsAE5AiwFMrx4mgmwASYABNgAkyACTRLAiyFzfKy8kkxASbABJgAE2ACTECOAEuhHC+OZgJMgAk0WwJlZWWIj49Hz5490bFjx2Z7nnxiTIAJOCfAUsh3BhNgAo2SwPnz52EwGJwem7+/PyIjIxvlcTe1g8rKyoKPjw9yc3Mxb948TJ8+Hfv27UPfvn3x8MMPK6fz/+2ddYhUbRuHbwNR7MAWAwMUA8XuwA6wxe5AMcDGTuzEbjEQuwMLxUJsRUUsDFDBxoD1+64HzjA77+zuu66vO7Pze8A/nJlzznOuc4SL3/3cj8GeRZo0aSxlypQWFRVl2bJlC7fb1nxFQASCEJAU6rUQAREISQJFihSJcV6NGjWyRYsWheS84zsp0rlr165ZlSpV4ntogn//8uVLq1mzpm3cuNGuX79uOXLksJYtW9rPnz+tQYMGdvz4cUuRIoUFexYVK1a0Nm3a2IQJE+zs2bOWIUOGBM9HJxABEUhcApLCxOWvq4uACMRA4MePH/br1y/3badOnaxq1arWv39/93dEhZQqKYzDhw/bjh07bO3atX/9dkgGv379aqtXr7aBAwdaly5drEKFCm4eiPemTZtcCogUzpkzxxo2bOibY/LkyY0/JIsI7ejRo//6/HVBERCBP0tAUvhneepsIiAC/wGB9u3bW7Vq1Zy4eOPNmzc2depUO3PmjGXJksX4Tc+ePZ0wnj592g4cOGClS5e2devWOfFBaIYOHWozZ860U6dOWYECBaxVq1Yu7WJwzMGDB90xJGeUVWvUqGHjx4/3lUdJ0BYsWGD79u1zaVqdOnVs1KhRvpSsR48eNmDAANu1a5cdOnTIevfubX369LGFCxfasWPH7PHjx0bC1q9fP3c/u3fvtkmTJtmXL1+sYMGC7j62bdtmU6ZMcdf0JJj5IW6UcSdOnGjce8eOHW3lypU+BghcpUqV3LW55+fPn1uZMmXc/AsVKvSPp3L37l1r0aKF7d2714oXL27Lli2z79+/25AhQ4wEcdCgQbZz5053HFJIMosoBg749+rVy86fP2/Zs2f/D56+TikCIvC3CEgK/xZpXUcEROC3CQRKIWsNmzZtahkzZnTS9fTpU5s+fbqTKX6LECKApUqVcsLy+fNnGzNmjKVNm9aVSxHBS5cu2fLly11Khzx5x9Bkgdx9+/bNyRzyiKgxOD9yhzixDm/evHlOIufPn+++RxIRUASPc3CufPny2eTJk61o0aLuz9atW+3q1at28uRJe/XqlS1evNju37/vzo3QFitWzK3ly507t40dO9bHbNasWU4qkbfXr19b9erVLWfOnC6la9asmbvXCxcuOHHm3lkTSPr46NEjVwZOnTp1NP4I6YgRI+zBgweWLFkyo4xNcsi5s2bN6oQUgY1LCj99+mRly5a1DRs2JEoJ/LdfKh0oAiLwDwKSQr0UIiACIU8gUArPnTtn3bt3d4KGgDEGDx7skjTSLU/wSP/y5MnjvkfS6Ky9ffu2EzrEsly5ck4W27Zt6ztmy5YtVr58eXcMpV1E6ciRI66xhd/PmDHDWrdu7b5HFseNG+fWBKZLl85JIQkia+wQrWADga1Xr55v7ojnjRs3opWP/60UIrfIsDdIPkkFZ8+e7T56+PChNW7c2NasWeNST/+B0JLueWmg9x1l+1SpUkX7LUkhEuqx5svatWu7tJNBQkmySHqpIQIiEL4EJIXh++w0cxGIGAKBUkgqRem4Vq1aPgYkYnTQ0jDhSSFS5A2SOH6zfv1632ckbAhe165dfcfcunXLl6pRQmYt46pVq5wUsn4OMUyfPr07B9e7efOmKxUjTkhh8+bNXZLoP65cueLK00jrhw8ffDJGupcQKaRM7IkZ6y9JIhG3/Pnzu8vzGeVdL0H1nxOJIh3EnkDG9jJxb5UrV3apqTfq1q3rUlcGaz4pQSPYGiIgAuFLQFIYvs9OMxeBiCEQKIWspUNm5s6d65odvEH5lXVvSCHSePHixWhS+PbtWydh3ggmhf4i+f79e5caUmbOnDmztWvXzpVmA/fwI0WjlI0UsqbQSxK5DkJJ6bdz586uTE2XLmsNSejiI4WUoCk3+5eP/ZNSkk/K1YirJ2vefZYoUSJaysfnJKAkgjSQxDViW1PIsR06dLCSJUtKCuMCqe9FIMQJSApD/AFpeiIgAubWCfo3mhw9etStndu/f78TocCRECn0b5igIYU1izRjkBSyfo8tWEjGgo1gUshnpI2kdQzvnJ4U0sBx+fJl27x5s++Uw4YNM8q4S5Ys8X3WrVs3l+zFJIX8sH79+i4t9D8upveHhhnSyz179sT5isUlhcjuyJEjnRxqiIAIhC8BSWH4PjvNXAQihkCgFNIUwZq2woULu05epOXevXtumxrkMSFSiMSxpi9XrlwuFXz37p3rSiaRJF1j/SDShug9e/bM/WFvP0YwKeRcdPWSyFG+pvuZErcnhTSc9O3b106cOOGuSXq3dOlS1+VMU0revHmd/JI2shYxNilkPSTSOnz4cLeW8OPHj0Y5vEmTJm7No/9ABvkdTS7+aWuwlyo2KfTSVDWaRMw/R91oEiYgKUzCD1e3JgJJhUCwLWnomqU7F8HyBmvaaED5t1JIqRWhY38+7xjSNmSMgXSS5HmbN7MekMSP5NAbbPLsJXOeUNLw4Q3mxzYyd+7ccR8hbXQFU8am5Op1/ZLaMShfI1rTpk3zpXiUmVnLyDYz/lJIV7H/Oj9KyCtWrPB1Q3M+1hhu377dlb/9B/yQRa/7OrZ3JTYp9FJbOp/1P5sklX9xuo9IJSApjNQnr/sWgSRCAKlin79MmTIlaENrf5GkdMt5WScYbCBfNJnQcBK41UtMWBFK0jrWPQYbbO1C0kmJ2BvMgWsFpnxxPToaTEg46bL2mmKCHUPiiYD+7sbZ3tZApLZsb6MhAiIQ3gQkheH9/DR7ERCBP0QgWLr4h04dsqd58eKF6+Bmax2SyPgOtuzhfzKhwzkmgY7vOfV7ERCBxCMgKUw89rqyCIhACBGIRCkE/5MnT9ym3jTSxHfQDR0VFeXbCzK+x+v3IiACoUVAUhhaz0OzEQERSCQC/NduNF1QCtUQAREQgUgkICmMxKeuexYBERABERABERCBAAKSQr0SIiACIiACIiACIiACJinUSyACIiACIiACIiACIiAp1DsgAiIgAiIgAiIgAiJgkkK9BCIgAiIgAiIgAiIgApJCvQMiIAIiIAIiIAIiIAL/J/A/ZGjeluQ5CuIAAAAASUVORK5CYII=", "image/svg+xml": [ "204060800100200Temperature (​oF)Gas (ft^3)" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ys = [make_ys(mod=mods[j], deg=degrees[j], xs=xs) for j in range(6)]\n", "\n", "fig = go.Figure()\n", "fig.add_trace(go.Scatter(x=X[\"temp\"], y=y, mode=\"markers\"))\n", "fig.add_trace(go.Scatter(x=xs, y=ys[0], line=dict(width=4, dash='dot')))\n", "fig.add_trace(go.Scatter(x=xs, y=ys[1], line=dict(width=4, dash='dash')))\n", "fig.add_trace(go.Scatter(x=xs, y=ys[2], line=dict(width=4, dash='dashdot')))\n", "fig.add_trace(go.Scatter(x=xs, y=ys[3], line=dict(width=4, dash='longdash')))\n", "fig.add_trace(go.Scatter(x=xs, y=ys[4], line=dict(width=4, dash='longdashdot')))\n", "fig.add_trace(go.Scatter(x=xs, y=ys[5], line=dict(width=4)))\n", "\n", "fig.update_xaxes(title='Temperature (oF)')\n", "fig.update_yaxes(title='Gas (ft^3)')\n", "fig.update_layout(height=250, width=500, showlegend=False)\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also visualize the different polynomial fits in separate facets: " ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "mode": "markers", "type": "scatter", "x": [ 29, 31, 15, 43, 23, 71, 67, 72, 15, 64, 58, 48, 35, 16, 25, 35, 53, 69, 75, 72, 67, 46, 29, 25, 34, 47, 69, 72, 76, 69, 51, 45, 21, 48, 23, 28, 70, 51, 64, 76, 54, 37, 11, 75, 24, 64, 26, 18, 72, 72, 45, 66, 17, 56, 54, 56, 74, 69, 78, 72, 56, 21, 41, 30, 22, 34, 53, 59, 74, 78, 77, 64, 41, 30, 50, 24, 13, 38, 46, 65, 74, 76, 75, 68, 58, 41, 18, 28, 15, 45, 75, 55, 68, 67, 76, 55, 39 ], "xaxis": "x", "y": [ 166, 179, 224, 82, 208, 15, 15, 8, 242, 18, 35, 78, 144, 216, 204, 130, 48, 16, 14, 15, 18, 100, 153, 190, 126, 69, 16, 15, 16, 23, 60, 106, 190, 79, 210, 178, 1, 44, 20, 7, 37, 123, 235, 15, 228, 17, 194, 164, 13, 0, 74, 23, 224, 43, 61, 51, 9, 11, 11, 19, 32, 176, 99, 144, 161, 116, 52, 38, 10, 7, 6, 15, 101, 140, 47, 168, 191, 101, 77, 18, 7, 9, 6, 13, 28, 98, 182, 139, 191, 79, 12, 29, 6, 16, 11, 32, 91 ], "yaxis": "y" }, { "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "xaxis": "x", "y": [ 220.23055438421662, 216.72447955965367, 213.21840473509076, 209.71232991052784, 206.20625508596493, 202.70018026140198, 199.19410543683907, 195.68803061227612, 192.1819557877132, 188.6758809631503, 185.16980613858738, 181.66373131402443, 178.15765648946152, 174.65158166489857, 171.14550684033566, 167.63943201577274, 164.13335719120983, 160.62728236664688, 157.12120754208397, 153.61513271752102, 150.1090578929581, 146.6029830683952, 143.09690824383227, 139.59083341926933, 136.08475859470641, 132.57868377014347, 129.07260894558055, 125.56653412101764, 122.06045929645472, 118.55438447189178, 115.04830964732886, 111.54223482276595, 108.036159998203, 104.53008517364009, 101.02401034907717, 97.51793552451423, 94.01186069995131, 90.5057858753884, 86.99971105082545, 83.49363622626254, 79.98756140169962, 76.48148657713668, 72.97541175257376, 69.46933692801085, 65.9632621034479, 62.45718727888499, 58.95111245432207, 55.44503762975913, 51.93896280519621, 48.432887980633296, 44.92681315607035, 41.42073833150744, 37.91466350694452, 34.40858868238158, 30.90251385781866, 27.396439033255746, 23.8903642086928, 20.384289384129886, 16.87821455956697, 13.372139735004026, 9.86606491044111, 6.359990085878195, 2.853915261315251, -0.6521595632476647, -4.15823438781058, -7.664309212373496, -11.170384036936412, -14.676458861499384, -18.1825336860623, -21.688608510625215, -25.19468333518813 ], "yaxis": "y" }, { "mode": "markers", "type": "scatter", "x": [ 29, 31, 15, 43, 23, 71, 67, 72, 15, 64, 58, 48, 35, 16, 25, 35, 53, 69, 75, 72, 67, 46, 29, 25, 34, 47, 69, 72, 76, 69, 51, 45, 21, 48, 23, 28, 70, 51, 64, 76, 54, 37, 11, 75, 24, 64, 26, 18, 72, 72, 45, 66, 17, 56, 54, 56, 74, 69, 78, 72, 56, 21, 41, 30, 22, 34, 53, 59, 74, 78, 77, 64, 41, 30, 50, 24, 13, 38, 46, 65, 74, 76, 75, 68, 58, 41, 18, 28, 15, 45, 75, 55, 68, 67, 76, 55, 39 ], "xaxis": "x2", "y": [ 166, 179, 224, 82, 208, 15, 15, 8, 242, 18, 35, 78, 144, 216, 204, 130, 48, 16, 14, 15, 18, 100, 153, 190, 126, 69, 16, 15, 16, 23, 60, 106, 190, 79, 210, 178, 1, 44, 20, 7, 37, 123, 235, 15, 228, 17, 194, 164, 13, 0, 74, 23, 224, 43, 61, 51, 9, 11, 11, 19, 32, 176, 99, 144, 161, 116, 52, 38, 10, 7, 6, 15, 101, 140, 47, 168, 191, 101, 77, 18, 7, 9, 6, 13, 28, 98, 182, 139, 191, 79, 12, 29, 6, 16, 11, 32, 91 ], "yaxis": "y2" }, { "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "xaxis": "x2", "y": [ 253.4795066988599, 247.39758384699238, 241.3863526499435, 235.44581310771326, 229.57596522030167, 223.7768089877087, 218.0483444099344, 212.39057148697873, 206.80349021884166, 201.28710060552325, 195.84140264702347, 190.46639634334235, 185.16208169447984, 179.92845870043595, 174.7655273612107, 169.6732876768041, 164.65173964721615, 159.70088327244682, 154.82071855249612, 150.01124548736408, 145.27246407705064, 140.60437432155587, 136.00697622087972, 131.4802697750222, 127.02425498398333, 122.6389318477631, 118.32430036636148, 114.08036053977852, 109.9071123680142, 105.80455585106847, 101.77269098894143, 97.81151778163297, 93.92103622914323, 90.10124633147205, 86.35214808861954, 82.67374150058563, 79.06602656737044, 75.5290032889738, 72.06267166539578, 68.66703169663646, 65.34208338269576, 62.0878267235737, 58.904261719270266, 55.791388369785466, 52.7492066751193, 49.777716635271815, 46.87691825024285, 44.046811520032634, 41.28739644464099, 38.598673024068034, 35.98064125831365, 33.43330114737802, 30.9566526912609, 28.550695889962526, 26.21543074348267, 23.950857251821503, 21.756975414978967, 19.633785232955063, 17.58128670574979, 15.599479833363148, 13.688364615795194, 11.847941053045815, 10.078209145115125, 8.379168892003008, 6.750820293709637, 5.193163350234784, 3.706198061578675, 2.2899244277410844, 0.9443424487221819, -0.33054787547803244, -1.5347465448596722 ], "yaxis": "y2" }, { "mode": "markers", "type": "scatter", "x": [ 29, 31, 15, 43, 23, 71, 67, 72, 15, 64, 58, 48, 35, 16, 25, 35, 53, 69, 75, 72, 67, 46, 29, 25, 34, 47, 69, 72, 76, 69, 51, 45, 21, 48, 23, 28, 70, 51, 64, 76, 54, 37, 11, 75, 24, 64, 26, 18, 72, 72, 45, 66, 17, 56, 54, 56, 74, 69, 78, 72, 56, 21, 41, 30, 22, 34, 53, 59, 74, 78, 77, 64, 41, 30, 50, 24, 13, 38, 46, 65, 74, 76, 75, 68, 58, 41, 18, 28, 15, 45, 75, 55, 68, 67, 76, 55, 39 ], "xaxis": "x3", "y": [ 166, 179, 224, 82, 208, 15, 15, 8, 242, 18, 35, 78, 144, 216, 204, 130, 48, 16, 14, 15, 18, 100, 153, 190, 126, 69, 16, 15, 16, 23, 60, 106, 190, 79, 210, 178, 1, 44, 20, 7, 37, 123, 235, 15, 228, 17, 194, 164, 13, 0, 74, 23, 224, 43, 61, 51, 9, 11, 11, 19, 32, 176, 99, 144, 161, 116, 52, 38, 10, 7, 6, 15, 101, 140, 47, 168, 191, 101, 77, 18, 7, 9, 6, 13, 28, 98, 182, 139, 191, 79, 12, 29, 6, 16, 11, 32, 91 ], "yaxis": "y3" }, { "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "xaxis": "x3", "y": [ 226.0715923543893, 223.94937904485798, 221.6278481493415, 219.11472305936294, 216.41772716644525, 213.54458386211147, 210.5030165378846, 207.30074858528766, 203.94550339584367, 200.44500436107563, 196.80697487250654, 193.03913832165944, 189.1492181000573, 185.14493759922317, 181.03402021068004, 176.82418932595095, 172.52316833655888, 168.13868063402685, 163.67844960987787, 159.15019865563494, 154.5616511628211, 149.92053052295935, 145.2345601275727, 140.51146336818414, 135.75896363631674, 130.98478432349344, 126.19664882123729, 121.4022805210713, 116.60940281451846, 111.8257390931018, 107.05901274834436, 102.31694717176907, 97.60726575489906, 92.9376918892572, 88.31594896636665, 83.74976037775028, 79.2468495149312, 74.81493976943241, 70.46175453277687, 66.19501719648764, 62.022451152087626, 57.95177979110005, 53.990726505047775, 50.14701468545377, 46.42836772384118, 42.842509011732886, 39.39716194065204, 36.1000499021215, 32.9588962876644, 29.98142448880367, 27.175357897062383, 24.548419903963577, 22.108333901030164, 19.86282327978506, 17.81961143175164, 15.986421748452699, 14.370977621410987, 12.981002442149986, 11.824219602192386, 10.908352493061386, 10.241124506280016, 9.830259033370908, 9.683479465857488, 9.80850919526273, 10.213071613109491, 10.904890110920746, 11.891688080219524, 13.181188912529137, 14.781115999372332, 16.69919273227208, 18.94314250275147 ], "yaxis": "y3" }, { "mode": "markers", "type": "scatter", "x": [ 29, 31, 15, 43, 23, 71, 67, 72, 15, 64, 58, 48, 35, 16, 25, 35, 53, 69, 75, 72, 67, 46, 29, 25, 34, 47, 69, 72, 76, 69, 51, 45, 21, 48, 23, 28, 70, 51, 64, 76, 54, 37, 11, 75, 24, 64, 26, 18, 72, 72, 45, 66, 17, 56, 54, 56, 74, 69, 78, 72, 56, 21, 41, 30, 22, 34, 53, 59, 74, 78, 77, 64, 41, 30, 50, 24, 13, 38, 46, 65, 74, 76, 75, 68, 58, 41, 18, 28, 15, 45, 75, 55, 68, 67, 76, 55, 39 ], "xaxis": "x4", "y": [ 166, 179, 224, 82, 208, 15, 15, 8, 242, 18, 35, 78, 144, 216, 204, 130, 48, 16, 14, 15, 18, 100, 153, 190, 126, 69, 16, 15, 16, 23, 60, 106, 190, 79, 210, 178, 1, 44, 20, 7, 37, 123, 235, 15, 228, 17, 194, 164, 13, 0, 74, 23, 224, 43, 61, 51, 9, 11, 11, 19, 32, 176, 99, 144, 161, 116, 52, 38, 10, 7, 6, 15, 101, 140, 47, 168, 191, 101, 77, 18, 7, 9, 6, 13, 28, 98, 182, 139, 191, 79, 12, 29, 6, 16, 11, 32, 91 ], "yaxis": "y4" }, { "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "xaxis": "x4", "y": [ 227.03317984715346, 223.05137351116832, 219.5498400463221, 216.4075951777574, 213.51817186887203, 210.78867505776623, 208.13886430980966, 205.50026438632833, 202.81530372941, 200.03648086282857, 197.12555870909034, 194.05278682259635, 190.79615153892595, 187.34065404023923, 183.6776163368005, 179.80401516461706, 175.72184379920077, 171.4375017854506, 166.96121258364744, 162.30646913157676, 157.48950732276484, 152.52880740083646, 147.44462326999343, 142.25853972160672, 136.99305757693747, 131.67120674596703, 126.31618720235605, 120.95103787451109, 115.59833345278838, 110.27990911279363, 105.01661315482426, 99.82808755941602, 94.73257645901032, 89.74676252575188, 84.88563127539447, 80.16236328732208, 75.58825434071133, 71.17266346678554, 66.9229889172114, 62.84467204859749, 58.94122912311951, 55.214311025278505, 51.66379089474259, 48.28787967535101, 45.083269580210356, 42.04530547290534, 39.16818416485722, 36.44518162877495, 33.86890812823941, 31.4315912634068, 29.125386932815047, 26.942718211328895, 24.87664214420721, 22.92124445726796, 21.072062183188166, 19.326534203917902, 17.684479709223808, 16.148604571324825, 14.725035635692905, 13.423882927936859, 12.259829776780236, 11.252750853266036, 10.428358125928128, 9.818874732244069, 9.463736766009163, 9.410322981084676, 9.714712411050925, 10.442469905034443, 11.669459579721945, 13.482686187433785, 15.98116440032237 ], "yaxis": "y4" }, { "mode": "markers", "type": "scatter", "x": [ 29, 31, 15, 43, 23, 71, 67, 72, 15, 64, 58, 48, 35, 16, 25, 35, 53, 69, 75, 72, 67, 46, 29, 25, 34, 47, 69, 72, 76, 69, 51, 45, 21, 48, 23, 28, 70, 51, 64, 76, 54, 37, 11, 75, 24, 64, 26, 18, 72, 72, 45, 66, 17, 56, 54, 56, 74, 69, 78, 72, 56, 21, 41, 30, 22, 34, 53, 59, 74, 78, 77, 64, 41, 30, 50, 24, 13, 38, 46, 65, 74, 76, 75, 68, 58, 41, 18, 28, 15, 45, 75, 55, 68, 67, 76, 55, 39 ], "xaxis": "x5", "y": [ 166, 179, 224, 82, 208, 15, 15, 8, 242, 18, 35, 78, 144, 216, 204, 130, 48, 16, 14, 15, 18, 100, 153, 190, 126, 69, 16, 15, 16, 23, 60, 106, 190, 79, 210, 178, 1, 44, 20, 7, 37, 123, 235, 15, 228, 17, 194, 164, 13, 0, 74, 23, 224, 43, 61, 51, 9, 11, 11, 19, 32, 176, 99, 144, 161, 116, 52, 38, 10, 7, 6, 15, 101, 140, 47, 168, 191, 101, 77, 18, 7, 9, 6, 13, 28, 98, 182, 139, 191, 79, 12, 29, 6, 16, 11, 32, 91 ], "yaxis": "y5" }, { "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "xaxis": "x5", "y": [ 228.2689453121493, 223.72956976932045, 219.68400040202988, 216.08261568973057, 212.8587854932876, 209.93516291673274, 207.22899658181535, 204.65654518258958, 202.1366731524434, 199.59370324111347, 196.95959876439548, 194.17554525440784, 191.19299820341467, 187.97426055937177, 184.49265059652572, 180.7323177495071, 176.6877609645797, 172.36310108678282, 167.77115576691796, 162.93236233745648, 157.87359107160756, 152.62688820491877, 147.2281850639809, 141.71600661187568, 136.13020968528855, 130.51077816321396, 124.89669927247797, 119.32494220028076, 113.82955714935798, 108.44090993622723, 103.18506419844545, 98.08332024156317, 93.15191652211416, 88.40189672776233, 83.83914238074414, 79.46456785666288, 75.27447167471456, 71.26103488169957, 67.41295431647796, 63.71619550705128, 60.15484691781222, 56.71205422908298, 53.37101029674869, 50.11597340458303, 46.93328338762859, 43.81234216879585, 40.7465222177305, 37.73396340522214, 34.778215691072376, 31.888682049615284, 29.08081300210671, 26.376001088155874, 23.801120578518578, 21.387654689580643, 19.170349532945522, 17.18533099131656, 15.467617682737739, 14.047960136758604, 12.948933274110288, 12.180206242108227, 11.732910630034723, 11.573025047637032, 11.633691016093337, 11.806372092079812, 11.930765099914254, 11.783369322398187, 11.064616460094669, 9.384461134297283, 6.246328676908718, 1.029313915267096, -7.031478382090597 ], "yaxis": "y5" }, { "mode": "markers", "type": "scatter", "x": [ 29, 31, 15, 43, 23, 71, 67, 72, 15, 64, 58, 48, 35, 16, 25, 35, 53, 69, 75, 72, 67, 46, 29, 25, 34, 47, 69, 72, 76, 69, 51, 45, 21, 48, 23, 28, 70, 51, 64, 76, 54, 37, 11, 75, 24, 64, 26, 18, 72, 72, 45, 66, 17, 56, 54, 56, 74, 69, 78, 72, 56, 21, 41, 30, 22, 34, 53, 59, 74, 78, 77, 64, 41, 30, 50, 24, 13, 38, 46, 65, 74, 76, 75, 68, 58, 41, 18, 28, 15, 45, 75, 55, 68, 67, 76, 55, 39 ], "xaxis": "x6", "y": [ 166, 179, 224, 82, 208, 15, 15, 8, 242, 18, 35, 78, 144, 216, 204, 130, 48, 16, 14, 15, 18, 100, 153, 190, 126, 69, 16, 15, 16, 23, 60, 106, 190, 79, 210, 178, 1, 44, 20, 7, 37, 123, 235, 15, 228, 17, 194, 164, 13, 0, 74, 23, 224, 43, 61, 51, 9, 11, 11, 19, 32, 176, 99, 144, 161, 116, 52, 38, 10, 7, 6, 15, 101, 140, 47, 168, 191, 101, 77, 18, 7, 9, 6, 13, 28, 98, 182, 139, 191, 79, 12, 29, 6, 16, 11, 32, 91 ], "yaxis": "y6" }, { "type": "scatter", "x": [ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80 ], "xaxis": "x6", "y": [ 208.12107223405184, 207.99346686919745, 207.7948301749046, 207.49986437777832, 207.0791803640288, 206.49985090882626, 205.72623789861248, 204.72106742336024, 203.44671184473924, 201.86662558793114, 199.94687187614224, 197.6576712016199, 194.97489914765993, 191.8814612649547, 188.36847597602053, 184.43620274905476, 180.09466177673806, 175.36390277045365, 170.27389382657594, 164.86401617676466, 159.1821664952452, 153.28348476947787, 147.22874199441804, 141.08243756519988, 134.91067066300985, 128.77886261354416, 122.74941763275984, 116.87941708420823, 111.21844692860014, 105.80665908220163, 100.67316462059881, 95.83484995509554, 91.29569615229758, 87.04666644875016, 83.0662078367348, 79.32138959273635, 75.76967516080532, 72.36129440523274, 69.04215159717188, 65.75717145040454, 62.453952114057586, 59.08656149929794, 55.61928310372224, 52.03009126514718, 48.31361541069401, 44.48334050061004, 40.572788885026796, 36.63543982727043, 32.743169942801444, 28.98304393997006, 25.45235384609606, 22.251900163759103, 19.477634265134668, 17.21094225258622, 15.508051283471843, 14.389285180066338, 13.829192472436091, 13.74892280930709, 14.01264319643434, 14.430270418339035, 14.769357438479176, 14.779617017414978, 14.234303172026387, 12.993508893345108, 11.095385460462978, 8.882354238350501, 7.17057552496027, 7.472271473426929, 12.281981810276022, 25.43947338806521, 52.583839559276214 ], "yaxis": "y6" } ], "layout": { "annotations": [ { "showarrow": false, "text": "Degree 1", "x": 60, "xref": "x", "y": 200, "yref": "y" }, { "showarrow": false, "text": "Degree 2", "x": 60, "xref": "x2", "y": 200, "yref": "y2" }, { "showarrow": false, "text": "Degree 3", "x": 60, "xref": "x3", "y": 200, "yref": "y3" }, { "showarrow": false, "text": "Degree 6", "x": 60, "xref": "x4", "y": 200, "yref": "y4" }, { "showarrow": false, "text": "Degree 8", "x": 60, "xref": "x5", "y": 200, "yref": "y5" }, { "showarrow": false, "text": "Degree 12", "x": 60, "xref": "x6", "y": 200, "yref": "y6" } ], "height": 500, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autosize": true, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "height": 250, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "margin": { "b": 10, "l": 10, "r": 10, "t": 10 }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.5, "xanchor": "center" }, "width": 350, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "width": 500, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 0.45 ], "range": [ 5.586166151608798, 83.4138338483912 ], "type": "linear" }, "xaxis2": { "anchor": "y2", "autorange": true, "domain": [ 0.55, 1 ], "range": [ 5.586166151608798, 83.4138338483912 ], "type": "linear" }, "xaxis3": { "anchor": "y3", "autorange": true, "domain": [ 0, 0.45 ], "range": [ 5.586166151608798, 83.4138338483912 ], "type": "linear" }, "xaxis4": { "anchor": "y4", "autorange": true, "domain": [ 0.55, 1 ], "range": [ 5.586166151608798, 83.4138338483912 ], "type": "linear" }, "xaxis5": { "anchor": "y5", "autorange": true, "domain": [ 0, 0.45 ], "range": [ 5.586166151608798, 83.4138338483912 ], "title": { "text": "Temperature (oF)" }, "type": "linear" }, "xaxis6": { "anchor": "y6", "autorange": true, "domain": [ 0.55, 1 ], "range": [ 5.586166151608798, 83.4138338483912 ], "title": { "text": "Temperature (oF)" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0.7333333333333333, 1 ], "range": [ -40.59721899807188, 267.45349425960313 ], "type": "linear" }, "yaxis2": { "anchor": "x2", "autorange": true, "domain": [ 0.7333333333333333, 1 ], "range": [ -24.146959393621955, 268.09142596688525 ], "type": "linear" }, "yaxis3": { "anchor": "x3", "autorange": true, "domain": [ 0.36666666666666664, 0.6333333333333333 ], "range": [ -23.95448544229032, 265.9544854422903 ], "title": { "text": "Gas (ft^3)" }, "type": "linear" }, "yaxis4": { "anchor": "x4", "autorange": true, "domain": [ 0.36666666666666664, 0.6333333333333333 ], "range": [ -23.95448544229032, 265.9544854422903 ], "type": "linear" }, "yaxis5": { "anchor": "x5", "autorange": true, "domain": [ 0, 0.26666666666666666 ], "range": [ -23.95448544229032, 265.9544854422903 ], "type": "linear" }, "yaxis6": { "anchor": "x6", "autorange": true, "domain": [ 0, 0.26666666666666666 ], "range": [ -23.95448544229032, 265.9544854422903 ], "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAH0CAYAAABLv1ctAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQdUVEfbx/+7gHSpIooIiihWUKzYW9TYu4nGEqMpr9HEmJiYz8Rouokl0WiixsTeY++9dxEsIFiwgYL0Xr/zzGUb22EXdnXmHE7MvdPuc2dmf3fmKaKioqIi8MQlwCXAJcAlwCXAJcAlwCXwSktAxKHwlX7//OG5BLgEuAS4BLgEuAS4BJgEOBTygcAlwCXAJcAlwCXAJcAlwCXAoZCPAS4BLgEuAS4BLgEuAS4BLgG+U8jHAJcAlwCXAJcAlwCXAJcAlwA/PuZjgEuAS4BLgEuAS4BLgEuAS4AkwHUK+TjgEuAS4BLgEuAS4BLgEuAS4FDIxwCXAJcAlwCXAJcAlwCXAJcA3ynkY4BLgEuAS4BLgEuAS4BLgEuAHx/zMcAlwCXAJcAlwCXAJcAlwCVAEnildQr9/f0RFRVlliMhISEBLi4usLCwMMv+G6rTFJAnPj4eHh4ehqrSbOvJzc1FRkYGGxeveiI50NhwcHB41UWBoKAgnDlzBvb29mYni8TERDg6OsLKysrs+m7oDj979gxVq1Y1dLVmV19eXh7S0tLg6upqdn03dIczMzNRUFDA5oihEodCDoWGGksVUg+HQpnYORTKZMGhUCYLDoUVsjQZvFEOhYJIORTKhhaHQgNPM75TaGCBVkB1HAo5FKoadhwKORRWwHJk1CY5FHIoLDnAOBQaeMpxKDSwQCugOg6FHAo5FGqeeHynsAIWJiM0yaGQQyGHQiNMLPkqORQaWcDlUD2HQg6FHAo5FJbDUlPhTXAo5FDIodDI05BDoZEFXA7VcyjkUMih0DhQ+GLFCuQ+iIHb+LdRyde3HGazchPc0EQmEw6FHAo5FBp5GaoIKDx5Jx5hT1IgFgHNarqgdW23Uj0ltz4WxMahkEMhh0LDQ2Hq/v148tHHrGKbgAC4jn8bTn37lmqtKkshDoUcCkuOH25oIpMI1yksy+qiomx5Q+H8w3ew8LCiC5yv+jTA2+1q6f1kHAo5FJYcNNz6WCYRbmgik0VpdQqLcnLw5OOpSDt6lFXmOvotuL3zDix1cP+0LHwZrj67iiIUoalHU7zb5F291zgqwKGQQyGHQvVTh0NhqZYV9YXKGwoDvzmIlKw8hQ75utvj+LROej8Zh0IOhRwK1U8bDoVlh0JJDclbtiD2/2ay/7UNCmLHyY7du6sV/pzzc7ApcpPC/UH+g/BNyDd6r3McCjkUcijkUKj3wlHaAmWBwv034vD3mft4lJgJV/tKGBxcA2+3Vb/jl5adj8azDih11dbKArfn9NT7ETgUcijkUMihUJeFo7Q7hfJ15z6LQ+yn05F58SJEFhbsONn9vfcgtrNT6kLI+hCk5aYpXLextMGlkZd06a5CHg6FHAo5FHIo1HvhKG2B0kIhgWD7n48pNfvnW8Ho0dBTbXf4TmFp35T6clynUCYbfnwskwXfKZTJoixQuOPuDvwd/jcepD6Ak7UTPrrjh/prz7PK7du0htv4d2Dfrq20MTouDloVhMKiQqVJe2XUFVSyqKTXIsChkEMhh0IOhXotGmXJXFoo3Hb1CaZuClVqelxbX3zdt6HaLlWkTiHtVIY9TmZ9a+TlBCfblyNsFIdCDoWqJhyHwrJD4dP0p+ixtYeSeH/w+gAN/ziM7Fu3ILa3h9v48XD/4H1pvqG7hiIiMUKhnJ+zH7b33673cs2hkEMhh0IOhXovHKUtUFoo3HTpET7bGqbU7KjWPvh2QCON3akI6+N94bGYsjEUufnC17ulWIT5w4PQN7B6aUVnMuU4FHIo5FCoeTqWdqfwYMxBfHL8E6XK+9fpj2/bfouERYsQv2gxu+/QuTPc330XtkGBOPLwCGacmoHM/Ex2z9rCGt+3+x6v+b6m97pRGii8kXCD7VTWda0LGwsbvds01QLcJY3wZrj1sWyEckMTA8/W0kJh2OMU9Ft0Wqk3Pw5qjBEta6rtZX5BEX4+EIErMUkQiURoU9sVn7xWj+W/9jAZ/5y9jwcvMuFiZ8WAbXCzGmrr0kensNfCU7gdm6pQVx0PBxye2tHAEi3/6jgUcijkUGgkKHxwEJ+cUAGFfv3xbbtvWaOZV64g9osZyH34EJbubmzX0HXcOGTlZ+Hmi5ssT33X+rC3si/V4qAPFF6IvYDPT32OhKwE1hbpMc4OmY1etXqVqm1TK8ShkENhyTHJodDAs7S0UEjdWHgkCouPRiO3QNh9G9rcG3OHNNHYw0nrrmJ3WKxCnpGtfPB5rwC0++mokmXystHN0b1BVZV16gqFRUVAnS/3oqCwSKmeO9/2QiVLsYGlWr7VcSjkUMih0DhQ+Dj9MXptVQaqr9p8haF1h0obLSoowPO5vyDxn3/Ytcq9euFybz9csH7CXNIEeQRheL3h7F5idiLWRaxDTEoMHCs5okvNLmjn1U7tA+gDhWP3j8WVZ1cU6qrhUAP7Bu8r30XJSK1xKORQyKHQSJNLUm1ZoJDqINCKS81m+nkO1pYae0t5/WbsVcpDlss/DGqMd1crLmaUkYDxu4Gqj6N1hUKqR5WBi20lC9yerb/Vs5Ffid7VcyjkUMih0DhQSLVui9qG5eHL8SjtERysHDCgzgBMbzldZYPkz5Bc1xQkJuK5swj/tRHhSJDw0Tmy/kh83vJzDNk1BJGJkQrlF3ddjA41OqisUx8obLO+DdJz05XqOTPiDCpbV9Z7bTG1AhwKORRyKDTyrCw1FEbsAeq9DohEOvcwIycfDb9WdkkjFong5WyLR0mC/o18GtTMC/OGBalsQx8o/GrHDaw6F6NQzxstazIYNffEoZBDIYdC40GhpObcglydLIcJCFdO6oq2V7NZ0eNNxNjYQYxsV3ss6rII4w6MU+osgeactnPKDIVdN3fF88znSvWUxurZFNdFDoUcCjkUGnlmlhoKN44C7p8EAkcATUYAXs106mnXX0/gbrzyl6y6wnSs/F5HvzJDIVXw54l7uPQgEXSI3NzHBe93Ul2vTg9iQpk4FHIo5FBofCjUdcqTgUfT1U3RIawAE/YVwKoAeOwuwpZ2Ytj3fA2HYg4pVdXZuzN+6/JbmaHwp4s/Yc3tNQr1kHHLrx1/1bX7Jp2PQyGHQg6FRp6ipYLCtFhg0xjg0QVZ77xbAYHDBUCspF6hmhxeT98apqQ7qOoxO/hXwcpxLWBBQZJVJG07hXRcvfbCQ8S8yGDH26SbWL+a+R+hlBQFh0IOhRwKTQcKqSf9t/fHvZR7qJZYhBEnCtEmQtBn3tdcjA0dxMiyVuzvmIZjMK35tDJDIfv4DfsTF2MvMuvjJlWa4MOmH8JSrFm1x8g/MwarnkMhh8JXFgoLCgpAjnhtbW2VJhTdy87Ohr29MnxpuqdqZpYKCiUVPb0GXN8AhG0AsgT/fyDHrLR7SH8+Moeu8m0TrN2KTcW3e27jwr0XSt36v94N0CXAA7WraLbW0waFvRacwu04RYvjre+HINjHxWCLlClUxKGQQyGHQtOCwl13d2HG6RnSTvW+VIgxhwWDvLvVROw4ObS28LFb07Em/nrtL3g5eJUaCvMK8/A47TGzcPaw8zCFZckofeBQyKHwlYPCpKQk/Pzzz9i3T7AWa968Ob744gv4+QlHnYsXL8aCBQsYELZo0UL6b2331M3QMkGhfKUEh/R3Ty7KiWdj2fGyvbtSF349GInfj0YrXT/+aSf4uml336AJCk/ciceYvy8q1d3e3x2rx7di189EJ7AdyxoudmhSw8koi1h5VMqhkEMhh0LTgkLqTVxGHHNJs+rWKlx9dhX+T4Vdw8YPhF3DyP5N4D75Q42Wx5RPm6HJvzf/xYKrC5BfmM/qbVO9DX7v8jvzjfiyJQ6FHApfOShMTk7G1q1b8eabb6JSpUoMEOnaTz/9hLCwMEycOBE7duyAu7s7pk2bBm9vb0ydOlXjPU0Lg8GgUNJIfETx7uFGIPWprOnGQ4Xj5TqyIPLpOfl459/LOC+3W/hRt7r4qJu/TmuZJigkX4h/HLurVI+Xiy12/q8dRi4/j4g4WWzSIcE18MvQQJ3aNbVM5gaF7du3R1xcHBOjp6cnGjVqhClTpiAgIKDMojVGmLtbt25h0qRJGD58ON59990y97G8KjCHiCaaTkRoXKempsLJSfmDTd8TkdI6rzbEu/r18q/456bgqobS8JOFGHxG2DW0b90aVaZMhm3Tpmqb0gSFzzKfodvmbkplyV0Ouc152RKHQg6FrxwUlnzgs2fPYs6cOWzncOHChWyRnDlzJst25coVfPTRRzh16pTGe+UKhfKN3dohAGKknBsatzqy3UNnb5b7XkIG0rPz4e1qCxc73eOCaoLCP45F4+cDim4fqK1a7vboF1id+VgsmbZ9EIJmNc3vaNkcofD3339H48aNGRzu2bMHc+fOxbZt29i1siRDQ+Hu3bvx7bffwtfXF506dcJ7771Xlu6Va1lThkJtJyInTpxgHwqUPDw8sHTpUtSuXZv9v6bTEnUCrkgojE6Oxqi9o5CRlyHt3oikunjzFJB98xZE1taoMnky3Ma/rbL7mqBw652tmHVullK5ag7VcHDwQey9vxd77u1BUnYSO54eETACwVWDy3UcGrIxDoXGhcL09HQ4ODgY8pUZva5Xznk17RTm5+djxowZ7I92U0aPHs0E/fz5c7Rt2xYREREMFNXds7CwUPtiDL5TqKql5IcCHNJfotzuXUBvARDr9yvVwNEEhdHP09Ft3gmleseF+CIxMxc7QuV2MYtzLRzRFP2DzC/snblCIf1QSxJB4fXr17FmjWA5eejQIQaK9+/fx4ABAzBr1iymMkE/CosWLWL3KdnZ2YHGMEHm4MGDMXnyZHz33XeoV68e/vzzT7X10E7TkiVLpO2NGTMG778vi10r6Vd4eDjbqdqwYQMqV67MobBUM1W5kKYTEdKXbt26Nf744w+EhIRg3bp17PSE/jSdlmjqWkVCIfWLjpKPPzqOlNwUkDPp3rV7oyAtDfELFiJp7VrWdceuXeH+/nuwaaTol1UTFP5942/MvzJf6dHdbN1YWL13DynubFPIO3Jk7W6rrM5joFdr1GrMCQqNeSJiyDB3tBYuX76crYeU6AP4ww8/RNeuXY36Lg1V+SsFhZcuXWIvZ/v27eyYjY6wOnTogGHDhjF50q5hcHAwQkNDMX36dLX3JAYptKNYMr399tugH77ySuK7R2BxczMsbv0nbbLIsToKGg1lf0Vuuh0dU+G0tDQGCmKx6ogkvx+/h8XH70vbaV3LBcvfaoof9t/B2ouPlR65Y1131KvqgC713BFkZjqGNBYIWswhdevWDfPmzUOTJrLoN/RjP3LkSPajT5OcoIDykC4tAWG/fv0wZMgQdo12wGi8Hzx4kO3i0W46LZKkf1u/fn2mYtGsWTNYW1urrefChQusXlLLoI+uDz74gMGHZDeqpBypXZLvO++8Yw4iZn3MyckBfTDY2GiPfatLHmM+uPyJCP2b3g29X0oEibSDfPz4cWzZskXtaYkpQ6GmvqXs3s3gMO/xY4htbRkYuk2cKC2iCQpDn4firX1vKVXf2L0xmno0ZfqMJdOP7X9kUGqOydyg0FgnIoaEwsLCQqxcuRJ9+/Zlu/IHDhxg6yrNN00bSqYyfl4ZKLx79y7b+SCCpx87SrQbSD+SY8eOZf9PR2/0NRIZGYmvv/5a7T0JNNExdMm0atUqXL582eDv93FyNk7fTQLpDfq42qJ7gOzL9GJMCh48fIj6CfsRlHwQDsmyY958nw7IrT8IefUHae0T/eiR3iXFUE7IyAXZ8rnZKx4/p2Xn42lqDhysLeDlJPw4XniQjInrb2isf9kbjdDS11lrH0whA/3wkywq+oddV1m8/vrrDMbkj4ofPXqEgQMHMlUIGo80LiXjlRYpukYL7Pjx4xkc9urVi+2UU10nT56EpaUl21WixaxLly5sXFBd6ur57bff2McE1UWJdiUDAwOlu/Aln4XyOzo6Ytw4ZcfDuj53eecj2KVEstGWVOntaStjyPvyJyKkM71//37pzgW1Q+/0l19+YVBYmhORit4p1CarvNhYvPhrGZLWr2dZ7Vu1gtt778K+TRuthiaDdgxCVLKiOgwZmpx8fBKb72xWanpWyCwM9h+srUsmed8codAYJyKkWkFrnaFORORftuQj7Pz583BzczPJcSDfqVcCCp88ecKAkI6LaYdEkmh7NzY2FrNnz2aX6KV9+umn7MdP0z1Nb9UYx8dXYpIw7M9zCrGGezbyxNJRwfjtSBTmHbqj0KWl7bLQs+C44NqmIE+4Z+sic21TTX1Ek/tpIszccVNqNNKgemUWpSSwhmagG7n8ArM+VpdGtPDGj4M1x3E2ldnyMhwfX7x4ke3w0a73999/j02bNqFatWpMxHS8QYvT+vXr2ZEi7SDRjh3pnZEOIenaEhSTwQoBIsGxi4uLxnoIKkmvjfJJEoEHzSdViSCWwInrFBp+1Jc8ESEVgqtXr7JdYUkiFQIyqKNxoe60RHIiQutmyUQ62aS7qsrFl+GfqPQ15pw5i4zVq5F7/TqrxH74cFR6YwQqeXiwj19VKbsgG1vubcGj9EfMJU1I1RA0r9IcW+9vxcLwhUpFqthUgYu1CzpW74i3/JV3GUvfe+OXpPlOH3zmkPr06YMff/yRrUuSdOPGDdDpHJ1UZGVlMT1lykMnFKT20rt3b6YuQx/AdCJCY/7IkSPsI/ro0aPsVKNdu3YMBmm9pLrpRERdPfQxTfXSBzaVJRuEf/75hx0Rq0tnzpwBfQRv3LjRHMQM2umk30BddjXl13tNDycqohpNJNHux4gRI9jAkexiUNdoIty7d49do8WNjpNJf4peLv2QRUdHq72n6dGMAYXknHrjpUdKze6d3B5vLj+P5Mxi8CvOQcYfx6Z1Aihmp0T38PElWfmabYqNU4YDVjK/jaRTOHFTJK4+LPaRWFyiVS1XbHy3jdrHXnnmPr7ZdUvjGydH18tGCzu0pp5eBiikMUxffGREQAvitWvX8PfffyuJnnYKevTowVQoWrVqxXRqCQIlUEgfSrQDSJNfUz00xwgCaWHVJXEo1EVK+udRdSJCxj27du1iOqGSRO+KIJH0CtWdlkhORAgySyZ6z/Sjqsq3q/69lpU48/QMjj4+itTcVNR0qIlhdYehql1VlmHjnY0ITQgFhVAiJ9Jv1H1D56aSV6xA0oq/UZieDosaNeD89jhY9u/JXNwUoQj1XOoxsNOWPjr5EU49UVYbkpT7LPgzDK87XFs1JnO/5IecyXRMRUdozM6fP5+dQEjSw4cP2SkHwRp9CK9YsYIBH6W9e/cyWPzrr78watQoxgEElrTmUV2Un3b9STWGynTs2JGdXtDHsbp6fv31V7YeUl2U6IObdi7pxEVVio+PZ14WaOOJ4NMcEu1sEhiSfrm2pOsHhUlBIf0Q/vDDD0rPtnr1aqYfRcdhki9oGhw06CRHP5ruqROWMaCQ/AOSn8CSacmoYLy/5orSdVsrC9ye01Px+pMrDBALr2+AOKfYAbWljWz3sGYbxD2PR+t5yr4IKQLK3e9fVzs+pm4KxbarTzSOn3FtffF134baxphJ3DdXKGzQoAEeP37MjD1ofNMOYK1atdhu4dChQ5nqBC1MZJRAOpN0jww+aPEkdQkrKyt4eXmxL0RVUKipHqqbdp3oi5i+uun4muCSdGpUJQ6Fhh/q6k5E6Afzs88+YxBHiXZUSP+UdJx27typ9rREUw+NcXxMsPXB4Q8Umq3lVAs7B+zEz5d+xupbqxXukeXvl62+1FmQOZF3kLDsL6Tu3sPKXKlngW2tgajqwo7hd+2+Qz8/9UZ65ND6nYPvMB+J6lLHGh2xqOsinftU0RnN/fjYUCcidDpIgOPq6mqwExH6KH/rrbfYR7euH8sVPR6o/Vfi+FiboE0moomajn66JQybLyvvFO7+sB3eXHYBqdmKO4U+bnY48WlnhdrO3XuBL/8Lx4P4NAyyOI1RtucQlC8cqbBULRAZdfqi/REfJBYqOrq2sbJAREnIlKv9sy1h2KSif5Isbg6VsGFCa/hXddT2KpTu5xcUwdJC9TGP3pXpWMAcoVDip5D8bNLHDRlU+fj4SJ947dq1TM+PjlAo0bHH//73P3b0QcchBIgEivSVSF/W9DVORynyO4VUTl09BJFUDx1JSxIpW6v7OiadN/r44n4KdRyUWrJpOhGh8Uw7wPRx3LlzZ7ZjTDBIBnelPRExBhTOOjsLW6O2Kj3pX93/wmcnP0NyjuIJBh3tnn/zvN4CfLp+A6L+/AkecdkoEAPb24jZn7uLF/YP3q+2PnJq/cvlXzS2R46uqb/mkswdCg11IkI7ipQICg1xIkLrIa1tNWvWxDfffKNWVcEUxwmHQgO/FWPsFJIz6hF/KS5+FLbu77EtoCqKyZe962NCe8EHmST1+f00bjxJUbg2vGYafvK/JRwxpz+T3vuvoB3o72ShoAP4euNq+GNkM7WS+u/aE3y8MVThvlgkwmc966G6ky061auCyrZW7D7pR+67EYukjDzUdLXDm61qooqjcqSAn/ZHYMOlR0jKyGX53u3oh5Gtahr4bamuztygUFeh0HOlpKSwYwH6Kib3NGSMQsclkt1xOjYhVza040dJlZ/CkvXIt08fWGTFTscwuuik6Np3U8hnyn4KtZ2I0G4heVsg6KcfPtIllTg3L82JiDGgcOrxqTgUI7hGkk+/dvoVn574lMUeLpmujLqCShQKtER6kv6E6UXVcKyhdI+sjwf+9xp6ncpC//NCnferihgYzp9zgekRqkqzz81WaWgin3d8o/H4KPgjUxiuOvXBHKHQGCci8lBY1hMR0jWkj3JaY0m/UaK7Sicx5rAmcijUaeronskYUEit33mWhmMRz5n1MekMDmomW+yORjxH2ONkEIg183FBuzqKPrOy8woQMFP5C9jaUozIb3sJD3fzP+ReWoVKD4QjJkp3i6rjmHVX9H3rY1T1FsICqktLjt/F9mtPkJyVB193e0xsXwtd6wu6QJJEQDh4yVmFa35VHHDkk44K11RBJmU4PLUj6ngY3xHoywqFJd8dHTeSIjYdN9MXLenYkgI17SYRQFAytPNq3WeS6eU0ZSjUVVr0UWCqEU0WXl2I5eHLlR5lY5+N+PL0lyCn1fLJp7IPdg/crXCNXMp8dfYr3E8RXGd5O3pjVptZaFmtpTQfQeHgw4ORkJWA+o+KMOBcIZreFdTgnfr3Y+5rrIvDoMpXPu/KPKy8sVKtqNtWb4t5nefBzlK7Lpau78vY+cwNCo11IiIPhSTzspyIkBswMmwtmcjCWbKuGvu9lqV+DoVlkZ6KssaCwrJ0M7+wCHVmyEVBKa7M0cYS4bN6SKsmQ5MFO8/B/d5/7Ii5pki2e4j6fQX9w4A+pe7Kt3tuYfkpmZ9DSUXLxzRHNzmAnLn9Blafj1Fq59dhgRgsB8Ol7oiWgq8KFJIYyAiBdAFJIbpp06bMXVP//v2lX7QcCmWD5WWAQkPNGWPsFMZnxmPioYkK8De47mAGdRRJZPrJ6QrdV6UDOGb/GCWdv4ZuDbGhzwYFKFwWtQxrIgTH7pR6XinEiEvWsEvKgoWTE9wmToBbCeOBK8+uYOx+wX2ZJLnYuGBpt6WoYlsFVeyqSK8/SH2AAw8OsMgn1eyrYUCdAXCyVg4vSBC85c4WvMh+ger21TGqwShQSL3ySuYEhbrKpDQnIqr8FL6qJyIcCnUdaTrmM0UopK5TTOTDt+UgD8CApl5YMFzmnoagsNW8i1LXN13F1zDQ4hT6WMgdXTt5y4xTKMSeHumTTdex9aqyk+uSsMehUA+hGjkrh0IOhaqGmDGgUNLOhdgLSMtLY2Hk6rvWlzZPO3s3EwRr4QZuDeBhp2zE1HR1U+QXCv4k5ZP8MbPEefWk45Nw68UtVl8d5zpY2nA2kpatQPKmTayoXYvmcJswAQ4dOkirOv3kNPbd3yeEuXP0YtbR/i6KAQJol3L47uHIys+SliODmW39tsFSLPNxSRFZPjz6oVJfN/XZhPpusuc25hR/GaGwpLx0ORExpPNqY76v8qibQ6GBpWyqUJiYkYvv997GxfuJTMehrZ8bZvZtALJUliR11seeFik4/3q8oHv4XOZ6JtKhFTbkhuCQRQe0qu2G/+tdX2Os5YWHozD/sKJPRWp73rBAtK3jjqqVBWfY/PjYwIOyDNVxKORQWN5QWIbhilbrWiEzL1OhCrFIjNDRoRAxd/xgzqsXRSzC5ihFR9Q9a/XE3A5zkXb0KHN8nRUq6Em7vPkmg0Orap46dW3p9aVYHLpYKe/cjnPR01fmFWLBlQVYcWOFUr4vW3+JEfUElyfGTq8CFJIMtZ2IcCiUjTQOhQaedaYKhfSYEbGpCH+SwqAwyNtZST+Pdgrf2RiJ0EeKVn4tfF2x+b1iP4X3TwqubULXQwxBSTuxqDK2FbRDrO8AzHxHvY+u+LQcZjBzNz5dKnXSgywsdmvZqZ4H/nwrGKTryA1NDDwwS1kdh0IOheYEhZ+f+hx77gkuZySpm083zO8ki2dMUDjg4AAk5SQpPRrBo4XIAkUFBQwMX/z1FwqzsmBVvToDQ5c3tMPa9xe+x/oImRW+pJEZrWbgjQCZb0V1Oool85Vy6upU7FWBQm3C4FDIoVDbGCn1fVOFQlUOpn8e0gTDmntLn5WgMDoF+L8dNxH9XAC3ulUdQT4GqzvbooaLLcgwhFLzmdvQu/AEO14OEt+Vycunrex4WYVVIGWkY+yYhEzM2aPs8HpyV39M7V5XWh93SVPqoWiQghwKORSaExTmFORg7qW5uBR3iR0LB1cNxifBn8ChksxAjaCwx74eyM7PVno0cnEjb32cfes2wufPgsOpMJY3tXldNP74K9gFB6udX2SMQsBXMi3svBBdanaRXj4YcxCfHP9EKd+a19cgsIrMQbNBJrKaSjgUCoJkTN8IAAAgAElEQVThUMih0GjzzFShsNX3R/AsVXER9PdwwKGpMstfgkKKXEFm87Ep2cyS+LPN19nuoiSNaeOLb/o3hN+MvVLdw6biKGaYMsjiFOxR3IaVnQwOvVspyZuccZNT7pKpa4AHVoxtYbT3o0vFr5KhiTZ5cCjkUGhOUCjpa0ZeBoNCBytlbwUEhZPPT8b1eDk/rQB8nXyxa8Auhcf9I/QPLLm+BB3DBStlrxeClTLtGrpNeAcWlSsriScxOxFv7XsLD1MfSu+RQUrlSpUZcHat2RUTmwiRf+ZfmY+NkRtB/aU8YxqOAbm1Ka/EoZBDYcmxxo+PDTz7TBEKM3Ly0fDrA0pPquCSBoA8FFLmXw/ewe9HFQPD03UKrzdr102mnyifmtesjC1tYgTdwwdyoaCqNwMChwuQaCPEUD539wXeWKbseLZX42pYosEnooFfl8rqOBTKxMKhkEOhOUFhVHIU5pybg2vPr7FuN3ZvDNLRIwtkSSIovJVxCzPPzWRuaSg5VnLENyHfoLtPd4XH7bW1Fx6nC8ZxjplgYNj3oqA2Y+3vz+DQqV9fJRHlFuTi8MPDzCBlWfgyvMh6oZDn0xafYnSD0dJr6XnpKgHW2Osdh0IOhRwKjTzLTBEK6ZEJCgkO5VM1Jxuc+6Kr9FJJKPxg7VXsDY9VkhiF16OyX2wLx+1YIWQeHTN/P6gxmvsUxw99dkMWdzmjOEQfBaBvMoLBYb5PR7T+4QgS0nMU6v9hUGO80bJ8nFSrGwocCjkUqhob3CWNTCrGtD4uyxJNLm3OPT2nUEVTj6ZY1WuVAhSSc3VyJkzWx+QUm0LX7bm/h0VNqeFQA281eAudvDuhzfo2SKcY8nKpUUwRvrsfjJxzwklH5ddfZy5sbAIClLp+I+EG3tijHKM5pHoI/uwui0VdlmcuS1kOhRwKORSWZQbpUNZUoVCVj8Ap3fzxcTeZ/l5JKJy+NQwbLymH11s1viU6+As+uZ6nZlN8eqnlsEoR3dgqAGLUQdntKgHYUdQB3z8JxLMiASTdHayxY1JbeDnb6iBp42XhUMihkEOh5vllqlCoziXN1beuwkosRFWSuKQhKKREUVQomkrJdHjoYUw5OgU3X9xUuOVq44oTw08gcdUqZoySn5AAsb1d8ZHyBIgsZB4daMdy9D7ZjqCkouZVm2NlT/WOsI23uinWzKGQQyGHQiPPNlOFQnrsbVcfM8tisj6mHb2+gdUVpFESCskghPwbyicKOXfis87Fzh30FGbiXeD6RgEQk2XOqfcWtGLWy4cLgzG+XS3M7NNAz4oNm51DIYdCDoXmCYUt1rZQaUAisSpWBYXfnf8OGyJlzq0lT/5zh5/ZWkkh9uTT5y0/x8j6I9ml3JgYBobJW4WYzbZBQQwOHbsKBiUpOSlot6GdkjBpJ/KzFp8ZduEqRW0cCjkUcigsxcTRp4gpQ6G25ygJhZR/34047AuPRUpWHguvNzbEl4WxK2sKP7oej46txOsWQiBySo+KquCac0/0GzMVcFWM3VzW9vQpz6GQQyGHQvOEwo+OfYQjD48odL6dVzss6bZEeq3kTuGss7OwNUqAOvkkiZgSlxGHsPgwFBQVMGfaZJBSMqUdOoSEv5YhOzyc3XLq1w+uY8fApkEDLAtbhj+u/yF1ql3bqTY7zlYV4USfdcoQeTkUClLk1sey0cQNTQwxs+TqeNmg0MDikVZ36UEihi49h6qiJGa1TNbL/iJZtJNwu1ao1mEc3Fsr6+Oo69OpqAT8diQKEXGpsLe2RO/G1Uq168ihkEMhh0LzhEIy6Pjh4g+gqChkfdzCswXbkaNQc5JUEgo3RGzAdxe+U3rgzX03I8BVWU9QnWSKcnOZX8MX//yLwvR0iCpVguvYsfi82ilcylU02JsVMguD/ZXj4xprvVVXL4dCDoUlxwaHQgPPQg6F2gWaV1CI1Ox8jFx2HhFxadIC7cQ3GCAOtDgNEdNUBODgUWycMhyo2kht5RTfueV3h0GRW+TT9J4BeL+Tn/ZOyeXgUMihkEOheUKhLhO9JBRSmS9OfYHd93az4hSK7t0m7+K9wPd0qU4pT050NBL/+RfJW7awe/FOwP5gMfvLK45y16FGByzuqhz1pFQNlqEQh0IOhRwKyzCBdCnKoVCzlMhief1FwX+Xk60VGlSrzHb1jkc+B4Eduy7KwECx4PewifierELf9jLfh3IxRCnDlZgkDF5yVqnxDnWrYNXbLXV5ddI8HAo5FHIofLWgkJ42NTcVqTmp8LT3VIhRrNfiIZc54/Rp3F++GBbnhXB5MR4i7A8W4UiQmMU2Jhc4/s7+pWqLQvk9SH0Aawtr+Dnr99Er/zwcCjkUcigs7QzXsRyHQvWCWnvhIb78T9C5kU8HP+6AngtOScPdyd+7PcEFtrc3C8Ypkpim1g5S1zaoITi6lhxHl6ybYiqvfUfZebam18mhkEMhh8JXDwp1XOL1yhafGY//m90ZPa8UIuCR8NF725vgUIxz9UWws7LDzNYz0ad2H53rXXd7HX669BNzpUOJAHNep3nMlY6+iUMhh0IOhfrOGj3zcyhULzB1Lm4WjAjCJ5uuSyOkyNdw/evX2I4i8nOAsGLL5ZgzsixezdnuYUbAEAT9dB50NC2fPuxSB5+8Vk+vt8ihkEMhh0IOhXotGioy30u5x/weHnpwCGtur0HX0EL0uFoE32cCHF6pI8Dh00YeODr0qE7N0Q4h+U6UAKGk0CD/QWznUd/EoZBDIYdCfWeNnvk5FKoX2Iz/wrHugiz0kyTn7280xY/7IvAkOUuhcMmIK9KbcWEyx9iZxZECxBaIrtYHPzwJxJFsQTm8aU0XbPsgRG/3ORwKORRyKORQqOfSr5B90pFJOPH4hPTa67VeB4Hbx4c+RMcLGehxpQhVkwU4PNVQhN6fLYZXq85amyRn28N3D1fK18CtATb22ai1fMkMHAo5FHIo1Hva6FeAQ6F6eW0PfYKPNgj6NfLpzOddsDssFj/sva1w/d0OtfHF6/U1v4Dwzci8tBZ2D49J80UWeWNbQXvm+3D6kI4YEqzfsQqHQg6FHAo5FOq38styb4rchDnn5ygVX/7acrx/+H3kFebBMQvocaWQHStXzhSyurz5JlxHjUSl2urdcd1NvosBOwYo1V1aZ9gcCjkUcigs7UzXsRyHQs2CWnQ0GluuPkZyZi583OwxoX1t9GkiuIs4FvEcl2OSmG5hkxpO6NVI5kZCXa3j/72EI7efo7YoVmq57CUS4plSuuTQCS36fQDU7YGsvAIkZeSy6CsWYpHajnIo5FDIoZBDoY5LvlI2colDen8l05etvsT8K/ORmV9MgQA8UorYrmG/a5YglzZiBwe4jhwJl1EjYVlFiBpVMg3bPQy3Xyh+QH/S/BOMbThW7y5zKORQyKFQ72mjXwEOhfrJqyy5V5+LwcwdN5SqeM3iMgaJT6GnxSXpvcRKXliV2ZrtIMaKPZmbmqndZSH+5CvhUMihkEMhh8LSrk0Lry7E8vDlSsW/bfcttkVtY3GW5ZONhQ1Ot1iLxLVrkbxpE7tl5enJwNBl1CiIbWwU8kcnRzMXOk/Sn7DQfa2rtcZPHX4qVXc5FHIo5FBYqqmjeyEOhbrLqqw5CQgJDNWlaqIXmO17A63TDsExXeba5khhM3a0PG7iVBbur2TiUMihkEMhh8LSrk+Xn13GuP3jFIpXsqiEfYP2ITwhHBR1RT5NbjYZExpPYJeyrl5F4tp1SN2zh/2/tb+/AIfDhyMjLwNJ2UmYeWYmqA359FWbrzC07lC9u8yhkEMhh0K9p41+BTgU6ievsuT+Yd9t/HlCzo9hicr8qjhgxdjmDByjzu5gTrHpT5KyrKvAtvlIwfehh0x3kUMhh0IOhRwKy7I2HY45zJxhJ2YnorpDdQyrOwzNqjZjVcZmxCL0eSgLe1fXpS7quSp7R0g/dQpJa9ch/fhxVibBvwrWNEjE2Qaq1V5aVWsF0lnUN3Eo5FDIoVDfWaNnfg6FegqsDNl3Xn+KyeuvKdQgEgELhjdFdWcbtPB1ZffIsnnpibvs3y6idAyksHri02gkvi8rW7uj1PdhEUSIj4+Hh4dHGXr3chTNzc1FRkYGXFyUd1RfjifU/SlIDvTB4ODgoHuhlzRnUFAQzpw5A3v7ssdBL28RqYpoUt590LW91P37cXfFItiEC+vXVT8R9jcXI7S2IhxKrI/J9Q0ZusRnxcPTzhMjAkZgeD1la2VJ+xwKORRyKNR1NpYyH4fCUgquFMV+PxqNXw9GKpX8663meK1hVen1Y5HPMW6lTL9QcuPMG7bwerhDcG+Tny1ctnECmgxHUs0ecGnUrRS9ermKcCiUvU8OhTJZcCgsv3lOOor31vzFDFJqFfs4PN1Q8HF4x0uAw961e2NgnYF45+A7Sh1b8/oaBFYJVNlhDoUcCjkUGnkucyg0soDlqv+/7Tew5ryyTuG3AxphVGsfhY78c/YBNl1+hBfpufByscXYEF/0C6xevCJkAWEbgOsbgYfnZOW8W8oip1Qyvx0RQ7wJDoUcClWNIw6FhphdutXxR+gfWHJ9CSwKJW5siuCZJPg4PNhMjItt3fHliCU4+fgkFocqx1Oe1nwaxjQcw6FQg7jz8vKQlpYGV1fhdOlVTpmZmSgoKICjo6PBxCAqojMWM0okgOzsbJVHIZruqXpEDoXl9+J/OxKFeYfuKDX451vB6NHQs3QdiQ0FQjeg8Pp6iLOThTosrGRw6NtOa73LT93DyTsJyMkvQOMaTpjcxR+VKSqLGSYOhRwKORRW7MS9GHcR4w+Ml3bCIVuAw0FhtrBKzoDYzo4Zo+wKyseCR6uVOvtx8Md4u9HbHAo5FOo0kF8ZKNy9ezc+/vhjbNy4Ec2aCQq/lBYvXowFCxYwIGzRooX039ruqZMuh0Kdxp1BMj1MzET/RWeQlJkrrY8gbNck7eCmqQNSQ5O4Y8LR8l25EFSejdnxMjNOsVf2I6YKVNvVcccaPeMvG0RABqiEQyGHQg6FBphIZahiz709+PzU50o1/Nn4W9Q5EoWktWtRmJ2NQjcnbG2QhsNBYiTJqb0ue20Zc1ujKvHjY0EqfKdQNjpeCSicM2cOLl68yIwHCAKDg4OZBMLCwjBx4kTs2LED7u7umDZtGry9vTF16lSN9zTNbw6FZVj9SlE0LjUb+8LjGBhWd7Zl0UssNTimpiauxCTh96NRuB2bBrtKFujVyBOf9RRC41GSQOHTnEpYeDgKaY9vor/4FAaITsIx97msl42HCDuI/t2l13r/dgo3n6YqPcm4EF/UruKAAU294GhjWYonrZgiHAo5FHIorJi5J2l1wdUFWBG+QqkTkmPhnCgCw3VI2rCB5Ul2FOFQkAjngu3Rp/UY/C/of2ofgEMhh8KSg+OVgMJjx46hdevWeOONNzBz5kwpFC5cuBCpqansGoOFK1fw0Ucf4dSpU9B0j0NhxS6SZW095MejeFoizvL0ngHMobU8FL62NBTJmXkKzc1v/JBZLyNC8CPGkpuf9Hi507J7ePAiQ20Xa7nbY8/k9gxGzSFxKHx5oJA+dmi9c3JyUhp6+qrJcJ3C8pu9pE9IeoUlE0VIIetiScq6dg2Ja9ZKfRxauLjAeeBAOA0cwPwdqkplhULyu5hTkINalWvBzdat/IRi4Jb4TqFMoK8EFEoet2/fvpg1a5YUCmfMmIGAgACMHj2aZXn+/Dnatm2LiIgIBorq7llYCD/o+fn5SkOzfv36iIqKMvCQLZ/qEhISmOsRyfOVT6vl20rY4xT0WyTzVShpvW0dd6wtPuKlH8+jYfcxfr1iKCnKS7t84bN6AMmPio1TNgAvoqUPcd2+LZYmt8C+gpZqH+ynwU0wvIV3+T54KVvjUGheUKhOTebEiROYMmUKexhytbR06VLULo6xq0mFRt2w4VBYyglVimLXnl/D6H3Cb5R82jFgB2o7KcdJTj95kkVGSTt8hGUXWVoyMHQaOBB2cqpTdK+0UEhRVcgJd0yqzNBvavBUjGuk6LS7FI9bIUU4FMrE/kpD4aRJk9ChQwcMGzaMSYS+ouloOTQ0FNOnT1d7T+Kbq1evXkoDODo6GqdPK0NHhYx03qiSBMJj0/HOhgil6/Wr2uOrHr6o7WbL7q28FIulp58o5bMQiXD2I0H9QJKsH56EzZ0dsInaJb0WV+TKoqb8V9AeUUVeCvnfa+uFcS21x3Xmr888JSASiSrEx6U6NRkyoqOTkj/++AMhISFYt24dtm7dyv40qdBokj6HwvIdm/vu78P26O1IyEqAp70ni17SybuTxk5kXrqE2M3rkLv7AFAo2H5W7tmDwaFDx47s/yVQSA617ybfBUVeCa4aDAuR5pOMGadnYNdd2Xon6cj5N8/D3sr8PDVwKORQyCRAu4F+fn4YO1YIJB4XF4f27dsjMjISX3/9tdp7YrFY7WTkOoXlu1jq21pGTj6CZh9CXkGhyqLOdlaY3a8hEpJSMPuAnHPr4txWFmJEfaf8McBuZyTIdg/jwqX1nypsjP8K2rG4y5TmDgnE0OY19O16heTnO4UysZu6n0J1ajJnz55lJyQHDx5kD0OQ2LhxYxw/fhxbtmxRq0LDobBCppzBGl0Wvgy/Xf0NNeOL0DG8CF3CAftMYd2zDwlhcJjdsgX2xO/B/Cvzpe06WztjcdfFaFKlidq+DN01FBGJyh/XbjZuqOZQDYP9B2NI3SEGexZjV8ShkEMhk8CSJUsQGxuL2bNns/8/f/48Pv30U6ZTqOmepgHKodDY07fs9W++/Bg/7Y9AQnqOysqqVrbBurcaoOtixcD1lLmRlxN2f6iDdXPMGeRdXcesl60gqBkkF9njuE1X9B71May8ZRbwZX8i49XAodB8oFDS05JqMmRIt3//framSVKXLl3wyy+/MCjUpiajanTxnULjzTlD1ExxkluvU7Q4dk0DJjzyQ5vr2ch9IBz7igPqYZlPNI43FiFHzmtWgGsANvfdrLYrFNu5ZPzlkpn/7vE3Wni2MMTjGL0ODoUcCpkE6Kh3yJAh2LNnDzw9PTF58mT4+voyMNR0j0Oh0edouTQQl5KN/ovP4FlqcTQTuVZ3TQjEzsg0LDspi61cxdEaW98PQU1XO537l5mRitv7/mKRUzxTw2TlaraW+T60Eo6sTTFxKDR/KFyzZg2uXr2KefPmSR9mwIABzMvCpk2btKrJ7Nu3T2lokj724cOHYWen+1wwlfFNO742NjYvte50VHIURh4cqSTyOk51sLbj30jftQvpO3ch58YNlifWVcTA8HgTwZ2NhdgC54bIOfIvUdP6O+sxP1S2u6jq3U5sOBHvNFSOsGIq40C+H/oaWpniMxiqT7TmFxYWsjmiLdna6vbbZbLOq2kh/OqrrxT8FK5atUq6WJL/wvnz50ut8zTdUycsvlOobRiZ1v3OvxzH/QRla+ED7zVFPd/qSMnKw734DNhYiVG/WmVp5/eGx4J2HJ+nZaOaky3ebFUTXQK0xEp+clV2vJydItRlaS34PCTXNj4hpiUcABwKzR8Kyfhk165d+PPPP6UPQzuFBImkV6hOhUaiJiMPk5IKVq9ezXYfdf1RMKWBnZOTAysrK2hSAzKl/pamL08znmLowaFKRX0dfTEuYByzFvar7IeTq79H2p6dCLon6Bym2AEnmohxorEYGyac0dj0tnvbcO7ZOcSkxeBJhrL+9Zh6YzCxwcTSdL/cyxAE0W6htbV1ubdtag2SAS0ZW9Ic0ZYqV5b9JmrKa7JQqK7TPKKJIJlXwfq45Bj4bs9tLDsl2w2k+yF+bljQv7ZaY4FrD5Mx8A/lBfPQ1I7w93Bg4fROR1FEk0I08qqM/3WuA7FILoA9BfwJ24C4k//A88V5aZeKPJtARIBIf3am4d6BQ6H5Q+Hly5fx2Wef4ehRwQl7VlYWmjRpwnQKd+7cqVaFRtMiz4+Ptf1cVvx9ioN8IfaC2o68H/g+Gtk1wv/O/Q+B90nvsBDtbgpwmG8BuA8eBudBA2EbFKTxYc49PYeJh5Thb16neejuI/PhWvESUd8Dfnwsk80rZX1cHoOS7xSWh5QN28bcA5E4GRWPvPxCBHk7Y2r3ukB2qloo/P1oNH49GKnUiW/6NWQg+P1eRVc29taWIH/atKM4uo0Pi8s8a+dNUDzmuqLHzO/hIIvTqCpKktXZZJiwe1inq2EfVs/aOBSaPxTSRy+52vrhhx/QuXNn/P333wwGt2/fXmo1GQ6Fek6kCsiemZeJ5TeWIzIxErcTbyM+M16pF7u67cKoU6OQkiOcXPjFFqETGaXcEMEqp4Bdq9yrl2Cx3EEwlFOV5l2Zh39u/IMiCFD5RsAbmNFqRgU8dema5FDIobB0I0eHUhwKdRCSiWeRhrnzUH0cTBC5+JjMN6Hkcb7oFYA94bEgX4ia0rYPQvD2P5eUHGO/bnEBv9S9Dbv7gpUoS+7+Mt1Dp/K3WOZQKHsVpm59LOmpKjUZ2i0kF1xkeezq6src05CBCaXSqMlwKDTxRaxE9/pv7497KYonIpRlebvlbDzMOjcL95LvwUpshRCvEMz2+QAp27cj5b/tyIuNZbXZt2sH54EDULl3b5UPn1uQy1zmuNq4wsZSuz6aKUmQQyGHQqONRw6FRhNtuVWsDQp3hD7BlA2hSv35e2wLfLwxlOkhakpf9q4PAsvcfGW3OMtHN0e3atky3cNEuYW8fl8h7jL9t5wSh0Lzg0JNQyMlJYVHNElMhKOjo046U+U0zYzeDDm/JifYJdOGThvQ0Keh2vZP3tqDyHV/os7ZR/B8Khjk2QYGMmfYFC1F9JLo4HEo5FBotEnIodBooi23irVBIXXko42h2H5Nplz9Rsua+GFQYzT6+gDSc5Qj3ch3nnwd5hcWglQLS6Zj0zqBQuFJ050DQNhG4MZW2TXaMZQYp9BOohETh8KXCwoNNVT4TqGhJFk+9WyI2IDvLnyn0FiXml0wo8EMVK1aVWUnyIJ50I5B0nt0rEx6hw1jivUOvasionV13GnjBW/fxhjdQDnqChU+8fgEc3RNx9mNqzTGe4HvQQQ5HevyEYHGVjgUcig02jDkUGg00ZZbxbpAIXWG4ie/yMiFh6M1yLchpdbfH0GcChc3unTer4oDjnwiRBpQSunPZbuHz27KbpPOIekekg6iERKHQg6FqoYVh0IjTDYjV3ngwQGQUQjFKq7nWg9jG47VGOZuze01+OniT0q9+qawD2qcioLjWWEdSrEHTjcQ43rTykiq5YYqtlUwyH8Q+vr1xcqbKzHvsswVEuX3reyLXQOVo6EY+fE5FOooYG5ooqOgdM3GoVBXSZluPl2hUNUTTFp3FbvDBB0cSaJvYhWbguy2g7UlAjwdEeTtgi9eD4AFWaRoS/dPyQCxsHhXkqyV2e7hcKBaoLYadL7PoZBDIYdCnaeL2WXUFPt4efhyLLy6UOmZ3m3yLq7HX0fyxXPMKKX9zUJYFS9DF+qJcLa+GPTflb3/xfST0xGXEadUx7re69DYvbHJyIvvFMpeBYdCAw9LDoUGFmgFVFcWKIx6no7J66/hdmwq6zlZHlPYPB93OwxZouwMtmF1J+yZrDlCyvHIeJyKikd2XiEDyLfa+AhSyUkrhsONwONLUkldLgrAJaceaNrnPbSuW71MEuRQyKGQQ2GZppBJF9YEhcceHcPko5OV+j+3w1z8euVXKexVSyxCu1tFzJ0N/ZsSOcPO6xCMv91v4VaVXKU6ZredjYF1BpqMbDgUcig02mDkUGg00ZZbxWWBQkknyeF1bkEh81so2f1r8d1hxKcphtYbG+KLWf3UK3pvufIY0zZfV3j2Xo08sWRUsMK11Vu2ouj6BgyyOAUHZLF72bCGTfM3heNliqBSisShkEMhh8JSTBwzKaIJCukRvj77NbZFbZM+DR0Jf9/ue3Tc2BGJ2YkKT0m7hSG3i9A6ohDB0bKzkdDaIrZzeCFAjPRio+QVPVagpWdLk5ESh0IOhUYbjBwKjSbacqvYEFCoqrNHbj9nMZfvPEtjtwnufh0WBLtKFmqf7c3lF3A2OkHp/tnPu6C6syzE0KA/zuLqwyRYoJCB4UCL0wgRy+keVm8qO162ddFZlhwKORRyKNR5uphdRm1QSA/0PPO51NWMp70ne8be//XGw9SHap+31jOCwyK0iihC9eLdw2R74EI9MSKaOGPp55qjpZS3IDkUcig02pjjUGg00ZZbxcaCQskDZOTkw9rKApY66A/2XHASEXECRMqnvVPao0G1ylhzPga3YlNx6OYzxKcr7kIGiB5hbcv7cLv7H5D+TFZcYrns11mrTDkUcijkUKh1mphtBl2gUNXDfXriU+x/sF/rc4sLgdaRRQiJFKHlbZlXBtumTVH5tdfg+Fp3WHl5aa3H2Bk4FHIoNNoY41BoNNGWW8XGhkJ9HmTCqss4dEsO6IoLX5vZHbN23cSO0Kdqq3O1r4SrM7tj/cWHOLtjGYuc0kUs56usSgAQOFw4Xq6sWveQQyGHQg6F+sxY88pbWigMiw/DpKOTkJQti8JE1sxtqrfBu4feVRKCl4MXdgQtRtqBg0g9cAA5kUJEKLGNDRyL4dCxWzc8TX+KrPws+FT2gaXYUqUwwxPCcfrJaebippZTLWbpXNbEoZBDYVnHkNryHAqNJtpyq7iioZCcXy86Go0bT1OQlVvAIqQUyjk1nNC+Nt7v5Idmcw6plUndqo74tEc9dG9QFYHfHJQ61PYRPWPHy2/anEOVfDkr6Qb9BTgMeF2hTg6FHAo5FJbb0lPuDZUWCqmj2fnZuPTsEnLycxic+Tn7obCoEK3WtWL35FN7r/b4o9sf0ktpR45IAbEoRzjhSKhmh+N+2Uz/MK6aDT5p/gkLlyefTj0+hQ+OfKBwrWONjljUdVGZZMehkENhmQaQpsIcCo0m2nKruKKh8I1l53Hu7guF5/V1s4e7Q8HONC4AACAASURBVCU0ruGEr/s2xL2EDHT55biSTMja+fKX3WBbrKf4KCkT7X86ppTPy9kWZwbmCNbLN7fL7jvXlDnGdvMDh0IOhRwKy23pKfeGygKF6jq76tYqzL00V3rbydoJCzotQHPP5kpF8h4/ZjuHkVv/gcs9me70ZX8yThHju/87AidnmXPtT09+iv33lY+tt/XbBn+X0jvy51DIodBok49DodFEW24VVyQUPknOQtsfj2p8Vtr9m/ZaPfRYcFIpn62VBW7P6Sm9/iI9F8HfKu8oerva4dRnxTqFaXEyv4fPb8vq9O+O/IZDkObTAy4uuhunlNuLKueGzCX2cXmIhTuvLg8pG78NY0Ah9ZqOgaOTo1ks5aYeTbXGQh6zbwwKzl9h+odkvWxfvNFYVNUNbj37MN3DSk0DMfHQRFyKk7nfkkiorNbMHAo5FBpttnEoNJpoy63iioRC8nPYfd4Jrc+69f0QDF5yVilfDWdbHJnWCdaWYum9OjP2Ir9Q0X02hdKjkHol04OLe4HwDfB5vAuiIiE2c5GdG0RBxa5tPBtp7dvLmoFDoezNcih8OUa5saBQX+kQ7FG0FUou6WBg2CqyCA0eytatmzVFuBggxvl6IiQ5KLawa8Au+Dr5YsudLbjx4gYsRBZoXrU5etXqpVNXOBRyKNRpoJQmE4fC0kjNtMpUJBSSb0OKn5ybLwCZukTWx59vDWP6hvJJLBIx/UNycv1pzwDUreqg/vj48y6sKLnIeZaajYO3nmH1uRh2rTIymWHKxx5X4ZwULmvCt53seNnCyrRenJF7w6GQQ6GRh1i5V28KUJiel45NkZsw/8p8hecnY5NNXl9j058fo971F3BOF25nWgPnA4SoKdf8RCycHvlOnH1uNjbf2axQx+SmkzGhyQStcuVQyKFQ6yApbQYOhaWVnOmUq0goJCn8feY+Zu+6pVEgoV+9hsSMHPx68A5CHyWD3NwkZ+UplCHr42Wjm6vcUazn6YgDH3XAlA2h2BH6RG1bwT7O+KdjNhzv7wGubwByM4S8lRwEy2Vyb1PDdJzQGnMUcSjkUGjM8VURdVckFF6IvYC5l+ciMlGwRCYItLG0QV5BHuq61GUw527rzhxlO2QDrSIKme/DwPuy3cMCn+rweK037Dp1QMiNt1FUIqAo1bl74G6touVQyKFQ6yApbQYOhaWVnOmUq2goJEm8yMhF9PN0tov3/Z7byMorkAqILI+n9wxQENiAxWcYHOqaxoT4olPdKhj3j7J+jnwdHo7WOPBBsKBTWJALXN8o6B8+OC3L5hUs2z20qaxrF8wuH4dCDoVmN2i1dLgiobDf9n64n3JfoYeOlRxRuVJl1HOth4lNJqKafTUGhfLJ/6ng93BgXA3kPnggvXXPU4SwWsLfDR8hhjwZuZweIbdWqZEHh0IOhUab2xwKjSbacqvYFKBQ/mETM3Jx/t4L5OQXoo6HAxp7OSnJYuAfZ3HtocxnmDZhvd64Gpr7umjdkaxX1QEbxjZRNjSJC5fFXc6IF5oTiQU4pL9aigu5tv6Yw30OhRwKzWGc6tPHioJCipLSdXNXjV2t4VAD//b6V2U+awtrXB51GZkXLyLj7DlknDuLrOth0voo9nK4rwiP67vhp0/2Q2xnp7EtDoUcCvWZN3rl5VCol7hMMrOpQaEuQqLweUuO39UlK8tDLmnGt6+lFQo/71kXwwPdNVsfh28RADFKzsrZo4HMMbajEBrL3BOHQg6F5j6GS/a/oqAwISsBnTdpj6i0utdqvLXvLSWxk1HJX93/YjuJkjRobhAa3s1Dk/tFaBQjO2K2dHODfUiI8Nc2BJYeHiB/hzdf3IRYJEaQRxCaujVFWloaXF1dX7ZXrPfzZGZmoqCgAI6OjnqXVVdAVES/qq9o4lBo/i/eHKGQpP7ZljDsuxGL9JwCaJuCflUc8GarmpizW1l30d/DASF13NG6thu61nUFwZBOLmle3JW5tkmWi4vacCDbPVybVB/7bsQhLTsf1MaEDrVRr6rywkMRWPaGxyI1Ox/Uzwnta6F+tYo/luZQyKHQ/Fc3xSeoKCikXgzfPRy3XmjWnV7z+hrsubcH6yPWqxS9s7UzpjSbgi41uygcM1d/IegeBsdYsv8W5Qn61kWVLPGkvjsOeTxHmK8IT9yFY+ZpwdPQt3pfDoVkyMOh0LDTnEOhYeVZEbWZKxRKZPXj/ggs1bJrSFFRqjnZYLYKKBzfrhZm9mnAqtPXeTU51V534SHcHh9C+8wjaJQic7D9sMgD2wra47+CdogpqoqarnY4KfGVWNz5/649wccbQxVee3VytD29C0TC+q2QLtxPRHp2HsjvIkVxMWbiUMih0JjjqyLqrkgoJAOT+VfnI/R5KPIL85FToBi7nXbxzrxxBg5WDth3fx8DyGvPr+F6/HUlURE8jts/DnmFisZ2FGVlc8sl+HflxxBfCmO7iBIfiFTJbW9BB/F5o2r4dtQmDoUcCg0/DTkUGl6m5V2juUMhGZyQ4UnJ5OlkC2c7K2Zg8nmvABZTmWIrl0yz+zfE6Da+ekNhRm4+2vxwFKlyVtCeokS8YX0WfYpOwE8ks3I+UtgU/xW0x1HLtnCzt8bwFt6Y1LkOJq+/hp3XleM5r5vQGiF+btKuxqVmY8yKi4h8lia9NqaNL77p31DrcEnNzsPjpCw42ljC20WzrpF8ZRwKORRqHVxmlqEioVBeVGm5afjkxCdSX4VkcDI1eCqG1B2iINF3Dr4DslrWNVE85nZe7UDlKDlmgYEh7R4G3itkPhElydLfH07t20uPmVV+herasBnn4zuFBn55HAoNLNAKqM7coZBE9u+5B/jnzAM8Tc5CFUdrjGzlw+Ill0zv/HsZh28/k15u5uOCTRPbwNJC2JbTZ6dw5Zn7+EaDK5324nDm+3CQhcwaML7IGdsK2rEdxPGDe2Nn6FOcjpaFu5J0bMXYFujg7w7Snbx0PwmxKVl4nqa4s0B5yc0OuduRT8tO3cPGS4+QnpMP8uNIMpGkjnWrgOq2FKvYhiwhLA6FHAorYDkyapOmAoWShyRdQ4qbXMOxhsrnfv/w+zj9RLs1saQwAWF3n+74+uzXSvVVypcBYvADC7i/kO0yWtWoUayH2Ib916JyxauvGHUgyFXOodDAkuZQaGCBVkB1LwMU6iO2Sw8SQTtvbvaVEOLnrlBUHygcsvQsLj/QbgHtLErHQPFpDLI4hcZimUuKs4UNGSDSDmIBZBFZqEMLhgfhaMRzlbuI8h1e9GZT9GlSXXrpr5P38P1eudB9KgRDIQMndanD7py9+4LtdNZwsUWjElbeHAo5FOozr8whr6lBoTaZ/XvzX/xy+Rdt2aT3ySXN122+xtTjUzWWmd58Oro9rgJxWBgyzpxBdoTgO5GShZMTM1CRGKtYVZetLzp3xIwycig08MviUGhggVZAda8aFGoSsT5QSLGYI+Nkx7m6vLrm4ki2c0g7iLbIZUXSYMvAkHYPQwuF3c0p3fyx+Gi0Uri+km0MCPLC9F4B+GDtFdx6mgqKEKPN7K1rfQ/MHRKIkcsv4HZsqrTKocE1MHdooPT/ORRyKNRlTJtTHnODQpLtomuLcCjmEGIzYpGVL9v1VyV3DzsPfNbiM0w7MU3pdn23+ujl24tZHzdyaaRgfZx17RrSz5xBxukzyAqV6TiLLCxgH9IGdi1bsj/bQNn6IGmAdCSPPjyK1NxU1KxcE8PrDYe9lb1S+2HxYTj88DBSc1LZzuiwesOYj8aKThwKtbwBMs3Ozs6Gvb3yS1VVlENhRQ/psrfPoVAmQ32gUJ0+oPwbIYtmS7EYp6OLfRsW37RGHts5HGhxGi3FEdIi1wr92e6hfYtRWHpedsyt7i33DayG649S8DAxU+eB4GpXCU28nXA8UrFPVMF/H7RF05rOrC4OhRwKdR5UZpLRHKFQItoVN1ZgwZUFGiVNoNXArQFmnZ2llG+Q/yB8E/INu67JT2F2RASDQ9pBzDgnxGeWpGwvd+Q1qIWarbrAuWkLhLtl4u0DbyvkofY39tmocI0MZkbvG61wrZ5LPWzpt0Xt81A4QDK6MXbiUKhBwosXL8aCBQsYELZo0UL6b00vhUOhsYes8evnUCiTsT5QeCUmSWVIPUltLXxd8dPgJniclInRf19U+yIbiR9goFjQPXQRCTuPRWJLHLLqjJVprXCuULCMVpXebl8bf5+6Z7BB8sOgJnijpTerj0OhTKxBQUE4c+aMzh/LBnshBqgoMTGR+WCzsnq1YnerEp05Q2FEYgSG7hqq9FhV7KrAuZIzWldvzXYJzzw5g/cOv6eUb1LQJLwb+C67rqvzaoqgknn1Kg7sWwz76Fj4xSp630t2tkRk1QJEVxchupoIEd4iFIiB1tVao7ZzbXSt2RUtPVvix4s/Yu3ttUp9WtptKdp6tVW4/t2F77AtahtyC3JBO58TGk/AiIARBpgJqqvgUKhGtGFhYZg4cSJ27NgBd3d3TJs2Dd7e3pg6VbNuAodCo43VcquYQ2HpoJBKkd/DFadleoJ0NPvrsCBYiETM2leSJq27it1hsVrf6QCLM2wHsYNYFq3gdlHN4uPldkgoUozuMndIE3y6RZZXawNaMnzYpQ4+ea0eh8IScuJQWNaRZRrlzRkKSYKrb63GyhsrEZ8Vz45oyVp5WnPlo2KCQoJDSfJy8MKqXqsYZOkDhZT38rPLzP2NJDV4WAT5P7EcJ2ZaA3eriRgk3vESMRc4C/r8he3R27H3/l6lQfBTh5/weq3XQUfLYQlhuPbsGg7GHFTKR/GcKa6zfErOScbhmMN4lvkMliJL5pz7bvJdOFRywGs+r2F84/E6DToOhWrEtHDhQqSmpmLmzJksx5UrV/DRRx/h1KlTGgXLoVCncWfSmTgUlh4KqWRCeg7iUrLhZGel0eULxXe++zwdw/5UPJJRNTj8RE/Z0TIBYnXRC2mWXQVtmO7hscIgdu2fcS0xdqX6XUh9B95vbzRFv0BBsZzvFMqkx6FQ35FkmvnNHQolUs3My4SdlWb3UscfHWd6iOTwurN3Z9hY2khfiq47hVTgy9NfYufdnWpfaMCjYkgs/q+lLGw9K/PAyxL3vSxxvXoe20lMlDsRJihMyUnB9xe+1zhg5naYi561ekrzPEp7hEE7BiG7IFttuZmtZzK9RW2JQ6EaCc2YMQMBAQEYPVo493/+/Dnatm2LiIgIWFhYqJUrh0JtQ87073MoLBsU6vuGG319gLmLkU/21pYI8HQEHUmXTHMbPkSduN1omiFzTfGgyJPpHg4aOw1DNjxhYGqItH9KewQUR1PhUMih0BBjypTqeFmgsKwy1QcKSReQdAJ1TXWfyHYSGz4sgpXiUoenrsIuYoQ30LDrUOzMvYyY1BiN1fep3Qc/tP8Bl+IuMd+O+x7sw+O0xxrL0NH1gs4LsOb2GuyI3oGk7CRm4DKq/ih08+kmLcuhUI0YJ02ahA4dOmDYMIGsadcwODgYoaGhUj2aL7/8Uqn0pk2bcOnSJV3Hi0nlI/0x0rMRqQodYVI9NW5nCApJFtbW1sZtyAxqLywsZHEwjal/tfB4DFaeV1zQpnTygYejNb7cdUdJSr0bVkFmXgEio6Kkxim0kyhJzz074dfnwdiYGVwmCU8I8cb/OtSU1pGfL6zmlpayY3B1DTg7C8YpL2viO4Uvx5vlUCi8R32gcPrJ6SqPfuVHBB1Le9p7smPgksn/qeJxs7ViEBYkO4gQUUOItkI7iferKvtQbeHZAg3dGuKfm//oPBApusvkppMx5dgUpTL7Bu9DDQfBNySHQjUipWNjPz8/jB07luWIi4tD+/btERkZCbFY8KF28aLyMdXIkSNx48YNnV+UKWUk8HVwcJA+nyn1rbz7kpKSAicnRX218u6DKbRHIETW9zQujJkO3nqO8CepLIhAs5rO6FTXHRcfJOGtlVeUmn2/Qy08Ts7CrrA46b2O4jDm1oZ0ECUp364qUvwH4YXfAOx95ozUrHzUdLVFn8aeeJqSDUdrS0Q8S0PooxSQGlBgDSc0rObIYi5Xd7JR0IGkOnNyclhMaRsb2bGTOpmY2weFvl4WOBQaczaUX90cCvWHwpOPT+J/R/6n8SXNaTsHlmJLfHHqC60vk4xVJDqJgU+sYJkluOaSpBwrILKGiP09chfhURWgQbPXcPzxceQVlCBKDa3RZk8lcSWlcIJU5Pt236OvX19WmkOhGiEuWbIEsbGxmD17Nstx/vx5fPrpp1ynUOsQN/8M/PhY9g71sT42xpunMHwUjk+SKA7ypnfb4EpMIqZsUIyRTLGcT38YCIvwjUDYBiBW7iu9dicgcITwB+3RS1Q9y8t6fFwaLwscCo0x2su/Tg6F+kMhlSCrZ7J+liSK0/xh0w/h7eiNhu4NpbtuPbf2xJN0WXhPbW94bse5SA6/htADaxgo0tGzU4ZyqSKxCA/dgUf0V4VAUYTH7kCcS+nWNgoH+EnzTzgUanpB0dHRGDJkCPbs2QNPT09MnjwZvr6+DAw1Ja5TqG3Ym/59DoWmA4XUE/IfSG5snGyt0K1+VdhWEnR6N1x8iL3hcUjJzoNfFXu80642GlSXc/4acxa4vkEAxPxiHUMbZxkcVm+q12B8GaGwtF4WOBTqNXRMNjOHwtJBYWFRIbZGbWV6fORwukvNLqjlVEvle94YsRG3E2/jv+j/QOU0JWsLa1ZfoEcg/Jz8cOjhIaTF3AMdOdeOLULN+CJ4JxTBTeZjX6G6PEsCRWE3kcEi+7cICVp8Yk9oMoEdLVPiO4Ua3tCqVaswb948lqNZs2aYP3++1iNFDoUmu/7p3DEOhaYFhTq/OHUZ8zKB68W7hw/Py3J5t5IBohbLRSr0MkJhab0scCgs86g0iQo4FJYOCkvz8gJXBWqFQvl6v2j1Be4l38PGSEXH15RnbYdl+G7Du/B6lg/veDBQ9I4vQmU1PvuzKsl2FKW7i+4iJBdrBf3S8Rf08O3BoVCXF6uvrg2HQl2katp5OBS+ZFAoP9yeXpPtHmYlC3csrYEmwwVA9FF0HCtf9GWEQl28LNBzl0zt2rVjqjS6RnoypRmflJTEdGSNaTxlSs+rqS/kVcPDQ/DV9yonMjRJT0+Hi4uL0cTwzsF3cDFO0Q6hSZUmGFZ3GP7vzP8ptUu+Bd1s3bA+Yr3SvSXdluDs07PMT6N8cs4Ag0PhD6hZDIs2imqK0iJptsCzqpUQ1Lo/HOrVh5WPDwpIBlWqoLKbm1ZZ6GqUKiqiX9VXNHEoNP8Xz6HwJYZC+eEpOVq+e0x21bOJbPfQTnFRfBmhUBcvCwMGDFCa1DExMdi+fTtsbW3NbsLT/Nb1x8zsHk7PDnNZyARmbFlEp0Zj/o35iEgRdBHrOtXFlIZTkJKbghmXZyi9uQ6eHZhhyOGnh5XufRH4BbpV74adD3ciLDEMRSjCs6xnuJ18m+W1t7Rn9UvC4qU+vguLB0/Y8XPdJBv4JIjgFpsJcaFqVHNe+Tcs/IS485qSrh8UHAqjorTJ0iTvJyQksC8lTX4YTbLjBu4Uh8JXBAoljxkfITteTpW5tkHjoQIg1hF8eL2MUKiLlwVV04sfHxt40amg6vjxsSB4fVzSlPVVkXNqSk7WgneL+Mx4dNncRalaMvygvMvDlyvdW9FjBQuXVzLlFeYhNSeV7TCWTKm5qez4mpx3S1LuvXvIiYoS/qLvIic6mv1VO7Afzj6KEVPK8twcCjkUlmX8VHhZDoWvGBTKj7hbO4Tj5Ui5EFRu/kDgcGT690ehY3Wju+cpzwlQWi8LHArL8y0Zry0OheUPhareJhmhLL2+FE/TnzJXNv38+uGbkG/wMO0hxuwbg4SsBGmx9l7t8Ue3P4w2KLihiYFFy4+PDSzQCqiOQ+ErDIWSR09+KNM9fHFXKpDsAStgEzSkAkalcZosrZcFDoXGeR/lXSuHQtOAQsl7z8jLYDGc5RPt8B17dIztAFLMZrJ0NmbiUGhg6XIoNLBAK6A6DoUcChWGXdRBdrxc9PAcMiZefKl2Cuk5S+NlgUNhBSxMRmiSQ6FpQaERXrHeVXIo1FtkmgtwKDSwQCugOg6FHApVDbvM+BgU2rq9dFBIz6qvlwUOhRWwMBmhSQ6FHApLDisOhQaeaBwKDSzQCqiOQyGHQlXD7mU0NCnt9OJQWFrJmVY5DoUcCjkUGnlOcig0soDLoXoOhRwKORRqnmgcCsthISqHJjgUcijkUGjkicah0MgCLofqORRyKORQyKGwHJaaCm+CQyGHQg6FRp6GwcHBOHr0qJFbMU71iYmJcHZ2hlgsNk4DZlTrixcv4KaDR3czeqRSdZX8d5GOiZOT4FPrVU4kB/pg0BbFgxwjV66sJdiomQuSIpps3rwZdnZ2ZvckKSkpTC/0VffHSi+Or3PC8M3Pz2d+SPk6B2RnZzMdY23rHMlNV3m90n4KmzdvbnaLpKTD9GP2CgejUXhvXBYycXBZCLKQRMHQNkcIlE6ePGm264AuHe/QoQP7WDDHxMczn9uqxi0fF/qPi8uXL+u0BLzSUKiThEw007hx4zBnzhzUqFHDRHtYPt3KysrC8OHDsXPnzvJp0IRbuXbtGtavX4+ff/7ZhHtZPl3bsGED200YP358+TTIWzGKBD744AN8/PHHIFWfVz11794dhw4detXFgMjISPz+++9YtGjRKy+LHTt24NGjR6AQmIZKHAoNJclyrodDoSBwDoWygcehUCYLDoXlvCAZqTkOhTLBcigUZMGhUDYmOBQaaeExx2o5FHIoLDluORRyKDTHtUxTnzkUcij8f/bOAjyqM+vj/5mJu7snBEhIcHfaIi11qttlKXX5alt327a79W51695SBUppKaW4QyBBEjwhIe4uM/M95x3GJTYaznmePLQz9773vefee+Z3z3vE8P5gKGQoHGh2zirnw1DIUMhQaP5RYk+hVcyMwwdhKGQoZCg0/xiyp9DhJsp5JkAxBA8//DBiYmKcZ1IOmAktH1Pc2FdffeWAozvXIfPy8vD999/jqaeecq6JOWA2P/74o4gp/Pvf/+6Ao/MhraWBe++9F7fccgtSU1OtNaTLjnPxxRfjp59+ctn5W2vihw8fxvvvv8+x0wBWrlyJ4uJi3HDDDdZSLzim0Gqq5IFYA6wB1gBrgDXAGmANuK4GGApd99rxzFkDrAHWAGuANcAaYA1YTQMMhVZTJQ/EGmANsAZYA6wB1gBrwHU1wFDouteOZ84aYA2wBlgDrAHWAGvAahpgKLSaKm07UHt7u2hp5+7ubnQganND7W560urGtrO03+gKhUK0O/Lw8NA7KCWeuLm5mdST/WZn3yN1dHRo2tupO3nQDKhFmL+//xnTCpGuvbe3t5HyqatJQ0NDj9s82ffq8dF0NcB2zvh+IJ2QndN9ttnOSTSKYjunUoW17BxDoZPb5Pz8fDz77LPYt2+fmOmcOXPw5JNPan783nrrLbz22msCCMeOHav5byc/rX5Pj3Tw22+/YevWrWIsMpL33XcfNm7cKP6fsk7vuecePUPa74M62QB0bzzyyCMoKSkREPzZZ58hOTkZRUVFuOmmm1BaWipmTB1OZs+e7WSzt9509u7di+effx4nTpwQ/X0XLlyIRYsWiQOsW7cOd955p/jviIgIvPvuu0hJSbHewXkkq2iA7ZxpNVJ26R133IFVq1aJZ5vtHNs5W9s5hkKrmDTbDZKbmyva2Jx77rnCG0TlVy6//HJccskloO9uvPFGUK2isLAwUPmG+Ph4AUMDWTZv3oxHH31U6EMNhR999BHWrl2LDz/8UHxO5RuefvppTJkyZUCqorq6GmeddRZefPFFUKcDXaHyBFlZWeLH5MCBA7jwwgtBfS972hDd1RR20UUXYcGCBbjmmmsEIM+YMQObNm1CQEAAJkyYgLfffhuTJk0SZYt++OEH8cfiXBpgO2d8PSorK0ULz5qaGlGKhqCQ7ZxWT2znbGPnGAqdyzZ2O5s33ngDjY2NwkP0+uuvi2Wxxx57TOy3a9cu3HXXXdiwYUO347jqBrRUQMD3xBNP4IEHHtBA4ZVXXgkq6E2eVBLyCFH9JvKyDkQh0KHze+655/ROjzwJ2dnZIHAODw8X35HXjF4iLrjggoGoCtC1J8/weeedJ14Ihg8fLl4QCgsLhVedvCwkFGJBsEzfxcbGDkhdDJSTOtPtHF1H8vbPmzcPL7/8smYVgO2c6g5nO2c7O8dQ6EJWlGIGCIhuu+024R2i4tVDhgwRy2UkFRUVmDx5MmgpRiaTudCZ9XyqBILp6eliOfSyyy7TQOHUqVPx3nvvISMjQwxGyy7fffedeLMeiEIFfUePHo3a2lrxR/fFmDFjhKds5syZoAKvaiEwoiLn5FUeiEKQRy9DdH4EgOQdfPDBB4UHnUIM3nnnHc1pz5o1Cy+99BJGjRo1EFUxIM6J7RxAxdfJhlGRZrqfv/76a+EpZDvHds7Wdo6h0IXMKEEPeQE/+eQTkUxBXU2mTZsmlpNJyGtIoLBnz54BmXSyevVqAX7UwuzUqVN6UDho0CD8/vvvmngxAoX//ve/A3apkJZMy8rKhLeUkm4orvTxxx8X4QPkTaB7QC0UU0hJShReMBClqqpKeIkpzIK6mNAyMcXXfvHFF9i9ezdeeeUVzWmT3ii8gp4bFufUwJlu5+jF7tJLLxUvNZGRkXpQyHaO7Zyt7RxDoXPaRaNZrVixAi+88AJ+/vlnhIaGiu9p2ZjaP6mD6gkS6E2SGoYTBAwkobga8vLQsnBaWppYOqXzJlAMDg4WcWTkERo2bJg47V9++UW8bQ9UTyEtK918880iXpBEDUAEftOnT9fzFKph0ZqtkJzp3qIfUPKOkveUPIUUS0nXn7yly5cvFy8SaqF7iCBxxIgRznQKPJfTGjjT7Ry94JFdoxhYipMlmT9/PiihkFZBaIWE7dxu8YLLds42do6hgpSnKwAAIABJREFU0AXMMWVQkkfo008/xeDBgzUzJuNAGaaUUEFCSReUgTsQYwrXr18vkmxMCS2zkA7IY0oGlOTNN98UnrSBGlNI8UaUfKSGQnpZID1QLBaBMekrOjpa6OKqq64SfwMxppA8xvTjQNn5np6e4nwp25h+QMlrfv/992PNmjXic3UcEscUOqfRYzsHNDU1YeTIkSYv0L/+9S/xssN2ju2cLe0cQ6Fz2kfNrChr9PrrrxdZtZmZmZrPvby8cOTIEfE2SW/XUVFRwkOSlJQkwHCgC7nQdWMKaUmZwIiW1inZgGDpmWeeER7EgSi0tEReUzpvisGimDpaGqW/u+++WwAh3QdUroX0tGPHDgQFBQ04VVCNTrrG6mtNHmWCZVoyp/ha+qNyNeRJJK/xsmXLxH3C4lwaYDtn/nroxhSynWM7R/bOlnaOodC5bKPRbGjJjzwbhrJ//35R0JRq06ljpih4/tVXXx2wpUd0dWAIhZ2dnaJMDcUVUlzZ4sWLhXd1oC2jq3VAMESZx3T9KZyAvID0UuDn5ycSjmgp9ejRo2Jz8paqPahOfrv3aXrkCaTlNYrFojqFpAuCZBKCDYq9pczjkJAQUZ6GkrNYnEsDbOcsQyHBIL3ws51jO2drO8dQ6Fy2sU+zORM7mphT1JlW6Z+6mZAYdnahz6h0ERU1H6hgbHgPUKIV1SY0JVTKaKDWaeyT0XDBndjOaS8a2zmtLtjOaXVhDTvHUOiCxpGnzBpgDbAGWAOsAdYAa8DaGmAotLZGeTzWAGuANcAaYA2wBlgDLqgBhkIXvGg8ZdYAa4A1wBpgDbAGWAPW1gBDobU1yuOxBlgDrAHWAGuANcAacEENMBS64EXjKbMGWAOsAdYAa4A1wBqwtgYYCq2tUR6PNcAaYA2wBlgDrAHWgAtqgKHQBS8aT5k1wBpgDbAGWAOsAdaAtTXAUGhtjfJ4rAHWAGuANcAaYA2wBlxQAwyFLnjReMqsAdYAa4A1wBpgDbAGrK0BhkJra5THYw2wBlgDrAHWAGuANeCCGmAodMGLxlNmDbAGWAOsAdYAa4A1YG0NMBRaW6M8HmuANcAaYA2wBlgDrAEX1ABDoQteNJ4ya4A1wBpgDbAGWAOsAWtrgKHQ2hrl8VgDrAHWAGuANcAaYA24oAYYCl3wovGUWQOsAdYAa4A1wBpgDVhbAwyF1tYoj8caYA2wBlgDrAHWAGvABTXAUOiCF42nzBpgDbAGWAOsAdYAa8DaGmAotLZGeTzWAGuANcAaYA2wBlgDLqgBhkIXvGg8ZdYAa4A1wBpgDbAGWAPW1gBDobU1yuOxBlgDrAHWAGuANcAacEENMBS64EXjKbMGWAOsAdYAa4A1wBqwtgYYCq2tUR6PNcAaYA2wBlgDrAHWgAtq4IyGwqysLOTl5bngZQOqqqoQHBwMmUzmkvO31qSVSiUqKysRERFhrSFddpyOjg40NzeL++JMF9ID3Rt+fn5nuiowYsQIbNq0Cb6+vi6ni5qaGvj7+8Pd3d3l5m7tCVdUVLCdA9DZ2YnGxkaEhIRYW8UuN15LSwvkcrl4RqwlZzQUDho0CIcPH7aWLu06DkOhSt0MhdrbjqFQqwuGQq0uGArtapptdrDy8nJERkbabHxXGZihUHulGAqtfNcyFFpZoQ4YjqGQodDUbcdQyFDoAHNk00MyFKrUy1DIUGizB42h0GaqtdvADIUMhQyFlh839hTazRzZ9EAMhQyFhjcYewqt/MgxFFpZoQ4YjqGQoZChkKHQAabH7odkKGQoZCi08WPHUGhjBdtheIZChkKGQoZCO5gahx+CoZChkKHQxo+hI6Dw1OE6VBQ2QiIBolICEZkc0Kez5EQTldoYChkKGQqdDwo7ChvQcbJRTMw9zh+eSX2zc5x9rL22DIUMhQyFfcKlnu9kbyjcufIEti09pjfBaVemI2tGXM8nfXpLhkKGQsObhrOPtRrhRBOtLuwdU9i0sQR1v+jbucB5yfCf3ns7x1DIUGho5zjRRKsRjinsNTpZ3sHeUPjhPzegrblTb1JBkT7421MTen1mDIUMhQyF5h8bhkLHQWHZv3egq7ZN7+LIAjwQ/fD4Xts5hkKGQoZC848NQ2GvTYrtoLCmtBn7N5xCY1UrvPzdMWhMJOKHmi+m2dHahffvXm80ITcPGW56Y3qvz4yhkKGQoZChsCeGoz+ewq7qNjRtOQV5dRukPm7wzgqD1xALRYOVShQ/sglQKI2mFvvsZEjcpD2ZsmYbhkKGQoZChsJeGY3+bNxXT2FHWxe+fHwrWho69A5/yX2jEZ0aaHZKBIUEh7oSEO6Nvz8zsdenwVDIUMhQyFDYE8PRZyhUKFH20k501eh7/cKuGwavQea75pQ+vx3y+na9qUl93RHzWO9XRBgKGQoZChkKe2LnrLJNX6HwyM4K/P7BPqM5jJydgEmXpJmd29afj2LXb4V639P2tF9vhaGQoZChkKGwJ3ajr1DYll+Dqk/2Gx3Cb0I0gi4yb+ca15xE/aoT+i+/Zycg4OzEnkxXbxuGQoZChkKGwl4bjr7u0FcoPLDxFP76It/osJlTYzDjb0MsTuf43ipUFDZoso8TMkP7NP3eQGFrUyc2LjmM4oIaQAnEDg7GlAWD4BPo0adjO9NOnH2svRqcaKLVBccUanXRVyhs2VOJmm+M7ZzPiAiEXDnYohkgoOwoUmUfe8T7w8tCaI2lgXoDhcoOOeqWHkXb4VqxfO2RHIjAc5PhFuzlTCarz3Ph7GOV6jjRRHsLcUxhnx8n0zv2FQqLC2qx9NUco0EnX5qGEedY9vo1VrehskhVkiYiOQC+gZ6accqPN6Cxpg2ePm4W4xNph95A4W/v5eFoTqXefJOyw3DerdlW1qj9h2MoZCg0ddcxFPYfCqmkTMVbe4zUSx6/gLMt2zlaPu4oblJBYawfZEFaO0efy2vaIPGSwSvd/DI07dsbKKxZUoCW3RV68/VMDUL4DVn2N0w2OCJDIUOh4W3FUGjlB62vUEjT+OOjAzi0vUwzI6o5eOHdI+Hmbj6Qev+GEqz9skDvLOZcn4m0MZFY/fEBFGzTjhca64cL7xoBb3/T3rzeQOF7/7cWXZ0KveNKJBLc+s5MK2vU/sMxFDIUMhRafu766ik8cuQIWjeXIfiANmnEPdYP4ddliaQTc9KSU4Gab/XtXPCCdPiOiUTtj4fRrGM33cK8QTGK5rx5vYHCU89shcKgugPNMfbpSZB4yOxvnKx8RIZChkKGQis/VIbD9RUKl770LDpaWhAzZBxC4rIQFBGG6DTzCSbq43760GY0GZRqCIv3B9Uq/PHFXUZnO25+MsbOTzaphd5A4du3/gWliWzAW96aCalMYmMt23Z4hkKGQoZC20DhDz/8gLy8PKQlpCI9KhmZ6RnwTbOQeXx6GuWv7EJnRYvepNxCvRF6zVCUv77baLL+0+LEMq8p6RUUPrkFijb9RD4aM+bJiZB6mYdY21oo643OUMhQyFBovefJ5Eh9hcKXr5ivN55/aBgGT5qG1NHjEDckE2Jt2EAoY/n9u0yUpHGXYcz8JGz96ajRPoPHR+HsazP6DYU/v5qDkoJavXEoS5qypV1dGAoZChkKrQ+FtbW1WLVqFQ4ePKgZPCIiAhkZGcjKykJoqJlYaCVQ/MhGkyVpAs9LQf0K/aLWNLh3RihCF5q2c72BQkqKoVhGXXGP8UXkHaNc3cyJ+TMUMhQyFNr4Ue4rFNK0GqurcGDDGhxYtwY1p4r1Zpo2dgKSR45B3NBhCInRVvF/9/a1kHfpL+NaOsXsmXGYekV6v6GQYhhp2ZoSXEjCE/wx/erBiOxj6ykbX5ZeDc9QyFDIUGh9KFSPSHBI3sK9e/eiurpafOzp6amBw5SUFKODm1vGNTdL39GRCL7MtJ3rDRSSd7L2h8OgFnsk7lG+CLowFZ7J3a/i9MroOGhjhkKGQoZCGz98/YFC3am1t7SgMDcHBzf+hSM7turNOjQuAckjRiN2aCYK93khf6v+m6ylU7zonpGINROI3ZvlY/UxRDcVJeDl525jzdpveIZChkKGQttBoe7I+fn52Ldvn/hTC0EheQ4zMzPh4aGKfyZvYOOGkh4bgbBFmWYLYvcGCtUHVLR0UVN0UG3EgSQMhQyFDIU2fqKtBYW60yRIIUBUQeJaNNdpl21lbm4Ijh0Kd894tDaHo63FeAkmOi0IoTG+SB0Vgbgh5jPzuoNC8g7u/fMk6spb4OnrjrTRERg6KdrGGrX/8AyFDIUMhfaBQvVRyPbs379f/FVUqLJ9AwIChPdw6NChSExMRPPWUrQXNgivnWHxa9reI8FfePK8M8PgNdi8nesOCjvLW9C0vljEMFLcoPewUPiOH3h2jnTGUMhQeMZCoVwuB9Vc8/b2NrJ29F1bWxt8fX179Z0ps2kLKDQ8zqlDB1GYu0dAYknBAb2vpW5xkLqnQOaeColMZRgvvGukRRjUNczBwcGQyYyz6miJ+uP7NqLdoHvKnBuGCTgcSMJQyFDoqlBoyc7Rfd3Q0IDAQOOlT0s20JQu+pp93BM7ceDAAQGHFHuoUKhCY+Li4kC2NT09HV5bmvSyjdVjhv49A949qNHaHRSWPrsN8ib9zlK0FE1L0gNNGAoZCs84KKT4lf/85z9YuXKlOPcxY8bgoYceQmpqqvj/t956C6+99poAwrFjx2r+u7vvzBkHe0Ch7rGrThZqvIjH9+hnG8s8BsM7cBhueH1RjzKCLXkKD20rwx8f6wMozSMyJQAL7h+Drg45TuRWo72lE/5h3kjI6D6j0FkNLEOhbaGQ9NvU1AR/f39nvQVMzsuZ6xR2Z+fWrVuHO++8U5wXJXe8++67UMfuWbKB5i6QLaFQfUyKNyQwpL+SEu3ScXxYDKLKfBAvD0WI0k9sLvGUIfrBcZB6d58RbAkK2wpqUPWxcccV8kBG3jUKSrkSbQeqoWjpFHUSvQa7rp0jvTEU2h4KndlumHq+B3ydwrq6OlAZhKuvvlrEpxAg0mf//ve/kZubixtvvBFLly5FWFgY7r33XsTHx+Oee+6x+J2lXzJ7Q6HuXKqLi7BxySqc3L8L7U0nNV9FpaZjyORpGDJpGnyDzRsxS1C45aej2P27fjs9OoB/iBcoTvGnV3LQpNPPNGVEOObd7JoFXl0NCqdOnYqyMlU9yqioKAwbNkwAwJAhljvh9ITIrNnRhIzjiy++iJ9//hleXl4gr/TNN9+MCy+8sCdTcfg2zmzcLdk5WgWZMGEC3n77bUyaNAlfffWVsIn0Z8kGWlK4PaBQ9/hFRUU4fPgwDh06JEBGLbFuYUgOjEPGlBGIGZnUo3vEEhQ2rj2J+t/02+nRoFI/dwGFle/moquqVXMcWqYOu3ZYj47rjBu5EhTa0s7ZoqPJihUr8PLLL4tuKX5+fhrHlDPeB7pzGvBQaHgBNm/ejGeeeUZcoNdff10spzz22GNis127duGuu+7Chg0bLH7nrFCoO6+T+3NRsGUDCjZvQFuzqguAt78/Bk+aLuAwdohxuQZLUJj7VzE2fHvI6NSpIHZSVqhR/2Xa8OJ7RyEmLcjZnwGj+bkiFP73v/8VwfkEh2SMCL5+/PFH8Vl/xJpQSEuUP/30E2bPni3ixehZvPXWW7FlyxaTYR39mbct9nVmKLRk50jPTz75pCgHQ0KQSPfF2rVr8f3335u1gc4EhbpzOXbsmIBD+iPAU0taWppYXqYXc3rhMCeWoNBUkWwaxy3UC75jolD/uzEwEhRaimG0xb1orTFdDQptZeesDYXkmX/00Ufx4YcfinvSleSMg0LyFHZ1deHhhx8Wf+RNWbhwobhmFOA8efJkUEYcgaK570zF3KkvuiM9haZuvKaaahUcbtmA0sPajgCUvUx1EIdMng5KViGxBIVNte349KFNRoeYvGAQKgsbcGiH9u1dvdE5izORPs714nBcFQrJe6MWgkIq+fHFF1+Ij/744w8BisePH8dFF10kIIFCJuhH4c033xTfk/j4+IgfVTK+l156Ke644w7861//wuDBg/Hee++ZHYeA75133tEc7x//+AduueUWi7aQvD9nnXUWtm3bhpAQ51+GcyUo1LVztBLy22+/ieujllmzZuGll14SUNgXO2dvT6G5G6mgoEDjQaQXfBKpVCruYXUMIr2A6IolKFS0duHU01tFprGuBMxKEHGGup1T1N8HXzIIvuOiXOl3XzNXV4RCW9g5Wll59tlnrWbnrrnmGlx22WUuswqie/OeUVC4Y8cO/N///Z9YvqJltttvvx3Tpk3D5ZdfLnRCRmX06NHYs2cPHnjgAbPfqRNSNm0yhqRFixbplVdwJktxYu8uHNm2GYe3bYK8s1NMLSgqBoMmTEb6hCmQ+QUINzcZVVNyaFsFcn4vQmN1O9w8ZUgfF4FJC1Kw5cfj2L/ulNEuQydHITzRH/EZwfD2d51SDpYC8p3peqrnQmD1yiuvYPjw4Zrp0bIghUxQPTh6yMePH49XX31VxNI+8cQTwlgtWLBALG8Q7Dz44IPCk0RedPLc0ZszPQuU+UkhFvTfVEvO3DgEdjQuhWXQSxd5AL/++mtN3Jqu3tRenm+//RYxMTFiH1cQ8rCR0NJ3d0K6cpQY2jl6Mdi9e7e4R9RCLwYUJrNkyZI+2TmynX/++afJ5DxHnTfFHh49ehSilV6raonXzc1N3PPkRaR/yXY3NjYKzzR9Z0ra86rRvKZE1UvZTQrP4WHwvyAJzX8Wo2W9sZ3zGhkO9wQ/eKQFQhpguoWoo3TS3XEp7CAoyDVWc2xt52644QaRc2ANO0chPGRbyS5S7PTFF1+MpKSehTd0d81s/X17e7tI8DKVlGt47J7aOYmSflWdTMhYkOfjgw8+EBeehLyBZCgI5Eho6Y3iFujtk37gzH2nhibythjKl19+CTLKtpCakhZ0tivgH+oBn0Ct8enqUKD2VIvoehIa59NtUklDRTmO7dyK4zu3oqZEFXsokUqRNHo80sZNQkL2SIvTl3cpIXPTdlipLGzGqnf0+5LqDuDhLcPZN6YjONo489sWerLGmPRg9PSGt8bx+jPGeeedhxdeeEFvqfjkyZO45JJLsH79ehEW8dlnn+Hpp58Wh/n999/FZ2+88Qauv/56AYdz585FZWUlzj33XNDSB/1gktec3p7Jq+Tu7o6NGzeaHYfGIg86PWMk5IXKzs7WeOF1z4+OSfFhJE899RRmzJjRn9O3277kDSXTZg4mdCfiqB9aU3bul19+wfLly4WnVy10TQkSKa6wL3aOvI8UpkCeZWuLorwVynYFpIHukOjYOciVkJeqYE8W5QW4me8JT6s9pAvyjNNLCgnFlCcnJ4u4cTrnbn/05EpAp2WnoqINLR8fFnVZTYqbFN5XJ0MWY32dWFvH6vHYzlnfzpFziQCWXtJpFZLuQ4rnJbvrCisitrBzZqGQDOqaNWsEPdPbHJUeoLdvWr6gNzmqSUVE3e3D2ssnhDLX6MeKlosvuOACzd60nFJaWqr5sdy6dSvuu+8+EVNo6TtLh7fF8nFLQwdWvLUXFYWNmkOPnpeECRem4PDOcqz59CC6OlWlG7x83XHO4gwk9KA0A21/aOsmFGxZL/5Vi29IImTuQ+AdmIn4jFjQErGbu3kDTPtt+uEIDu8oR0drFzrb5UYqstRJpZeX0+abD4Tl4+3btwsPH3m9n3vuOeERio5W1Vqjh55aipEnj4wVeQgJ1AgGKYaQYm3px4Ledgkq1UkhlsaZN28eKANWN5aLwIOeJ1NCc6Dl7SuuuAK//vqrWOpzdnH25WNzdm7nzp24//77he0lIS8aATvFFC5btsysDbR0PWyxfEw9hinzV909hI7vPzUW1Mqu9WA1ar89pOlDLPGQIeTydHgPC+v2tqH7jErckIdaLfQbk+Qdjbi2YCRII+CXEoLAecndZi83rCpE865yKNu6oDBh53zHRCJ4gevEkLn68rG17Bz95tNLA0Fbf+0c2cFx48aJ5ys2Nlbccoarkt3etA7cwG7Lx7R88fzzz4sfKVqCojc1KolAPzj0NkeQSMaL/p/gbf78+WaXMXujL4oTvPLKK7F48WLhEVEL3QAUsEyf0RsvLSdT/BS5eOmHjOZj7jt7QyEB154/iowOe80zE7H8v3tRb9AoPjI5AAseUHlDeyqVRSew58/fkb9uMzpaVa2nJFJfyDwykDp6OubfYd6bQ2C66gPjMg66x04eHoZzb8nu6XQcut1AgEK6h+nhpnIjFB+Yk5ODjz76yEiv9KMwZ84cEUJBzyV5B+kZVEMhvSiRZ5xgz9I49IwRBBKI9kZoGZOOTUvdzi7ODIWW7Bzdz3Rdyf7OnDlT3AcEgxRG01c7ZwsobFhdiIbVxnaOsn5rlhxC5ylVwpxa3CN9EHl3z3utq19E6FkgT7pafJSeiFeEIjUmGaNvnGWyTitt23awBlWfWrZznmlBCL++f8ld9nwOXB0KrWXnyFFFQlDYXztHzxsll+hCIZXBo8+uvfZae17ePh3LLlCojtX7+9//jptuugmRkaaTD+gNlsol0EVRl0/o01np7EQGkIyhoXz++eeiTAMtq6ljbUaNGiXirtTFXS19Z25etvAUEvgV7VeBmq7MuykbK9/LNfrczUOGm96Y3mvVUaLJd4/vQWdbPuQdBVB0HleNIXHD8LPPQfZZcxGRrKrvqCt/fZ6PA5uMY210t8mcEoMZ1/S/REqvT6oPO7gqFJKnvbi4WCR70P1NHkBaLqMXMQp6ptCJKVOmiJJM9EzSd998843w1FG4BC0R05stLQObgkJL49DY5I2kZWRKSqEfXYJLqomnFlqepiB/+p5+oCnMgmwCVQKglQJnF2eGwu7sHL1wk7eCVmboh4/sq7pkUV/snC2gsPrLg2jNqzK6DUKvGYrqr/IBhfG6beyzk0XcX2+E7sGm/x5AQUcxjshKUS6t1+xOtl+dwUy2XCLRhsnU/XIMTRstt9rzGRGOkCtdw87RSbsiFNrCzulCYX/tHOmVHFskFLJDNplefimEg0IXnF3sAoX0A0A3HwWV90TI+FIciKnK+z3Zv7fbOHtHk9/f34cju1Stn3Tl4n+Ows+v7DZMlIO3vwcWvzjFaPs9q4tQdqyBQg8RMygIWTPi9LapKK/Ed0/kaT5TdJVA3pEPRUc+lMp2SCRSDD9nnvgLS9AGza7++AAKtqnq5JmTi+8ZhZh01whodkUoVNcpJKNDLzeUUEWtwdRCsa6UfUzPFgmVXrrtttvwySefiOxiAkQCRYKG//3vfyIehpaPdT2FtJ+5cQgiaRxaklbLxx9/LCBULRRHSBCoTtigJUyKeySD6QrizFDYU/3V19c7bUeT2u8PoXmncRWDsMXDUPNVvmbpWH2uEncpYp+ZbHTqTZtPof1Eg8gg9kwMgN8U1RKeWggKW189COXpkJsOdOGIrAyHZaWolKoymEkInglAqHwPOTJqfz4iWu1ZkrBrM12qoLWrQaGt7JwuFPbXztH+dI9RIhclo5JNpmoM9OcKYhcoVCuCLih5oyijkbwRdHCKc6FlXFqDJ8+dq4stPIUEXAReuhIU6YO/PTUBf3x0AIe26wNZ1sw4TLtCP65l7Zf52L9B35s34pwETL5U66Gha/PX+8f1YhfpmOHxQNygUuz941e0NNRD5uYuwDD7nHkIjY0Hweam748YXbrB46MQGO6NpOwwhCdou1dQzGF7Sxf8gs1naDbXt+NYTiXamjtFgewhE+3Xe9TVoLCnzwydF0EBJQdQ+ASFbVAML8USql/AqK4WxWCRx4/EVJ1Cw3F0j08vWJTdSRl3pko3qTO76fjWjh3uqR76ut1AgMK+nrvhfrbwFLbuq0L1Fwf1DiUL9ET0A2NRu/QImg1ePE3F75ny5vlOiEbwRVo7Rz/YXd+dRMdxLQDSQd2jfRFw41DhWadnQA0g9B2BYbpnHII36re/o+98hofDLcxbwCD1X1YLQafofBLgCWgdjnrnp2juFN5ReXMnZIEe8BkZCYlOcou1rpe5cVwJCnuqi77YOVN1Cvtj59RzJZtB9lbX49zT83DUdnaDQspyo7IXJBTkTktNlL1LAZ70/9TSiMphUGySK4stoJD0kb+lVEAS9R4OifbFiLPjERihynLbtuwYyo7VixuPvHFj5hmnvr97+1pQ/2Jd8QnwwLX/0XpyCApbKiVY90UBGqpV5TcI6s76x1BEpwWhobJCgCH9tbe0wN3TSwOH25ZW42hOpdiHPJFj56dg7HnG8/jz04PiXIQR9pRhzLlJGDVH69Giz+srWvH9v3cKIFRLVGogLr2v5/FD/bmHBioUGuqEEhMoc5mWmxMSEsTLGT2DFHdGS40k1ixe3Z9r4gz7MhRqr4ItoJBGb9lTISBJ0dIFt3Bv+E2OBcUOkjT8WYT246qlXs+kAAScrW836PNTz2wFgZauSDykiH1a61EkKPSqk6Dxx6PoPN2dxC3QE0ELBsFrkLboNXnOyVNOXiR62SFJ8YvFoJpwEYNI4j8zHoFzjO1c7U8EsSo7R8vb/jPijOYrb+hAxVt7IK9v10zXPcYPkXdYrv5gzWdhIEJhX+yctYtXW/Ma2Xssu0EhZSdSIPr5558PWlaiHyB6E6OYJnLN05IV/VGpDEvFoe2toN4ez1ZQ2Nt56G5Pnrn/3bnOaAiZuxQ3/1ebQEJQWHm4A2s+zddsS4B3znWZGDRGGwdaW1qCvX+sxN5Vv6KrswOePr4CDtMnnA1P3xD4hXiZzFbet64E6742Ll1z5WPjQJ1R1LJ9+XHsWHE6nlFn1ufdlo2krO6zDfujK9r3TIFCOlcqV0IvaBTvN3LkSFGuiWoYqp9BhkLt3cRQqNWFraCwv89uySMbRX9iQ6FlZlpuJiEo9DjZifolh/W2paxh8j4aCnm+6XeJ4jKpZzfJ4JR0jB03BmlDjDONW3ZXoGaJsZ0HEER/AAAgAElEQVSLuHU4PBK0hbQb1xej/ldjOxdy1RDhfbSHnAlQ2BM7x1CovdvsAoVU9oWKRJNbnoqH0kEpZonKUVAdNBJ1jUBayupp7KE9HpreHsMZoZDO4fNHt6BBp2cnfRYW748rHhmrOUWCwt/fOIy6Cm1vT/oyNMYXVz4+3kgVVScLBRiS55BAyts/QOU5PHse/EON4W3N5wdxcJNxTM4512Ygfby2I4C5xJWZ1wxBxpSexaX29rrpbn8mQWF3emIoZCg0dY84KxSWv7YbnWWquFm1uIV6I+o+bTUGgsLOL06g85T+drJgL7FUbU7Ic0hgSICojs2lmEN6kaJKGmqpW34MTZuME1JoCZuWsjXbmUlcCZqfYhQH2d1z2tfvzxQo7E4/DIV2hkI18FFdQspwJLnqqqtEzUD6Vy0EVJSho86K6+5COuP3zgqFBzeXYs1n2ngdiVSC2ddlIm20Nju0oqwS3z2pTTRR65e2veWtmWJZ2FAaq9tQWXQMR7avRt4aVW9V36BgEW84/Ox54r/VsvbLAuzfYGws51yfiTSdN/Tty49hxwrjHqPsKbT/Hc9QqNU5ewq1unBWKGzJrUTN1/l6BaZDLkuHz2itB9Aw0UT3qYp9ahIknjKjB01e264qXB7iJeJyCQ7pT905hZKyCA6ppBl5/8gLaCjBlw6C71jtyy97Cu1vz8wdkaHQzlBIDxMtTVH24znnnCOO/t1334nSFJSBSKIu+EhdE8yVrHGeW8j8TJwVCmnGzXXtqDzZKGIPI5IC4O2n33qOPIU/PrPfqPg0FcS+7uWpeidderQef31+ELVlLeLzoAgfDJsuw6n8DTiwXlUkl7yF5DUk7yF5Ec3VM5x+9WAEhHohPiNUgGddRQu+f2GnSEZRS1RKIC69n2MK7f0MMBQyFJq655wVCmmuiqZOdBSrCv27x/pB5q/feo6gsO2dw1A06ieNUIJH7L/0qzZ0lDSh9rtDGu+jW7AXgi5Kg9fgYPGbpfYcqjPqKSElOzwd3r/WGakt6PxUuIV5wTM1SMQZipjCN3PEv2qhZJfIO0aZTUyx9vPPnkKVRhkK7QyFdDiKI6TYDCoQbUp+/PFHvPnmm5qq+9a++e01njND4bE9laigUg0SCQiykrJUwdJqISjc93uVUZZy9qw4TL1cP3bmxxd3gcBQVyKTArDgwTE4eSBPLCsXbNkgvg4Mj1R5Ds+ZhwMbq5G/tVSTRNJSrzWIAWHeuODOESK5palOP/t46CTOPrbXPax7HIZChkJXg0IqMt1eRCVpAI94f3gbdHciKMTmGrRs1A9lIS8eefP0bOJH+9B2qFbvM8Oi2TSe2nNIzwtJRvQgDG6KRESbvwA8XfCTBXgg7NphItuZkmJacqugaO4AZVr7jIzodd3F/tgFhkKGQsP7xy4xhXRQarCs7hmsngR5EOkhoh6zNBGidXvVJuzPg2RpX2eFwq0/H8Wu3wr1pj7holSMnqvN4CMopM4VeX+VoIyATyJBdEogAiN9RPu6gDAvAZMkb9/6F5QmisnSMrP0dEmFE3t3i4SUIzu2iH2Co2I0cNhYI8fXT6mqyOtK9qx4TL3csS3POKZQe0UYChkKXQkKG9ecRP0q/dCTgFkJCJittXMEcVQyqX1HpSqbmeAxwR/ukb5QtHZCFuQlsptJTj25xag+In0e88REo5Z4ZD/VnkP6LSMZnpGNxD0eiFCo7KZanKUdHkMhQ6HDoNDwwJs3b8bLL78sPIfTp/e++4atoK6/4zorFH5w93pRzkZX/EO9sPBfkzQfqaFQnXnaWNOGpa/moL5Sm3gyZEIUzlqUgffuWIeuDv0exwSDBIWGcnTXdpGMcjxnp/iKahvGD5uG/O2UjKIfv5M4LBTzbx/e38vQr/0ZChkKTd1AHFOo1YqzLh+XPr9dr8QLzVjq44aYxydqJq+GQnV8O3nrKv+Xh85ybeKJd1YYQv82FKXPboW8Sb/EDQ1EJW6o1I0poUx+tedQXcpmsDwGQ+SxCFeoYNMzKRDhNzu+7SdDIUOhw6GQHhaCQSqcS7XQqL8wtcMaKOKMUNibkjTkKVRD4ZafjmL37/reRbpOlz00BntWn8ThHfrdB1JHRWDujcPMXspD2zaJZeWifXvFNhJZGNw8h0PmScZRlcWSPi4K5yzOcOjtwFDIUMhQaPkRdFYo7GlJGvIUqqGwYU0RGlYZ27nwG7JF3cTmHfrNASiekJZ/uxMCru3rt2L3/j1QkjsSQKY8HsO7EhE6NAahCx1r52g+DIUMhQ6Dwry8PLz++uvYt2/fgIRBtWKdEQppbh/dtxGtBoHV6q4o6rkbegp/+98+HN1t3F6PwI88etTFpKSgVpi72EFBmHRpGjy83bqzlTi4cZ3wHJbkq5rLS2URkAk4zMK8m7OQMsI+NbrMTZShkKGQodA1obDsxR3oOl14X30GlGgS/Yi2pJahp9Bce73gy9LhOyoSdcuPou1Inei9TMvKgXOTITVI0rOkrYNvrsfe8gLky1SVF/yV3pg0cjwmXqStEdut0bTRBgyFDIUOgULqnDBjxgzR9J56p1JPyYEqzgqF5PEjz5+uTLsyXa//sSEUmmqNR/tfeNdIxA3Rlprp67Vc9srXOLrrTyi6VG/inr6JmLXocmRMc2w4AUMhQyFDoWtCIfU9rlumb+cCz02G/zRtn3dDKKxfcRyNG4xLyIT+PcMoSaUvtq5x7UnU/3YCZdI67HUrxElplRiGSq9Rb/C4OP0e9H05Rl/3YShkKHQIFNJBd+/ejffee0+0DFq0aBGuvvpqRERoa+T19aZ2tv2cFQpJT5QtXFl4Ovs4OUCUpdEVQyg8ebAGy17fo7cNdR6hDiT9FWqj9/kjm8Uw8va96GrfA6W8Wvx/6ujxGDnvfCRmjejvYfq0P0MhQyFDoWtCIc2642Sj+BMJJHF+8EjUt3OGUNhR2ICKd1QhLWoRBa//ORqQmmla3EPLQvGK1HpPVw7KipHrW4zGjmaRfElgOHXqVM1ydg+HtspmDIUMhQ6DQvWBCwoK8MEHH+Dnn38W8YT33HMPwsMdu1xolafr9CDODIXdnachFNL2xQW1qp7LLV0IjPBG1vQ4ePvr1zfsblxT3xftr8by/+oYYmUnutpzAEUuutpVjeozp5+FkXPPR2SKtpl9X47V230YChkKGQpdFwq7e94NoZC2bz/RgNa8Siiau0SBat/xUaJETH+Fxq18Vx84BbgmuONgYjV27NghDhEdHS3gMDMzs7+H7NX+DIUMhQ6HQvUEiouLRe3COXPmYNy4/nueevUk2HDjgQaFtlJVyaFa/PxKjtHw/sFdkEnzUHFiIxRdnZDKZAIM6S8wwrgvqe4ACoUSuX+eRE1ZCzw8ZUjMCkX80N6HKjAUMhQyFJ5ZUGgrO9dR3CQKVBuKLMgTXunBOOlejZ2VB1BUVCQ2oQQegsOwMMs93qmNXmdZi+jnTON4Dem9naPjMRQyFDocCrds2SL6H6s7mehOiBJRbrzxRnh7e9vqGbX5uAyFPVOxUgl89vAmNNW2m9xBKa9EQPAhVBaqahn6BASKJWWCQ08fX5P7UPkc8mzqytybspA6sneeaIZChkKGQobCnlmy7rcqe3knunTKehnu4Ts6EvuiykHdvNrb2+Hj4yOWkydO1JbR0d2n6tP9oALduhJy+WD4jOp9OBZDIUOhw6GQWt1RLOE//vEPvblQPafRo0djyZIlSE/X757R/WPnPFswFFq+FhTXSBnNbU2dcPOQoqWxE43VragtbYG8S6G3s1QmxXm3BCPnt+U4skMVlxMSEyfgcMTs8/S2rSpuwrfPbjc6eHdlckzNlqGQoZChkKGwP78q1GavdW+lqHEo8ZCJjiVdNW3oqmyDslO/visdJ/bpSaiorcKGDRtEhQ6S5ORk4TVMTU3VTIUyqynD2lDIWxi2uPsyOYb7MRQyFDoMCqurq7F3717R8zgoKEjTA5kmREBIb0lLly4VMRbq+lH9eSgdtS9DoXnNExBSezxdobI4Vz85Ae/e9hdo+ddQrn9lGjx93HBo60bsXrkMJfkHxCYx6UOF13DI5Gni/6k0zs+vGi/TxKYH46J7RvbqdmAoZChkKGQo7JXR0Nm4s7QZ5a/v1tud4hOj7hmNU89uhbJT/+WXNox+aJwmhjE3N1fAIRXBJpkwYYKAQz8/P9HTueJN/eQ/2sYj1g8R/9c7O0f7MRQyFDoMCk+cOIHnn3/ebG/jMWPGYOHChZg3b15fn0Wn2I+h0Pxl2PT9YVH02lDOvTUbK9/NM9k278bXpsPdS9v1hOob7l65HDUlqnFSRo0VcBgcMxRfPKZqp6cr1DN51sKhvbo3GAoZChkKGQp7ZTR0Nm74oxANf6piBHUl5MrBqP3+MJQGKyICCh8ZD6qnqJbW1lbhKNm0aZP4KDQ0VIBhdlomSv9l3B5U3YGlt3NmKFRpjNoSNjY2DuhyeT29N+zS+5jK0FB2VUJCAj755BNIJBKj5eOeTtjZt2MoNH+F/vzkIPK36jehp62pbd76rwtAnVcM5cbXp8PdU78VXkdriwDDnJXL0NJQL3bJmDYLSkk2judqW095+brjgjtHIDzBv1e3DUMhQyFDIUNhr4yGzsZUJ5HqJRpK0IWpaFhdBCpTYyjRj46HzE8LhervyZlCcHjkyBHx0dChQzFCkgLf3W2aIWh5OuzaTHgm6/dX7sn8GQoZCg3vE7tA4U033YTZs2fj0ksvFTGDgYGBIut4IApDofmrumPFcWxfftxog4vuGYV964pxZJd+95SYQUG4+J+jzA5YX1EuwHD3b8uhVCjEy4an32gopdmQSINEZ5S5Nw0Tn/dGGAoZChkKGQp7YzN0t23aUIK6FceMdg9blInWfVVo3qnfHrQnS7/bt28XS8rkzXKTyTACKchqjoMMUlDbPerTTHDYW2EoZCh0CBQ+/PDDIuP4wQcfxCuvvGIy0aS3N7Ozbs9QaP7KtDR0iLi/2lJt4/m00RGYc8Mw0YJv3deHcPJADRRyBWIHB2PygkEIjvKxeKlpv92/78SxnX+g4rgqAFsi8YbMayRkniMw9twhGH9hSq9uF4ZChkKGQobCXhkNnY2V7XJUvJeLzlNNmk+9hoYg7B+ZoO9qfzqCtvwaKOUKeCYGgDquuMf4WTycoq0LZVuPYUv+LuSVFYhtwxUBGC5PQpI8HH6TYxF0fu/sHI3BUMhQ6BAopOXja665Rhyb4NDLy8tsweqvv/5aBNS6qjAUdn/lTuRVo72lE/4hXiBvYF+lsboN3/97Jwg2SRSdJ0QBbEWnyhspkQYjLHESFr5wi/j/smP1IuvZN9gT4fHml5QZChkKGQoZCvtql9T7tRXUiqViWaAHPFP7budoDEou6apVLRkXSitFu7wKqSp0ZrA8BmPCMzHojsni/6mbi6KpE1J/D9HRxZIwFDIUOgQK6aD19fVYvXo1VqxYAU9PT0yaNMnkvXrFFVfAw8M4tqK/D6i99mcotJemgZ2/nsC2ZcbLNPKOg5ATHJ7uqRydNhgKZRbqaxI0kxs0JhKzrzfdPYChkKGQoZCh0H6WzPKRqFB13XJ9O6eAEnvdTgg47IIcPlIvTJs9A2kH/NB2SFur1TsjFKELM8wegKGQodBhUKg+8M6dO1FWVob58+c7yzNn1XkwFFpVnRYHW/dVAfatLzG7DYGhm9s+tDaoSjtI3ZPh5jlC/Esy//bhSBwWarQ/QyFDIUMhQ6H9LJnlI9WvPI7GdcUmN6qSNmKv7ASOy1Tx2LGKEAzvSkKMIlizfejVQ+GdbbpDCkMhQ6FDoLC5uRlPPPEEbrvtNlGQ05LU1dWJDOUZM2aIlj+uJgyF9rtiO1acwHaDN2g6OmUre/q6I21UBEbNicDSlz/Fqfy1UCpV3VNkHkNFvOH0v01H9sw4hkILl6yjowP0/AYHa39k7HeFnetIpAd6YXDl8BZraZRsM5VLoXAgVxNTvY+d+RyaNpag7hfjFRFKLJF6u8E7MxQnEhqx/ve/UNOqWlLO6koQ8YZeSncEzkmC/8x4k6fIUMhQ6BAopBpA//znP7Fy5UpccsklmDt3LhITExEXFwc3NzeUlpaisLBQFK5+8803RVPwt956C7Gxsc78rJqcG0Oh/S4ZFaxe+loOqGWeWtw8ZLjpjel6kyBw3L4sR8Qbytu1hV+TRpyFWYuuQHB0jN727CnUqoOhUKsLhkKtLhgK7WfnOsuaUf5GDqBT3F/iJkX0Y+Mh9XTTTKTizyPY8Nd65LmpaiQGKX0xvCsRY+dPgd9EfRun3omhkKHQIVCoPuju3btBbe5oCdmUREVF4d577xVLyzJZ79Pr7feYmj8SQ6H9roK5Ejfzbs4S5WjUUnGiAd+9oLrnFF2nRLyhvEOVwefl5yeKX9Oft3+A+IyhkKHQ1F3MUMhQaD/rpj2SOU+hYb/jzooWlL+yC6ektSLesESq6o+cMWgopp01HfT7aigMhQyFDoVC9cHb2tpQVFQEKsxJ/01ew6SkJFG/0NWFodB+V9BcTOH0qwdj2DR9L3Nxfi0ObS9Da6Mq69k/pBRHd/yBwjyV5zAoMlr0VCY4JKEWU9Sj+0wX9hRq7wCGQoZCR9gDczGFgfOS4T9dP/yl/UQDWnaXQ97QgdyO49hVewDNrS0iuXPatGmYPFmVoawWhkKGQqeAQkc8WJaOSb2XCU5NxcdY+s7UmAyF9ru65rKPz70lC8nDtZ5CSzPat3a1KIBdcUIVsxOVmo6Rc+cjbMiwPkMhAWjJoVrIOxUIjfPD4PHGb+j201L/jsRQOHCgkDzgDQ0NJl++e2vnePm4f89Vb/Y2lX1M+4dcMRg+Iy2/uFZXV4vYT1qlI0lNTRVwSI4Ykv5AYfvxerQfqRO9nN0ifeA7OrI3p+VU23KbO+3lsEtHE2e4+r/88gvuvvtufPvttxg1Stslg2IXX3vtNQGEY8eO1fw3zdnSd+bOiaHQfle7seZ0ncJ6VZ1CAXUpgbj0/tG9moS8q0vTGaWxSpWpHDN0GMZfcKnordwbObipFGs+P6i3S1/6L/fmmLbclqHQtaDQnJ1bt24d7rzzTnEy5AF/9913kZKiKnbcFzvHUGjLp05/bFGn8K096KrRtrZzj/ZF5P+NBKQ969ZEbfK2bt2qaZdHJeHIa9jU1ITIyN7DXMveStR8na83UZ/h4Qi5aoj9FGPFIzEUnmFQ+Mwzz4DaBNGSIBnA0aNV0JCbm4sbb7wRS5cuRVhYmIhnjI+Pxz333GPxO0v3IkOhFZ/UHgxFy8HHcirQ2qRaFh48oWdeuf0bTqG2rFlkKidkhCI6LRDNtTWiZR55DjvbVZnK0enjEBI7EcHRqYjPCOm22PaPL+5C6VFVBqCuULu+oEgf+AS4Vg1OhkLXgUJzdo5WQSZMmIC3335b1If96quv8MMPP4g/SzbQ0uPHUNgD42TFTaijSWtuFeRNHZAFesJnRAQksu6BkFrqUaKKxF0Kr7Qg7K8/hs2bN6OqqgohISHIysrCzJkz0byrHJ2lp7dLDYJnmuVi21Uf7dOrh6g+1bDFw+Ae5QuZi9k5hsIzDAr/+usvYRSvuuoqPPbYYxoofP3118VyCn1GsmvXLtx1112ix6Sl7xgKrWjtHDDUr2/n4nhuld6RdZNTKotOYMtPS3B483rNNlTChmoczr1lmih1Y06+eGwL6itbzX6fOTUGM/7mOm/TDIWuA4Xm7BxBwJNPPolVq1aJkyFIJBhYu3Ytvv/+e7M2kKHQAcbJiockTx559HSFlpwx2E8sKdMfSaJPNDLrohCjCNFsGnxZusXlYMqG1m3jZzhtn1GRCLk83YpnY9uhGAodCIXFxcWgP4I0Eipk/c033yAoKAiXX345fHws97rtz61x/vnnC+Oo9hRST+YhQ4Zg4cKFYtiKigrhUs/PzxegaO47S5nR7CnszxWy/b61ZS346smtRgdKGRmOeTdlic8p9up4QQlWvLQG8rbdkHceUW0v8YRv8Fgs/Pct8AkwnRS19NUcFBdoOwqYOqPzbs1GkplisrbXQO+OwFDoOlConqmhnaOVkN9++w3vvPOO5mRmzZqFl156SUBhX+wcewp79xzZe2t5fTtKn99udFivQUEIu05l5yjZc80fq3HipKqETYY8DtldifBTekHm74HoR8abnXb1ZwfQeqDa4mnRUjItKbuCMBQ6EAoJAMlAUYFqhUKBCy+8EO3t7aIEDcU20Oe2EkNjefvtt4ugW4JREvIaEjDu2bMHDzzwgNnv1AkpTz/9tNFUP//8c1Fv0RWFAMDd3R0SSffLEq54fjTnyhNNWPXuIaPphyf6YfYt2jfbAxtKkbOiVGwn7zh8um2eqquAf1g4MmbOQeas2ZBIpXpjFe2rw4YvjAvN6m40Ym4MMmf0bJnb0XomQO7q6hL3xZkulIxB0pNyWfSS6ygxtHNffPGFSDR45ZVXNFO66KKLRJjMkiVL+mTnfvrpJ9Gy1JYv8bbSHwEA1ccdyHZOUd6Glo8PG6lQGuEFn8WDNJ+37q/CgV93iXZ5DZIW+Co9kdWViGGKePg9oIJHUyI/1ojWJScsXiKPiRHwmN77eEVbXXdL47Kd02qH7Bzpg56R7qSndk6ipBHNyKOPPirqJRGQbdy4Eddee61YriXjQkCWl5cHLy+v7ubSp+8NjSV5Aykba9GiRWI88lpOnToVBQUFogOLue+kp0GA5m0oixcvxr59+/o0P0fvRFBM3RrU5+fo+dji+I3Vbfj26V1GQwdGeCNmUKAqW3hiBHasPIbc38v0tpO356rgUK56Q45ISkX27HMxZMoMve3qyltQeqQBRftrcXK/qlaYrky4OBnDZpguJmuLc+7PmPQDSi9t3MVDtexKps3b27tblVIJEEeJoZ2j5JPly5fjvffe00yJPIUEiRRX2Bc7d8cdd+DPP/90yY4mjY2N4hr25EfPUdewv8el5JTq/+QYDSML9oR7aiDconzgPTYCNdtOQv5rKVolHciVFWoKX0crgjHlirORlpZmdirymjZ0HmtAx9F6tB8wXh3xnRUHn+muYefoxbe1tRX+/v79Vb3L70/2nhx21rRzFqHwP//5jzAk1PLuhhtuEIkdjz/+uFAkLUn8+OOPmqw4a2vX0FjScgp1U1F7/Cg767777hOQauk7S/Pi5WNrXzXrj/fX5/k4sOmU2YGHTIxG7HAf/PnuUaNtvPyAYVOqkLNyOZrrVIYwMXukqG+YOnqc3vblxxvw/b+NC7Vf+dg4hMb6Wf/EbDAiLx9rleoqdQoN7Rw1C7j//vuxZs0acTL045ednS1iCpctW2bWBlq6nXj52AYPm5WHrFt2FE2bzds57+xwdI7zQ9cHxzVHLpPWCa/hSakq5poqdVByEiVimpPO8haUv2r8oh1xy3B4JKoaAji78PKx9grZvSQNlUagpVl6U/3uu++wevVqUTOJeh5TSZiDBw/a7A3O0FhSmv6CBQvEMgh5L+ntl4poExha+o6h0Nkf8e7nd/JADWrLW7DnjyJQaRtDufiRDKz9sFBkKOvK5AWDMOLseDRUViDnt+XYvXIZFKeXFQdPnCoKYMcOztDscmRXhQDQlvoO+AZ5ghJNdLutdD9Tx27BUOj6UEjLQRQr/fzzz4tM048++kjA4M8//9xnO8dQ6NjnsqdHbz9aB4I2gsOuKuMEOPcbU4BfKoySRk5ktmJXzUHU1taKVTwCQ/ozt4pE8YXN28pAsYwUj+gzJtJl4glJlwyFDoRCMlDUA5lA7NJLL8XZZ58tZkNeOvr8qaee6un93uvtKI6GvJK6dQo/++wzTawNff7qq69qirta+s7cwdlT2OvL4tAdPn1oE5pqVeVndOW8ewYjKT0Wu1aeAHn83L1kogh1Qmao3nYl+YeQt2YF9q/7U/P58HPOFXAYGmu6Cb1DT7iXB2codD0oNGXnyFtIITu0BE6lSKg8DSWYkPTFzjEU9vJBcvDmZa/sQldFi9Es3BYmISojHo3ri9FxokGUrvEeHg7vjFBRw5AylLds2SL2i4uLE2CYkaF96XXwaVnt8AyFDoRCq11FKw7EHU1UyqTaVcHBwT0KpLei+h061E8v78apw3V6c5C5SXHxo0MRGWU+SHrb0mPIW1uM9tYuePm5I3FoMxqrtuPYblXGn4e3t6ansm9QsEPPsT8HZyh0PSi0dL3r6+u5o0lNjYgdO5OSp6o+2Y+2fOP4Zvdb0xCZEG32lmlYU4RDG/Zhr/woTkpVsdQUekBwaKqXcn9sjSP3ZSh0MBRSQgctG9O/hkJvs7ZKNLHHTceeQnto2XrHOJZTiZXv5ekNOO78ZCSO9TXb5u5EbhVWvJ1rNAkqUN1QsRfrv/oOjVWqzDwP72CMOt1T2SdQP0Fh7VcFKMyrgrxLgdAYP1G/kBJenEkYCgcWFFrr3mJPobU0aZ9x2g7Vourj/VRvS3NA/xnxaBvpbbajCS09V76vtY0HZSXIdStEo6RVAPWY6ExkNsXCrVMCjxg/+J+VAJmfB6Q++lmrdcuPonV/tWiH5x7hg6ALU0WBa2cShkIHQuH+/ftByxv0lkE3FmWAUX1ACuKm+D6qI+jIzL3+3qgMhf3VoP33b6huQ+mROijkSpEAEp7gJ7rfUDswU7Jt2TFQ32VDmbwgDdRhZffvhZC370FXWw6UClUyilQWAU+/0Rhz/rkg6Pz9/X2geENd8fb3wOIXp9hfARaOyFDIUGjq9mAodKrHtEeToXg/6les7FLAPdIXHvH+FnsfN64rRv1KbRIKHaRF0o6DyTXIOXVAHDNE6SdqG6bJowAqZaZUQuIhg9/EaATOS0btD4fQvKNcb35SLzfEPDmxR3O210YMhQ6EQmozd+jQIdExhHoOU23Cyy67DO+//z7Wr1+Pr7/+2l73gU2Ow1BoE7XadVAqO2IJCrcvP44dK/SNJU1wymWDcPY/91AAACAASURBVHBzKapLmsR8lco2UcJGTnCoVCWzSN0SMOmyS5C71gMdbV1G53X5w2MRnuA8ZREYChkKGQrtan7serDy8nKznkKKM6z/1djOBZyTiCP7DmF39UEUn15STpJHIFuegAiFtqh/6MIM1P5wGFQex1CoHZ5XuvOE1TAUOhAKKfOYso1vvfVWfPrppygsLBTJHxTrMmbMGBHYas5DY9enpY8HYyjso+KcaLfuoLDoQA2Wv7HHaMaX3j8av7y5F+0t+rCnVNQJryEBolrcPNMh9RgJqVus3jjO1u2EoZChkKHQiYyTladiCQrbTzSg8t29xkB3fRZqlxRA3tCBA7JisaTcJGmDBBJkdSUgUx4vimAHzEpA48YSKDtURd91JXhBOnzHOE9ha4ZCB0IhFVClOoBUZZ/qZD333HOi1RIVTKTgVSpoTd5DVxWGQle9ctp5dweFtGXOqiLsW1+Clvp2+IV4IXtmHLJmxOGDu9eL5BNTougqVXkOO/I1X8s8s+HmORISmSqrmZaPaRnZWYShkKGQodBZnkbrz8MSFNLRmjadQtOWU5pSM74TouE/LQ6nnt0GRVOHmFCzpF2A4X7ZSfH/Xkp3DJJHY7AsDkGdPoDCuJdF5N2j4R5pu5a2vdUUQ6EDoZD6LX755Zd46KGHQD841GaOyiSQEFBR7UJXFoZCV756qrn3BArNneVnj2xBY7VxPTDd7RWdx9BFnVE6C1UfS9wFGMYMmY7LHpruVApkKGQoZCh0qkfSqpPpDgrNHaz8td3oNKjhWiKtwX63kyg6XfhaComAw3R5NCIV2raP7rF+iPy/kVY9j/4OxlDoQCg0vHglJSWiiCp5B+fOnevy7bQYCvv7eDp+//5A4R8f7ceh7QaB1VIJZO5SdLbrL6PIOw5A2bkHXR2qLHz/0DBVGZt558PN3Tm8hQyFDIUMhY63SbaaQV+hsPanI2jepuoNrxGJRNQ5LOwqR75biQYO6fsUSSSGJQ7FkKyh8BntfCuBDIVOBIW2utkdNS5DoaM0b73j9gcKG6pa8cdHB1B2rF5MyCfAA1MvT0dwtA++eUZVw1BXwmJ9kDaqTHRGoS4pJOGJyQIOs2bNFv8v71Sg5HCd+Dc4ygdBZpZdKMmlcF81ujrkIot61JxEeBqUh+itlhgKGQoZCnv71LjO9n2FQnljB2q+zkf7aTsn9XFH4HnJ8EwJRNm/dwgFkMfwsKwUx2XaKgvUZ5sy17OysoyVpFCi7WgdlB0KuIV7i/I1pqQlpwJtB2ugaJeLJWi/qbGii0p/hKHQAVC4ZMkScTOkp6eLo+/atUuUn9EVqrD/4osv9ufaOnxfhkKHX4J+T6A/UKg+OHVJUcgVCAhT1R2k8mAf/nO9URIKtb2j+oQt9XUCDKmnckebavk5PjMbKaPOQu46T7Q2quJ3SKikzdjzkvXOM29dCdZ/XaD3WcygIFDtxP4IQ6FWe67S+7g/17un+3JJmp5qyrm36ysUqs+Kkk2o/qBbqJfmREuf3y5iENVC/ZSPR9TiYMMJKBQK8XFsbKzgAfqj0nS0FE0FtuV12v2ojmLg3CQ9BbbsKkfNd4f0PvOI9UNEP5ejGQq1KrVb7+PZs2fjuuuuwxVXXCGOTj2Q77zzTtF6iYS6aXz44YfYt28f1yl0kB05EzuamFK1NaDQ1Li0rLzph8OiDzJJ3OBgnHNdpvAmqqW6uAi7Vy5H7uqVms9k7oMg86JM5TjNZze8Og0e3toisUtfzUFxgaomoq787akJZj2LPbnNGAq1WmIo1OqCobAnT4/zb9NfKDR1hlSomgpWqwHPMykAwZcPRk1XA3JycrBnzx60tqpefENDQwUYJpcEAHsajIaLfng8ZLr28bMDoD7LhkJQSHDYV2Eo1GrOLlBIPRRHjhyJpUuXavomEhQ++uijIhOZRF2ShjKS6S3CVYU9ha565bTzthUUqo/QWNMGN+oxamHJo/jgfuSsXIZD2zZp4dAzC26eIyCRheOKR8chLE5lBOsqWrDy3TzUnGo2Uv5lD41FRGLf6x4yFDIUmnqiGQpd387RGdgCCtWaEVAokxgt7dJvPYEh/dXWql5kvaWeGNQRJZJSgpTabifhNw8HQSVJV1UrapYUoKOo0Uj54Tdmi6XrvgpDoZ2h8NixY5gzZw5yc3Ph7a1aTsvLyxOFqqkkDQn1H6bl4+XLl2satff1AjtyP4ZCR2rfOse2NRT2ZpZfPPolKo9vhKJLVe4BEpnIVL7skcVoqvfExm8PobXJuDis+hjXvzxVJLnsWHECFYUNoL7O8UNDMPys+B5Ng6GQoZChsEePiktuZEso7E4hVIZODYelpaqkFRmkmoxlKoQdedcodFW3oW7pEVEX0ZxEPzgOskBPNPxRiPaiBkikEnimBsF/unZ1xdJ8GArtDIVq4Fu1ahWSk/VjodRToSzkGTNmiGXlmJiY7u4np/2eodBpL02PJ+YMUEhzqC1rEa3wdvxyHPL2PMg79oFqHZL4BAZBoRwCJQYJz6EpGX9BCsacmyQKalMCiq6Mm5+MsfNNP4u62zEUMhQyFPbYdLjcho6EQrWyOitasOuvrdi7Pw+lUm0IzCCvOIxfMAN+P9aiq0ZVts6U+M+MR+CcJFR/eRCteVV6m1BNxcBzu7dzDIV2hkI63MKFCzF06FBRn9CUvP322/jf//4n3hxcWRgKXfnqqebuaCjM31yKDUsOa9rgBYR5ITTWH1IpoOgqQEtdLgpzd2sULfMYDJnHEEjdU0W28ezrMhEU5YuAUC+RoPLRfRuNLkpojC+ufHx8txeLoZChkKGw28fEZTdwJBS27K1E3dKjULSoVjpkQZ4oDqzHwaYTONZcotFpnCJULCunyLWlbKj0Teg1GXAL84JbqLdIdil5TBtqo95ZFuyJ6AfGdXt9GAodAIXkAbz++utx9913Y/HixfDyUmUrdXV14ZtvvsFTTz2FRx55BIsWLer2AjrzBgyFznx1ejY3h0KhEnj/nvXoMOiKIpVJIJFIEJ7ojwkXpqD2VAFWf7QU8o4CQKlaVpG6RcPdOwPXvbIY3gGq+JqG6jZ8/shmoxP3D/HCwucmdasQhkKGQobCbh8Tl93AkVBY+tw2oyVhiUwidFkZ3oajwTXIO35Ao1taTk6VR4IgMUjqi9h/TdF8R/2VTz2z1eg6SH3cEPP4xG6vD0OhA6CQDrl69Wrccsst4ugUP0iSn69q+UWgeP/990Mmk3V7AZ15A4ZCZ746PZubI6GwtqwZXz25zeJE/UO9cMEdI/DlE1uhVDQIMKTWeUp5pdjPNygYQyZPF39RqYPw7u1rIe9SlYJQS2iMH658vPs3aIZChkKGwp7ZDVfcylFQSCVrqHSNJZH6ukN2TTx2fLgGx6UVqJZqE0zilKHInDsGaWlpCA9Xhc+UPL7ZqM+yW4gXou4f2+2lYSh0EBTSYSnbiBJOKDWd2tslJSVh3LhxSElJ6fbCucIGDIWucJUsz9GRUEjFrz9/dEu3Slzw4Fh8/4KqSKxa5B2H4O5+FC11BzWfpY6egKL8MMg8VPVB1RIc7YurnzBePj646RQqixohlUkRkx6EuIxAUCmW4ODgbuc00DfgkjTaK8zZxwPjbncUFJrz7BlqNeLWEaj8Xy6UXQqclFbjpKxK/Nso0bYSJXZIS02F/4pGBCu0mcs0FiWfRD9k/PLbsrscHSebACngmRQItyGBaGxsREhIyMC4sP04C7uUpOnH/FxuV4ZCl7tkRhN2JBTSZL5/YSfKTxjX7NKd6FWPjwd1MNmzusho/gp5ORSdh+AmO4K2JlXgtlQWAanHEBF7KJH6QXf5+ERuFZrq2nF0dyWK82v0xptwSQpSxgYyFAICjune8PPrez001386VGfAUDgwrqSjoJC0V/l+HtqP1llUJEFhW0ENGv7U2jkFlDgprULRaUBskWgLXkcrgsXycpw8FKFKP+guH9M4VCan9UCNGFNX/M6Oh2JUAEMhAIZCKz/bDIVWVqgDhnM0FJK3UF1ChsrNtBqUYvAN8sSiFyYLzVDB6pqSJpGlXHpU1VpPI5IOZExsxJ7f/4Siq1h8LJF4CTiMTB2Dq564CD+/moMSE0Wv1WOExvpizu3pDIUMhXq3FkOhAwyTDQ7pSCikVnkNqwrRcbIR5Dmk/9cVqZcM0Y9NgEQmRfvxenSeahaFq3VBsgtyAYcV6XIcOX4EbdCW54pSBCHRLxoj/j4N7r8Zg6DusSghxfOGNIZChkLrP2UMhdbXqb1HdDQU6p4v9Tte/ckBHM2phFKhFAWrJ1yUisRhoXpq+e75HagoNC7qqt5I0VkIeacq9hDKLvFxZGo2akrDRdYyeQ9NiU+gBy56MJOhkKGQodDehsgOx3MkFBqeXs23BWjNrYRSrhR9jwNmJ8J7WJjeZpXv56Ld8OX39Bbtkk6xtEw9l2mZuRNyzb6UpBJPHkRFKMIVqmLYuiLxlMH7ziEMhQyF1n/qGAqtr1N7j+hMUKg5dyVl6itEJxRT8tPLu3HqsOWlGNpPqagXYCiTHkF7c7lqKIk7ZO6pkLonQ+qWCIlU24g+MiUAZ92QylDIUMhQaG9DZIfjORMUqk+XystQyRlTQv2R2wxCXExt1yLpEEvMJQH1KGwvh1yhBcQwhT9iFSGIUYSIf0nconzgsTCZoZCh0PpPHUOh9XVq7xGdEgq7UULOqiJs/vFIj1VFMYXxQ+qxd/V6KDqPQqloOQ2IHpC5Jwo4JEg85/qxiBjkzVDIUMhQ2OOny3U2dEYotKS9pq2lqPu553aOYgplc6KQu2wrimTVAhR1xUfpKTyH8RnJCM+IFW143d3dXecC2mCmHFNoZaUyFFpZoQ4YzhWhkNREYHgirwrVJU1ob1EtEZuTkGhfZM+Kx9ovaTm5HfLO46AlZkVXIZSKJrGbRCJFQtZwRA3OQObk6QiO7l+noaL91Ti+t0oU5Q6K9MXwWXHw8HYzmuLJAzU4trdS1GoMivRB1ow4ePk63lBzoon2UnFMoQMMkw0O6WpQSCpo2lSC1v3V6CxrhqIbO0cFsYPmp6D6C1VFhiZJG05Ja0XnlDKPejTKT78Mn9ath4cHYmNjNX+JiYnw8dGunPTkErQfqRPzU7R2isLafhNjIPUztl/tx+rRuq9KFO+m7XwnRBv1ie7J8ay9DUOhlTXKUGhlhTpgOFeFQrWqti49hl0rT1jU3Jh5SfDyc8fG7w4bbCdHYkYzfALKUZibg5oSVYIKSdzQYUgeMRopo8chLD7R7PiU9NJY0yZALmVEuOiycnxPJX59N09vn8jkACx4YIzeZwS1K97K1fssPMEflz9sutYY1V/sbJOLc7G1MBQyFNr6HrP3+K4IhWodNW4oRv2K4xZV5jc5Fu5RPqj9wdDOAb5jo9AywQfFxcU4efKk+LeuzjgEh9ruEigmJCSIv8BAVWMAAjpqvyf1doP30FABfm2Ha1H14T69OblH+YoezrpCQEildnTFLcIHUfeMNnk+FGepbOsC1W60tTAUWlnDDIVWVqgDhnN1KCw/3oDv/73TSHPBUb7wCXBHfEYoRs9NxLE9lVhpAGq009Qr0pE9U9VI/nhuDo7u3oHyQ/koO3pIMyYVxU4eORapo8ciMmWQ5nM6Lh1fLe6eMsQNCUZ1cZPormIocYODhTcwbXQEYgcH489PDyJ/i6q/s65cfO8oxKQF6X1GCTgFW8vEZ5QQM+68ZGROi7XZHcNQqFUtewptdpvZdWBXhsLO8haUv7rLSF9u4d6Q+XnAMzUIAWcnoO1wHao+1H8hpZ2oXzL1TSZRF6+mDmsEiCUlJQISKyoqjMYPDQ1FWKsvIup9QRnOgUofEQPpmRaEropWdFVrayiqd/ZMDgTNixJnvNKDUbfsKJo2nzIaO+zaTHgN1q+VWPvjYTRvV9k5gsKAmfHwm2I7O8dQaOVHkKHQygp1wHCuDoWksty/ipH710k01bQLYBo2NRaj5hp795a/sQdFB7Q1u8grd8m9o+HmoQr01u1oUn78qPAe0l/Rvr2aK0New5RR4+Dpn4YdK8ggmg4S7+5SXnLvKOymJfBc/bgf2u+8W7ORlB2GkkN1qChswKlDtTiRV2005D+enwy/YE+9z5tq23EspxItjR2gJlq0f215Czx93JE+NhIjZyd0NzXxfW1VFdy9vLhOIdcp7NH94gobuTIUkn4Jlho3lEBe2yaAibx/BIKGUv3ZAVHORi2U3Rx+U7bG82auo0lDQwOKiorEH4Ei/RmKt9JDwKH4UwYhVOFv8dKHLR4GKp7dskfVgUpXQq4cAp8R4egobEB7UQM6TjSIpWhDifrnaLiF6y9ry6l8WV6laB0okUrQUdIEAmcq7eOdFY6AWSoA7k4YCrvTUC+/ZyjspcKccPOBAIW9UevJgzVormuHt58HErP0S92Ya3NXW3oKhXkqQCzM3YPOdrUXUAqpW6TowyyRhUMiDYVUFioynLsTb393yDuVIubQUC7+5yhRh3Hrz0ctDnPebdlIytKWsagqbgKV61HIlWb3O+sfQzFkYrTZ78U55u3B8T27cOkTLzAUMhR2dyu7zPeuDoW9UTTVN+yqa4fMxx1eQ/W9cT1tc0f2cP8Xm1F47ATKpfWokNZDDv0Wom6QIVIRiEhFEAKU3vBXeot/CR5JaLmZRGHQ354+C71qMORNXahbbtnOhVw1BD7DVe39SLqqWlH+2m7R+cWcBF2UBr8J5u2cej+Gwt7cVT3YlqGwB0py8k3ONCi0dDl60vu4ua5WwOG6L1ejtYEymZuNhpRIAyCRqQCR/u0NLNJgEy9Oxd4/T6LFoJC34YGGnxWPKZcNQnF+rSjsXbC1FOQptCSDx0dh4sXR2L4sB8f3HEZbcyWkkjpIpfVorNZfyl70xgcIjYxy8jvY9tPj5WPb69geRziToNCSPnsKhTRGxTt7hSdPLQSGZdI6FSRK6tEq0S/Crd7OHTIEKHw0kEigqPrzgZ/SS2zmPz1eFatoYglad/4+I8MRcsUQUdS7/XAdWnIq0FVrHJ6ju493ZihC/56Bpk2n0LyrXBQMp97QflNioEz20SyZk1f0kksugb+/ZY9nb+5PiZJ+Vc9QYSh0/QvPUKi9hj2BQvXWv7y5F4X7qqHoKoGiswhKRTUU8ioo5fotpXTvENOwGAxI9JeAR81OxO5Vhd3eXKmjwuHl54H9642XeaDsgEJRC6X89N/p/wbqoJCbBsfAiGhEpaUhKmUQEkaOhU9QMHsK2VPY7X3oKhswFKquVG+gsOabfJNLv+prThnOVX4tqPFoRm1DHRokrWiQtqIT5itCSCARgBgcEATfehn85WpgVHkaZQYhOZ6pgfCI80fjOm0iYHf3nHskFQRPwskvclApbUClpAFV4t9GUOFvXbn22mtBmdfWkgEFhXK5HG1tbfD11W+0bU5ZDIXWuo0cNw5DYd+gsGBbGVZ/fMDEhVNCKa+GUlGF/2fvPMCbqt4//k3SvXfLLpRRVmkpe28FFRCQ4UBUxIGC8ge3ouAeDBURt/wQVEQB2bL3KKusssrs3num+T/vCUmaZjRpkzYt73mePm1zzz3n3O89983nnvG+wWFSZMTfQupNcn1j2Nm2ROoKidQHkND6RCl8G7kjM6kISh+09JlMfUxC/9/JFxDsheSbOVDN6CgUOUoILMvUO4KpaqxE4giJ1AsSmTckUm9I7YIgsWuAEc92RYsI5TRNfd5oYq6d45HC2rNPlqyZodB8KKS4yak/nzN6G3wmtAEtYE7//aI6X6GkWAmId35yJPnqvw2NLqpOdlU4CWh0UtjDEfZw9/dEWUohTBl+K0YJCiQloPozpHnIh+4LsJuTK5qFBCMkJAS025p4h0cK9dziJUuWYNGiRUKgrl27qv821hsYCi1psmqnLIbCqkEhnbXqvSNIT9BMH8vsZeg9NgRu3k4gFzQuHsp1Nb++fgC5Gfl3RhLTBDQqRxWVAGedJBXQJ5V6q+FPCYFeIAjVl3qMDEHkCOUbc32FwqrYOYZC6/TQmi6VodB8KKQzkr46iZI4pT9XShKZBJ73NofM10mM4Mnu2LnEz6IqnQqm8ykkX46kAGX9fZCemobki3HifwJI+m3JJIUEFPaPnHbT5hgK/efVtwk872shquE1hQbUjo6OxrRp07Bu3Tr4+flh9uzZaNKkCWbNmmX0/jAUWrL71k5ZDIVVh0La0HHhYDxy0ouEn0KazqXoKRUTxXE+tz8eqbdycW6f7lSvcmQvh+Ly0ZJs2DkCDo5SePo7wslNhoQrGSjIoTU0ZVDQsOCdfC0j/XAl6k74PjLWUicx8qeEP6V/MXNSr7EtETFUuZuxPkJhVe0cQ6E5vch28zIUVg0KhT04lqjxU9jeVzig1pfyjiWhOC5H6VamzPjKOqmTHSgKi0NTd9j5uYjdxMVJeQIOaVqapnmLUAJpmBfyzujuXtZXP61ldFTYi1FGFziCwvxVTOSah1z0MBQaeVYXL14M2o7+9ttvi1zHjx/HSy+9hH379jEU2q6Ns0jLGAqrDoXm3oCSIjm+m7nHrNOGPNEOFB3l0lEN/KkKmPh2N/zx/lGTplVMqfS+6Z0QfGdHdn2EwqraOYZCU3qP7edhKKw6FJp7d2+/sb9SKCxfJu0WpqgteYd1/bYGPN8JKcuiQU6tLZF8Hg6FS5hymQyPFBpQ9I033kBoaCgmT54scpATy969eyMmJgYymUx8RotTKyaKnXjpksbJryVuWE2VkZaWBi8vL/X11VS9tlYPQWFqair8/TVb/m2tjTXVHurjBEPUL6yVVn8UhRRaB1guNWrthZDIAOxdpfsste3dAGWlCtAaxoppzJzOOL8/Qa8DbHPb7+HnhEfe6yF8fqmMJfUNU9YXSyTKc2w9VdXOdevWTbwgm6KFrWmQkZEh1kvZ2emGWLS1tlq7PfS9FhAQYO1qbL58clqdk5Nj1Rjvqd+fAUUyKZ8cmriL8HYZq3XtnHOYn/CjmKfHmT/5OiyMSdfrANtcsaVuDgiaHQmJo5JrCgoKQGuM3dzcKi3KVDtXLzaavPDCC+jXrx/Gjx8vhKFRw8jISJw6dUptCEeMGKEj2uXLl3HgwIFKxbTFDPSFZ+pNtsX2W7JNrIVSTZUjAWv2i9QbeTixIQFZSUqXCj6NnBE5qhFyUopwePUtndsaHOGF4oIyxMdo3EKoMvV+uCkahnrg0sFUpN3MF4u98zJKkBGvXJdj7yiFV0Nn8ZtmnHNSi5CbrnQh4ertAA9/2nACuPk4IqSbD9x8lGsgzdWirnzRmmLnRo4cCfrSLJ8SEhLwzz//mB0X1pLPaFXLqok+XdW21fR5bOfMf7areo8USYUo/S8JimSlnZP4O8JuSCAUBXKUrtVdQiNt5Q7YSVB2QdfO2Q1vAGlbD8hPZkARVwAoAEVOCRSJd9zS2EshDXQCHJWBBBTpxVBkKO2cxMMe8HUQL7v0N01FS3yta+fqBRTStDHtxJkyZYoQMjExEX379sXFixchlRqO2MBrCqv6yNjOeTx9rLkX5rikqe4dJB+EBJ/kxJpSRmI+Vr57WKfYfhNbi2Nnduu6Yxj3WhcEBnvonEPT1MUFpXD10nZ1QxkLcpTG0tldYxj1XUt9nD6uqp3j6ePq9nbbOJ+nj5X3wRyXNNW9c2W5yhlGipVMSZ5VhISPjuoU6zm8uXBwnbNb98XYf2pHEVavYlIUl6GssFS90aX8cfJLSN9tFALQWOLpYwPqLF26FPQ2PG/ePJHj8OHDmDNnDq8prO4TUQfOZyisHSjU1zXIYXXUpusozFMa0na9G2LgY6Fiuvnvz4+jtFjjwb95mB9GPB9mtR5WH6GwqnaOodBq3axGC2YorHko1HeDcw8nIHv7DaiA0SUiAOTWpjQlXzjLLsvXjNQTDBIUWisxFBpQ9sqVKxg3bhw2btyIoKAgzJgxA8HBwQIMjSUeKbRWV625chkKbQcKVS2h0TwHZzvI7DSj9DnphcJZNo0Aevo7I6SzdddG1UcorKqdYyisOXtkzZoYCm0DClX3mKCQ1vZJ7DV2Tp5TjMLzaWLUUObtpBXezhp9g6HQiKrLly/HggULRI7OnTtj4cKF8PQ07taCodAa3bRmy2QotD0orNkeoL+2+giFdKVVsXMMhbbQI6vfBoZC24LC6t/R6pfAUFiJhuZ6+mcorH6nrO0SGAoZCvX1wfoKhXSt5to5hsLatlKWqZ+hkKGwYk9iKLTMs6UuhaHQwoLWQnEMhQyFdxsUmvuYMRSaq5ht5mcoZChkKLTys8lQaGWBa6B4hkKGQoZC4w8aQ2ENGKIaqIKhkKGQodDKDxpDoZUFroHiGQoZChkKGQprwNTUehUMhQyFDIVWfgw7dOiAqKgoK9dineI5oolSV45ooulfNRHRxDq92fKl0lobUyOaODnpxnu2fItqr0QaKdyxY0edjWhC0Rrs7ZV+4u7mlJKSwpGb7vgpzM3NtWpEk7rSz8yJaGKqnasXzquregM7drSe/6CqtsnU81RRK1Qe/009r77lYx00d5S1MF8LCoNJkY/qcyIopM0pdTFxn9bu03e7vSc1uE+Yb+fojDNnzphkAu5qKDRJIRvN9MQTT2D+/Plo3LixjbawZppFb0oTJkzA+vXra6ZCG67l5MmTWLVqFT799FMbbmXNNO33338XcaCfeuqpmqmQa7GKAs8//zxefvll0FKfuz0NHToU//33390ug4hU9tVXX+Hrr7++67VYt24dbt26BQqBaanEUGgpJWu4HIZCpeAMhZqOx1Co0YKhsIYNkpWqYyjUCMtQqNSCoVDTJxgKrWR46mKxDIUMhRX7LUMhQ2FdtGXG2sxQyFBYsX8wFDIU1jc7Z5HrYShkKGQoNPwo8UihRcxMrRfCUMhQyFBo+DHkkcJaN1G20wCGQoZChkKGQtuxSNZpCUOhRtf7778fGzZssI7QIHX+WgAAIABJREFUdahUHinkkcI61F25qawAK8AKsAKsACvACtRNBXijSd28b9xqVoAVYAVYAVaAFWAFLKoAQ6FF5eTCWAFWgBVgBVgBVoAVqJsKMBTWzfvGrWYFWAFWgBVgBVgBVsCiCjAUWlRO6xVWVFQEqVSqN9wTRSsoLCysk2GsqqpYWVkZSktL4eDgoFUE+S20s7O7q8JiFRcXg8K6eXp6qr39kyhZWVlwd3cX/eZuSHTvnZ2ddS6VokBkZ2cLfTjZtgJs53TvD2lCdk4VyYNysJ2TqIViO6eUwlJ2jqHQtm0kYmJi8P777+Ps2bOipffccw/effdd9ZffkiVLsGjRIgGEXbt2Vf9t45dV7eaRBlu2bMHhw4dFWWQk58yZg/3794v/H3vsMcyaNUvLkFa7UhsrgPrGm2++ibi4OAHBy5cvR/PmzXHz5k0888wzSEhIEC2mCCfDhg2zsdZbrjmnT5/GRx99hOvXr8PFxQWTJ0/GlClTRAV79uzBzJkzxd8BAQH49ttv0aJFC8tVziVZRAG2c/pl3Lx5M2bMmIFt27aJZ5vtHNs5a9s5hkKLmDTrFRIdHS3C2IwYMUKMBlHYrvHjx2PMmDGgY9OmTQP5KvLz88Ps2bPRpEkTAUP1OR08eBBvvfWW0EMFhT/99BN2796NH3/8UXz+4IMPYt68eejTp0+9lCItLQ2DBw/GZ599Bop0UD49/fTToLje9GVy/vx5jBo1ClFRUfV2pGz06NEYN24cHn30UQHIAwYMwIEDB+Dh4YEePXrgm2++Qa9evbBy5UqsWbNG/HCyLQXYzunej5SUFBHCMz09Hf/884+AQrZzGp3YzlnHzjEU2pZtrLQ1X375JXJycsQI0eLFi8W02Ntvvy3OO378OF566SXs27ev0nLqagaaKiDgmzt3Ll599VU1FE6cOBHku5FGUinRiNDt27fFKGt9TAQ6dH0ffvih1uXRSEJYWBgInP39/cUxGjWjl4iRI0fWRylA955Ghu+77z7xQtCpUyfxgnDjxg0xqk6jLJRoiQXBMh1r1KhRvdSivlzU3W7n6D7SaP/w4cPxxRdfqGcB2M4pezjbOevZOYbCOmRFac0AAdH06dPF6NAbb7yB0NBQMV1GKTk5Gb179xZTzjKZrA5dmelNJRBs3bq1mA596KGH1FDYt29fLFu2DO3atROF0bTL6tWrxZt1fUzPPfccIiMjkZGRIX6oX3Tp0kWMlA0cOBCXL19WXzaBUcOGDcWocn1MBHn0MkTXRwBIo4OvvfaaGEGnJQZLly5VX/agQYPw+eefo3PnzvVRinpxTWzngL///lvYsO+//17051WrVomRQrZzbOesbecYCuuQGSXooVHAX375RWymeOGFF9CvXz8xnUyJRg0JFE6dOlUvN51s375dgB+FMIuPj9eCwlatWmHr1q3q9WIECl999VW9nSqkKdPExEQxWkqbbmhd6TvvvCOWD9BoAvUBVaI1hbTZhJYX1MeUmpoqRolpmUVeXp6YJqb1tStWrMCJEyewYMEC9WWTbrS8gp4bTrapwN1u5+jFbuzYseKlJjAwUAsK2c6xnbO2nWMotE27qNOqjRs34uOPP8batWvh6+srjtO0cUhIiHpRPUECvUlSGKD6tuOU1tXQKA9NC7ds2VJMndK0KIGit7e3WEdGI0IdOnQQ2lA4KHrbrq8jhTSt9Oyzz4r1gpRUAETg179/f62RQhUs0hqc+pjoC5RGR2n0lEYKaS0l3X8aLf3333/Fi4QqUR8iSAwPD6+PUtT5a7rb7Ry94JFdozWwtE6WEoW3ow2FNAtCMyRs506IF1y2c9axcwyFdcCM0g5KGhH69ddf0aZNG3WLyTjQDlPaUEGJNl3QDtz6uKZw7969YpONvkTTLKQBjZiSAaX09ddfi5G0+rqmkNYb0eYjFRTSywLpQGuxCIxJrwYNGggtJk2aJH7q45pCGjGmLwfane/o6Ciul3Yb0xcojZq/8sor2Llzp/hctQ6J1xTaptFjOwfk5uYiIiJC7w364IMPxMsO2zm2c9a0cwyFtmkf1a2iXaNTp04Vu2rbt2+v/tzJyQlXrlwRb5P0dh0UFCRGSIKDgwUY1vdEQ+jl1xTSlDKBEU2t02YDgqX58+eLEcT6mGhqiUZN6bppDRatqaOpUfp5+eWXBRBSPyB3LaTTsWPH4OXlVe+kIB+ddI9V95pGlAmWacqc1tfSD7mroZFEGjVev3696CecbEsBtnOG70f5NYVs59jOkb2zpp1jKLQt26jTGpryo5GNiuncuXPCoSn5plOtmaLF8wsXLqy3rkfKa1ARCktKSoSbGlpXSOvKnnzySTG6Wt+m0VUaEAzRzmO6/7ScgEYB6aXAzc1NbDiiqdSrV6+K7DRaqhpBtfHuXqXm0UggTa/RWizyU0haECRTItigtbe089jHx0e4p6HNWZxsSwG2c8ahkGCQXvjZzrGds7adYyi0LdtYpdbcjRFNDAl1t3n6p2gmlCpGdqHPyHUROTWvr2BcsQ/QRivyTagvkSsjjmhSJfNiMyexndPcCrZzGi3Yzmm0sISdYyi0GZPHDWEFWAFWgBVgBVgBVqD2FGAorD3tuWZWgBVgBVgBVoAVYAVsRgGGQpu5FdwQVoAVYAVYAVaAFWAFak8BhsLa055rZgVYAVaAFWAFWAFWwGYUYCi0mVvBDWEFWAFWgBVgBVgBVqD2FGAorD3tuWZWgBVgBVgBVoAVYAVsRgGGQpu5FdwQVoAVYAVYAVaAFWAFak8BhsLa055rZgVYAVaAFWAFWAFWwGYUYCi0mVvBDWEFWAFWgBVgBVgBVqD2FGAorD3tuWZWgBVgBVgBVoAVYAVsRgGGQpu5FdwQVoAVYAVYAVaAFWAFak8BhsLa055rZgVYAVaAFWAFWAFWwGYUYCi0mVvBDWEFWAFWgBVgBVgBVqD2FGAorD3tuWZWgBVgBVgBVoAVYAVsRgGGQpu5FdwQVoAVYAVYAVaAFWAFak8BhsLa055rZgVYAVaAFWAFWAFWwGYUYCi0mVvBDWEFWAFWgBVgBVgBVqD2FGAorD3tuWZWgBVgBVgBVoAVYAVsRgGGQpu5FdwQVoAVYAVYAVaAFWAFak8BhsLa055rZgVYAVaAFWAFWAFWwGYUYCi0mVvBDWEFWAFWgBVgBVgBVqD2FGAorD3tuWZWgBVgBVgBVoAVYAVsRoG7Ggq7dOmCqKgom7kZ5jQkNTUV3t7ekMlk5pxW7/IqFAqQFv7+/vXu2sy9oOLiYuTl5Yl+cbcn0oH6hpub290uBcjO7dmzB66urnVOi/T0dLi7u8Pe3r7Otd3SDU5JSWE7B6CkpAQ5OTnw8fGxtMR1rrz8/HzI5XLxjFgq3dVQ2KpVK1y+fNlSWtZoOQyFSrnpi5+MZUBAQI3qb4uVMRRq7gpDoUaL8PBwHDhwgKHQFh9aM9qUlJSEwMBAM86on1kZCjX3laHQwn2codDCgtZCcQyFGtEZChkK9T2CDIW1YJisUCVDoVJUhkKGQis8XsoiGQqtJm2NFcxQyFCor7PxSCGPFNaYEaqhihgKGQordjUeKbTww8dQaGFBa6E4hkKGQoZC4w8ejxTWgmGyQpUMhQyFDIVWeLDKF8lQaGWBa6B4hkKGQoZChsIaMDW1XgVDIUMhQ6GVH8PagMLs7FPIzjkLCaTw8AyHu1u7Kl0lbzRRysZQyFDIUGh7UHg2LgunbmWKhoU19kJYY88q2TnefayRjaGQoZChsEpmxPSTahoKb9z4DleufqLVwNDQD9Co4UTTG30nJ0MhQ2HFTsMbTTSK8JpCjRY1PX3866HrmLvunFb3fPv+dniqT3Oz7RxDIUNhxU7DG000ivCaQrNNivETahoK9+3vhuLiNK1Gubq2RI/uW82+MoZChkKGQsOPDUNh7UFhv0934WZ6vtbNaeDphEOvDzbbzjEUMhQyFBp+bBgKzTYp1oPCgoKbiItfhcKC27B38EFgwH3w8upmsMLS0lzs2dtJ57hM5owB/c+afWUMhQyFDIUMhaYYjuqMFCZkFeJ/h2/gRloevJwdMKJjEHq39DNYbZlCgVZvboa8TKGT5+L7w+FoJzWlyeo8DIUMhQyFDIVmGY3qZK7qSKFcXoDDh4eisChBq/ouXdbA0yPcYJN27wmDXJ6nddzZqTF69dpj9mUwFDIUMhQyFJpiOKoDhQM/341rqdo2a+XTPdArxNdg1d0+3I7k7CKt494uDjj5zlBTmquVh6GQoZChkKHQbMNR1ROqCoXJyZtw5uyLOtU2a/YMWoa8YrA5V658jBs3v9c6HhIyG8HNnjP7EhgKGQoZChkKTTEcVYXCXReT8cTPx3SqmNwzGPNGtTdY9aLtl7Fo+yWt4y8MbInZ97QxpbkMhQZU4o0mSmF4TaGmg/D0sdkmxfgJVYXCuPjfERPzpk7htGGENo4YS0nJG5GdHS12H3t6RcLfb0iVrsocKKSp68tXPkBGxmHarwsvr+5o1fJ12Nt7ValuWzqJdx9r7gZvNNFowWsKNVpUFQrXnYrHzN9P6jzuo8IbYvHECKNmYMu5RJy4kSHyRDTxwvCODapkNswZKSyRl+Hdf89j/+UUMX3dNdgHrw0PRaCHU5XqtrWTGAoZCiv2SYZCCz+lVYXCi0kHcfvcYzqtadnyVTRrOs1oK4uKk5Gbcx4glzQeYVpglpt7AQWFcbC384SXV1ej5ZgDhWfPzgDBaPnk7z8MYR2XWljRmi+OoZChUF+vYyisPhSeuJmBMd8c1JF35uBWeHloa6MPe3peMaJvZ4mX0A6NPOHn5qjOfzExB7cy8uHmaIceLQxPQ9MJ5kDhnL+isTrqlla7+rX2x/InDa/1rnmLVfUaGQoZChkKq/78mHRmVaHw8+uJuJCwGz0LfkJzXBV1ubt3QGTnlZDJXA3WHZ/wFy5ceFV9XCKxR4cOixHgfw8uXHgN8Qmr1ceovM4Ry2Fnp9+/lzlQuHtPe8jlhVrtkkhkGDRQe4rHJNFsLBNDIUMhQ6Hxh7KqI4VU6qw/T+PvE7fVFbQOdMfKp7trQV7F2v89TSOMp0CbTlRp4YRwPBjRCO+sO4vlh25olUfQFuSpfzTPHCiMfH870nK11zJSRefn3QsXB5mNWS7zm8NQyFDIUGj+c2PWGVWBwqSiEgyLuoSk4hJR1zjvPEzwl6Fvox6V1n3gYD8UFsZp5SP4a9P6XUQdH6dzfosWL6N58At6yzUHCnfuag2FQq5TzqCBFyGR2FXablvOwFDIUMhQaD0opJLJCXVcRgE8nO3Rt5XhnceqVtyzaC9oNLB8auHviqWPRIKOVUzP9A/B68ND9V6EOVDY8d2tyCks1Skneu4w0fa6nhgKGQoZCq38FFcFCqlJfyamY2VCOg5n5qpb+FhDX9BPmLuL3lYbdknjhBYtZuHy5Q91zgsKGo327b6oNhQePzERmZnaC8ZplzTtlq7riaGQoZCh0LpQaI6NoMHBlm9u0uuS5r2RHTB3va77raHtAvH95C7VhsIpPx/F7ospWuW0CXLH1pf6mXMJNpuXoZChkKHQyo9nVaFQ1aytqVkCDum3KhmDw5272kCh0H2TNXSZjRs/JkYR9SVzRgqzsk8hJuYN5OZeFEWRw+zQNh/Ay0u/Ibay7BYtnqGQoZCh0HagkFoSPm8bMvOVMymmpLGRjfHFQ7o+XOlcc0YKLyRkg9YVUog9SsF+rpg/qoNJo5umtLO28zAUMhQyFFr5KawuFKqadzAzF78npIsRRGNweCHmdcTH/2nyVUWEL4ePT+9qQ6GqgKKiRPGno2OQyW2w9YwMhQyFDIW2BYXv/XsOPx+4brLp+G5yFwxrF6g3vzlQqCogKbsQ5DuboqjUp8RQyFDIUGjlJ9pSUKhq5pmcAvyRmI5VCWnIk5eJj+/z98R9/l7it6NUKvwUZmedBI3eFRUl6Vyhh0e4GMkLDBgOX98BBhWobKQwN+8Sbt36Bfn512Bv74mAgBEIChxpZUVrvniGQoZChkLbgkJqzU/7r+HYjQycvpWJ+MwCnQZ2bOQJ2rRyT/sgDGuvHwjppMqg8HpqHr7fdw1XknPg7myPe9sHYVxk45o3RDVQI0MhQ+FdC4VyuRzkc83Z2VnnUaNjhYWFcHXV3eVr7Ji+Z9bSUKiq43pBkYDDNYkZuFlYLD5u6uSAe/w8McTXA/193KHPTQzlMzY6WP4ajEEhTVHv298DJSVKP2GqFNbxG/j731MD5qvmqmAoZCisq1BozM5Rv87Ozoanp673AXPtXHV2H1f3SX51TTT+OKbtJobKXPZYpADCylJlUNjjwx1IzNb2rKDa6VxZ2XXtOEMhQ+FdB4UZGRn49NNPsXnzZnHtXbp0weuvv46QkBDx/5IlS7Bo0SIBhF27dlX/XdkxQw+/taBQVV9RWRk2pmRhY0qm+K1Koa5O6OkYjyZpC9AGF9SfkzPpPr0PQCqtfNrDGBQmJW3A2XMzdS7b07MzukSuFjuRU9N2obQkC07OjeHt1b2u2Ud1exkKrQ+FBQUFel/QbLnT2LKfwsrs3J49ezBzpvL5DQgIwLfffosWLVpUagMN3Y/ahML1p+MxY5W2A2yKf3zo9cHwcXWotAsZg8J9l1Pw2I9Hdcpo18ADm2b2FZ9vv5Ak1jc29HJCr5DKd05X2qBazMBQWLNQmJubCzc3t1q845VXXe+dV2dmZmLNmjV4+OGH4eDgIACRPvvkk08QHR2NadOmYd26dfDz88Ps2bPRpEkTzJo1y+gxY7JaGwrL1x2bX4T/0rKxPS0b+zI07hpayeIQKYlGH5ccDAkZDS8v0xytGoPCq1c/w/Ub3+pcupNTQ0RG/okTJx5BQYHGV1hgwH3o0OHLynugDeaoa1DYt29fJCYq13YGBQWhQ4cOAgBCQ/W75DBHcktHNDl9+jQ++ugjXL9+HS4uLpg8eTKmTJliTpNqLa8tQ6ExO0ezID169MA333yDXr16YeXKlcIm0o8xG2hM6CpD4eopwJXtgKM74OAGOLgCjvTb/c5v13J/0+dudz4v99vBDStPp2PtuSwkFsjE5o+pfZqDnEqbkoxB4bd7ruLjzTE6xZCj7O2z+mH8ssO4lKSxtcZ2OZvSltrOY+tQaE3bVl57S4W5O3/+PF544QVMmDABzzzzjKiCRuF/+OEHLF2qDOwQHByMF198EYMHD67t26+3/noPhRWv+uDBg5g/f74YOVy8eLGYTnn77bdFtuPHj+Oll17Cvn37jB6zFSgs347zuQUCEOknKksTbL6HlxuG+nqIn9auxkcLjUEhrSW8dHm+zqW7uraGv/9QXL++ROcYwaKXZ6RNdnxjjaqLUPjVV1+hY8eOAg43btyIzz77DH///bf4rDrJ0lA4evRojBs3Do8++iji4uIwYMAAHDhwQIxe2XqyZSg0ZufI5r377rvYtm2byEaQSP1i9+7d+OuvvwzaQKtA4W/jgMv/WfZWu/gAzt6Aix/g2xJoGA40oJ8wwE7X5hmDwr9PxGHWn6d02tfUxwUTuzXFp1t0gZEcZZsKpJa98OqXVheg0Fq2zdJQuGHDBrz//vsC+siuPfvss6KKsrIy/Pzzz3jggQeEndu6davIR8+fTGZ7DtDvOiikkcLS0lK88cYb4odGU2i0glJycjJ69+6NmJgYAYqGjhm7kTU5UmjIJJzIzsd/aVn4LzUbZ3M1C7IH+rhjiK8nhvp5iPWIFZMxKCQH2eQou2JqGTJHuKVJTFqvc6x9+4V1ciNKXYVCGr1RJYJCGpVbsWKF+Oi///4ToHjt2jUQmBEk0JIJ+lL4+uuvxXFKNHpHfZgM8dixYzFjxgx88MEHaNOmDZYtW2awHHobpjdhVX2PP/44nnvuOZ0+MXHiRDz22GO47777QManU6dOwjg2atSo+t9wVi6hLkFheTtHMyFbtmxRj1SQTIMGDcLnn38uoLAqdq7KI4WCSrOAolygOEf5uyQfKMq+81nunc/ygKI7xylfcR5QTPlU59L5eUCJ7oYTrW4Q2B4ICgMadAIaRojf6TkFcHd3h729rvNpCqXXeb4utD7XPwSZBSVYdfSmTi/7aExHTOrW1Mq9zzrF1xUotIZt+7//+z/MmzdP2DuygQR1ZMMq2khTbduZM2fEet3ff/8dHh4eaiiseOdUL2WHDx+Gr6/xkIzWuevGS72roPDYsWNi2Hbt2rVimo2Gefv164fx48cLlWjUMDIyEqdOncKrr75q8JhqQwqVVzHRNPXZs7rOVGvj5lKdh7LysTMjFzsycnC1QLlBxU4iwSBvNwz2dhO/AxyUEUjo+mm9g1Qq1dvcxMQ/cfPm1yguSYVEIkVgwBi0bDkPsbEfIj5BCR/lU8MGj8LdIwI+3n0hk9n2OoqKbc/KytK7IL+27qOxemkaYsGCBQKwVImmBakvkqGih7x79+5YuHChWEs7d+5cjBo1SozYffHFFyDYee2118RIEo2iHzp0CDSdQs9C27ZtxRIL+tvR0dFgOUeOHBHl0rIMeul6/vnnsWrVKvW6NVW79u7dizlz5uDJJ5/Ejh070K1bN7Fsoy6koqIi0AuDk1Pl63NJq9pKFe0cgfqJEydEH1ElejGgZTJ//vlnlewc9Qm6f/o259X0dUtyk4CCDEjyUiBJOgNp4mlI6Cc9Vm9T5L6toWjWB4qWQ1AWMkQnzz+nErBoxxUkZhdBIgFGdWqATx5sjwXbr2DZPl23OBO7NEbXYC/0CfGFl0vdinJCyw68vLxq+paZXJ81bVu7du0ED7Rv3x52dnZiaYU+G2mqbVNdFNlUgsKnn35a73WSDaQ89LJmi4nsHI1u6tuUW7G9pto5iYIsp42lq1evipEPmtunzSaUaDSQviRVa5po6o3WMFy8eFF8wRk6poImGmmsmFavXg19sGgJOQoKY1Emz4OjY2PY2Xmri6RNHgUF5ERaChcXw+vI9mYXYHdWPnZnFyC+WOnw2lUmxQAPZwzwdEEvJxl8nBwhIUtoJMnlOXcgT5kvN/ckLl6aavAMe3tftG61DE5OzS0hg9XLoO5L06amdnirN6iSCmjU7eOPP9aaKr516xbGjBkDMkC0LGL58uXirZgSTV/QZ19++SWmTp0q4PDee+9FSkoKRowYAdqUQEaSRs1pmoNGlWhUZf/+/QbLobJoBJ2eMUo0ChUWFqYehVddAk3d0csYTR0TrH733XeIiIiobQlNqp9glxJpU1mqrS9afXaORkD+/fdfMdKrSnRPCRJpXWFV7Bwtv6FlCjSybOkUm5aP3CI5Gno6wq/CxpELibmgL5fQQDdIjZspSEryIEs6A1lSNGTJZyBLOQ9Z+hWt5irsHFHatC+K241DScvhWsdyi0pFfGPpHXt4PjEXD/9y2uDlujvZYdnE9mgXVHdegAkAbNnOWdO20QzIsGHDxP0kO0k2kuxdRRtpqm1TdQzKT1Cob600zcbRLMpbb72Fnj17WvrRsUh5NDJK34GWtHM2B4X0BURfVgRxI0dq/OrRUHFCQoL6y5KGc2kUg9YUGjtmTHlrTB+TG5jT0dOQlXVCXXWL5jPRvPkMJKdsxYULr6G0NFscc3QMQLt2X8DHu5fBZhaXKe5sUMkSv1PvAKKPnRRDfd3RsXQH2hZthD3kYhdxy5avQSIxvvbh8pWPkZT0Lyj0nlyuCdWnakSTJlPQupVy7aatp/owfXz06FExwkej3h9++KEYEWrQoIGQnh56mragkTzafEAjhASHBIMEw7TWlr4saMMKGUsaGfP29jZazvDhw0E7YClfefCg56l8oudw4MCBYmqZ6qXpaYIWmp629WTr08eG7FxUVBReeeUV7Ny5U0hMO78J2Gnafv369QZtoLH7Ua3pYwMFF5TI8eQvx3Doapo6x/MDQvDKvaEi1Nz/rT6NtNwicczbxQGfPRSGIW0N+yPUW01xHnJidsElNRo3T+9GYPYZuCjyRVaFkyckYeOBsIlAY/2RmRb8dwl/Hb+NnMISvTGRJ3Rtgk/Ghtl6V1a3ry5OH1vKttGMCG0wpUQwSAM6DRs21LGRpto2lag0W0LTyKo1harP6SWYls7cc889wjbbaqr308e0TpDWMdF0FY2IqBLtRI6NjRWf0RsvTSfTFxQtEqUvsitXrhg8ZuxmWgMKr1z5BDdufqdTba9ee3Dq1BPIz9eeJvH0jESXSNOinGSXytU7mLelZCKP3PYD8EMKInAcEYrjuDeoGdq1+9zgZScnb8aZsy8Y7eP+fkMQFqYZqbDVB0J8OSgUYtSsLmx+oPbS6DatASy/7ob6MD3c5HKJjp08eRI//fSTjuz0pUBGipZQ0BQzjQ4SBKqgkF6UaGScYM9YOfSM0eiTMWMXHx+P/v37i+UVqtEJ2iVN0ziqnXq23C9sGQqN2Tnqz3Rfadc3ATn1A4JBWkZTVTtnDShcvOMyFv53SacLbHu5H2avPo3o2xoXXJSpbQMPbL7jJsacfkOj1R/vuIk/j8dBhjIMlJ7CONkeDLE7CTtVyFD/UCB8EhD+COCq3NW862IynvhZd8lQ+bp7t/TDb1PrjjuuugiFlrJtNFtCI3qUyC0d/f+///1PpyuZYtvKn6QPCsmeko1r2rQp3nvvvUpn48zpz5bOW++hkAwgGcOKiW4+uWmgIWPVWpvOnTuLNQUq567Gjhm6EdaAwlOnn0Ra2h6dKsPCliI6Wncxv0zmjAH9zV/XGJOYhN8uvIeTCMdJREIO5ehgQ8RjVJNwDPHzQG8v3amRCzFvID7+D6N9s2HD8WgbqnsfLN2hLVFeXYVCgqvbt2+LzR7Uv2kkrnnz5mK08KGHHhJLJ/r06SNcMtH6UTpGi6I3bdoklkvQFDFt+KBpYH1QaKwcKptGI2nqhEb9aPqa4LI8WNMIJe3Ko3WL9Ju+nGm6mjZF0NpeW0+2DIWV2TkaLaRpe1rk7uPjI0aIVS6LqmLnrAFOLw9CAAAgAElEQVSF0387gY1nEnS6wdJHI/HCyhOQ33lhLZ/h0gfD4SDTvwbaUH+ifjf46yhkVIil7CnJw8lR6ZBGrwLi7+xAlsqAFgOATg/jw+ut8N2B20a76QOdGuKrSXVjOQRdSF2BQmvYtvJQSM/HpEmT9NpIU2ybMSikZSe0dpEGomiZj2p5Ftlb3n1so1bf1iOa0CgcjcZVTJ0jVuLEyYd1Pnew90HfvrpvtLfjViA76xRo9bSXZ1cQqJVPKSkJiD7TR3yUjECcQiROSiIRDc2u1g5uzmL38lBfT3T2UK4nOnd+FhITjS+ajYj4n9EpbVvqGnURClV+CsnPJr3ckBFq1qyZWtbffvtN7D4msKFErpemT5+OX375RewuJkAkUCRooHV+tGmFpo/LjxTSeYbKIYikcmhKWpXIDQNBaPlEU5g0eklTnbQejZZzUFvqQrJlKDRVP0MbqGwhogmNBtLUbMX0yxPdBBTSGr/yiRxWX3xfex0gHacdwlE3MkAr2zs39cKjPTTPAR0nKOy98ChourpiOvfePXB1tAOSLwAnVwBn/gRyk0W2IpkrlhcNwI/y4UhU+OiV/IfHu5g/pW3qzbNCvroAhdaybeWhkDbWkb2il6WKNtJU26a6PfSSSwNLqtkP2vSnWmtd/hbSLAm9qNlaqvcjhTUtuDVGChMS1uD8hVe0LsXZuSl69dyFs+dmIClpo9axRo0eRmgbbZ+CFy/Nxe3b2juEg5s9i5AQzZovWgQbG/skcnLPaZWX5TYUCUHzxDTz4UzNesEunq7C/2H7kv8guTlXR+qAgOGgdtLUMUU+USXaGENrIO3tNevPKp5cUpKJlJRtIqyek1MjBAbeX2O3sq5BoanC0HURFBCM0VsruV548MEHxVpC1ej4jz/+KFzZ0IgfJX1+CiuWU75+goucnBzh8sPYWzABqGrqxtT213a++gCFltLQGiOFG6MTMH2lZt00tdXf3REHXh2Et9aexZ9R2qHtxnRuhAXjNS+slP+jzTFYtueq1mVO6RWMd0e2V39GUPjMnzE4dl07ZCfFTaapap10aYsSEC/8qz60Xt4LC0rH4boiSITWC/Z1wcDQAPRooXExQlCamV8MbyNRVvKKSrHpTCLS8ooQ5OmE0eE165rJ1qHQ1P5aFdtWvmyV82paJlPeRlbFtpnaZlvNx1Bo4TtjDSikJsbFrUJyyhaUlubA1bUlmjV9Gq6urUAxia9e/QKZWceFmxjaGNKixcs6V7Vrd3uUlWnH86RNKX16H1LnJShU4BwuXnwdRUVJ4nOKWNKu7afw9lbulIrOIR+ISifZp7KVC7QphdvfRofi7WIdYhDiERw8HSEtZum0I+biW2KqWaEog729D4KDn0PTJk9q5SsovI2oqHEoLk5Rf07X1bnzSgvfLf3F1VcorHi1NFpHu/toupnWutAaW5rapXVnqjdYSzuvrpEbaKVKGAo1wloDCql0Aj+Cw6yCErTwc8WTfZqjQyNlrObPtl7E0WvpUECBrsE+ePVeXU8LXd7fjtQ7m1FUraWRPxoBVCWCwovppXhlzTncylDaMIpY8um4MAwKNeJEPeM69v7yNrpnbYYjSsR5R4MmotuUTwEn7XjS7/17DisO30SJvAwezvZ4tn8LPD+gpVbPTMstxuhvDuBWejk72sQLa6f3tlIP1i22vkBhVWxb+XMsFdGkxm6cFStiKLSwuNaCwuo0Uy7Px+49upEtpFJHDBxwXl00QWFJ6SHExMxBWZnS6FHM5PbtFyDAX2NUVScczcpTAmJqFmLyNMA5OsAN44ICMMRXuYhXlQhsCQorph7dtwjAVaXYa4tx7ZpuiLzwTj/C13dAdaQw6dy7BQpJDNr5S2sBaWMNuYYhd03kw1A1ysdQqOkyDIUaLawFhSY9oEYytXxzE0rluh7RYubfCyd75RppgsJjcYWY9dcZ0EidsHMSCb4Y3wkPRlQ+UpeUGA/7/Z/C5+zPypZQNJWBbwDdlDtK156Kw0u/60ZFWTe9Nzo10fgE/H5fLD7YqIlTr7qsrx/ujPvDlJ4CrJ3qKxSaYtvKa8tQqFGDodDCT50tQiFd4oGDfVFYGK91tW5uoejeTTP1TFB4+crDyM/Xnn5xc2uL7t02GFVqT3qOiMG8ISUTCUVKoOzu6YoJDXzwcAPllMqFmNcRH6+7K5qgMyhwlLp8Q/nahn6Ihg0nWPiO6RZ3N0FhZWIyFGoUYijUaGGrUDhs4V6t2MTU4iY+Ltj3ykB14wkKp6w8r7ObmULZ7S2Xr7JnA+nXgO3vAOfvRHPyaw2M+Bzzzvvjp/3XdE7/4MGOeKS7JvLJ/A3n8aOefG/f3w5P9akZn671GQorvX/lMjAUMhSa01/MymurUKhvlK5iGLryG03KXzT5KBw0kJxj63qLVU3xOjgo3Takl5Tij8R0/JGQrh497O/jjmmN/dEo5RPExf+uo2eH9ou11gxejV2gN5Zyp7Dv4Odn/SDiDIWaW8RQyFCozwDaKhT+czIOL/+hPUr38ZiOIm6xKhnbaHL2vXvgRhtNKiSakqbNzwHueiLVxJ8ENs0GbkeJs6549sLUZOV6w/KpYju+3XMVH2/WjaW8eGIERoUr/eVZOzEUKhVmKGQotNqzZqtQSBdcUHATOTnnxO5jD49OcHLUnqKgkcKz5wZALteOJ2pn54H+/U5qaZadHY2YmDeRk6ucfnZza4PQNu+rN5SUKhRYEZ+GZbdScK1A6XB2pGcuembORVNoh4oiVzW0IcXbu4fIl5d3BceiHgRNe6uSh3tHdO261mr3rXzBDIUaNRgKNVrwSKFGC1uFQmphfGYBTt/OEv5GOzbyFCOF5RNB4bBvjiM1Vxn2U5VkUgmufDBChLZTpYuJOXhlTTRO38oUH4UEuGH+qA7oFaInZi1tRNn+LpB2BaWQ4X/yoVhQMg45UNY/b1R7tAxwV58bl1mAB77aD4q3rEqtAtyweWY/2MkqCddiIUvIUKgUkqFQ06F4+thCD5f6oW7VCpcvX7ZwqZYpjnwdZudEi3B4np4Uk1g76glBYXLKF0hI0J7ibdzoUbRp855WI46fmITMzKNan9EO4y6Rq7UNcEkpvruVgmW3U1AgL4OjpAz3y3biXsV6eEkLUVysiV7g6hKC8PCfxW5jAliK1qLafdywwUOQSh0sI0QlpTAUagRiKNRowVCo0cKWoXD/lVScvKl0SUNr+Pq3Vs5iqBJB4Zf74vHLoRtan4/t3FisKyyfyFk1Oa0un0IbeGCLMafZR79H0X/z4ViShSy4YZl0Ir7JH6Quoom3C356oisIABOyCrExOl4AagNPJ4yNbKx3pNJaho+hkKGwYt9iKLTw02arI4X6Nm+0avk6mjbVxCwmKKQt+bduf4eszONCGS+vrnD36CB2PTs7NYG7u9K1w85drUGuZSommmaWSHSnX87nFuC72yn4PSFdnNLMSYqBBd9hKLT9L9JO5Fat3rTwXTGvOIZChkJ9PYah0PahkNzRkFua8unloa0xc7BmIxtBIblM+vnQLRy5loayMqBzM290aeaNzIISNPRyQqfGyg0hHd/dqjecXfS7w+DhZG/YsBTlAgcWAnuVkaAuKJrh7ZInEFXWWvw/sWtTfDxWd/OfeZaq+rkZChkKGQqr/xwZLcFWoXDvvkiQ77/yydm5CXr13K3+SAWFqp2n5Jbm5KnHkZenGfmkjR604UOfixtyiTNooPFR0p3p2WLkcHd6jqg3FOcxXLEBXXBE/E+7i2mXcW0mhkKGQoZC40+grY4U9v54J2hatnzycXXAibeHqj9SQSFFlKCUXViCh78/grNxmjB6oyMaYdGEcETO/w9p5aZ3VYWcn3cvXByMx4OnvGeP74fj+mloJYkTp/4hH4B3Sx5Hh+AGWP2s0s1XbSaGQoZChkIrP4G2CIVyeR5279EN0q7PJQ2NFKqg8OrVz3H9xlIdxbp1XYfrN77VibLi7z8UYR2/NUnhH6+ewLc3b+MWlAvAe2K/gMPegW1BG2BqMzEUMhQyFNY9KCRHNK0MuKS5MP9eOJdzSUMjhSooXLLrivCBWDH9Ma0nVh+/pRNlpU8rP6x4yrT4xucTsjFi8T68YvcHnrdTRn26pgjCisbv4u2nJ9WmmRN1MxQyFDIUWvkxtEUopEveu6+LWJ9XPjk7N0OvnjvVH1UcKTQUXq9jhyXw8emFS5ffR0YGOb9WwMurB1q3ekM4pDY17TnyIFbntcEWyf3IhRskUOAx33y81KYbGjoamZoxtYIq5mMoZChkKKx7UEgt7vvJLrVDatUVkGPqqLeGqC+o4kjhnL+isbpCtBTK/NlDnTCyU0PMXX8O+y+niNjL5DT79RGhaODpbLJ1GfPNQZy4mYFI6SUssf8SQZJ0lEntIR0yF+j1osnlWCMjQyFDIUOhNZ6scmXaKhReu/41YmO1R+Bat3oLTZo8YRAKL8S8IaKPVEwR4cvh41N9r/vUnus3vkG8IgibJfdjB5QOshs7OeDl4EA8cse/oZVvmU7xDIUMhQyFdRMKf9gXi/crOISec08bTB+oiSZSEQrf33geP+zT9Su47LFIEcKuuolcz3y+7aJwqu2GAnzr/iP6lBxUFhsyCHhwGeBmJJJKdRtg5HyGQoZChkIrPmBUtK1CIbUtPeMgcrI1u49pE0n5VHGkkHYrnzqtHYLO1TUEPbpvq7aK5EibHGqXT+fRAXtcXsT+Aj/x8cgAL7wcHIS2rk7Vrs+cAhgKGQoZCusmFFKrj1xL19p9XNF9TEUopNB545dpwn1SGY28nLFr9gA42EnNMR06eTPzSxA+T9deLm4bg1HxC4GiHMDFFxj7gxIQazgxFDIUMhRa+aGzZSis7NIrQiHlJzAk1zClJVlwdglGk8aPwdGx+m/PaWl7ceq0ZpRS1TY/v0E44/cxvrqZhBsFxfCyk+Gl4EA826Tm3qQZChkKGQrrLhRWZucqQiHlP3AlFRvPJCAjr1j4NXykezM089X2b1hZufqOR11Px7hvtYGT8nVv7oM/JjQGVk8G4k4I37Ho8Tww5D1AVnNLZxgKGQoZCqvyZJtxTn2DQjMu3aysGRmHceLkIzrnuLg0h69vfxQ5R+D3gnD8eDtV5KGoKDObBaKXl5vRem7f/h/y8q/CTuYqdjJXHA01pZEMhQyFDIV3FxSaYheqkif6diZGfn1A59TG3s4Y2i4QHRq4YWzuKmDvp0CZHAjqAIxfAfgYD3O38shNXEzKEZtn+rXyQ6+WytkVcxNDIUMhQ6G5T42Z+RkKTRNMoSjF/gN9oAqTp+8sWu9402cGFt9IwrGsPJHlxaaBmBkcCDeZ7rTOqVNPIC19r1ZRYWHL4O+nWWRuSusYChkKGQoZCk2xFabk6f/ZLtxI00RnqnjOpG5N8VH3EuWoYeYtwMEFGP4pEPGY3uKfXXEcW84mah37cmIERlYhNB5DIUMhQ6EpT3E18jAUGhcvO+cMUpKVkUoopnJhUTzy82+gsPAWyspKtE6mCCYDB1yAXKHAohtJAg6LyxTo4OYsRg0fCFA6mKWUmxuDI0fv06k8IGAEOnb4yqw7ylDIUMhQyFBoltGokDkmMQcbouORllsMe5lU+E68lpqLuMxCFJXoOv2/MO9eOKMQ2DgLOH0nPnzo/cDopYCTh7r0m+n56PfpLp2mDWjjj1+e6GZ2kxkKGQoZCs1+bMw7gaHQsF7Z2adxLGqMVgY319bo3n0zdu5qAxo9rJj69zsBOztP8fGJ7HwBh9tSlU5mH27gK+CwmbMDDE1He3t3R+eIlWbdRIZChkKGQoZCs4xGucyXknIw4st9YrexKjX1ccG2l/shfN5/KNQDhQdfG4SGXnfc3FAM5bXPKTeheDYCHvoVaKzcFBh9Owsjv96v0zSK8fzvi33MbjJDIUMhQ6HZj415JzAUGtbr8pWPcPPmDzoZOoV9j+gzz0ChKNN9A+5/BjKZ9oLvn+NSBRwmFZWggaO9AMPx3jk4dFh3mrhBg7Fo1/ZTs24iQyFDIUMhQ6FZRqNc5kXbL2PR9ks6p385KQKzV59GcamunTvyxmAEepTzspAdD6yeAtw6AkhlQP/XgH6zkZxTjG4f7tApe3iHICx9NNLsJjMUMhQyFJr92Jh3AkOhYb3On5+DhMS/dTK0a/sZLl56B3K5dngqyjhADxTS59cKisR0siqW8j1+nhil+AueqZqIKgSTERHL4ekRYdZNZChkKGQoZCg0y2iUyzx33Tn8eui6zunzRrXHwu2XxQ7niunYm0Pg7+6o/TG9JO9fCOz6ECgrBZr2BB76BXN3peHXg5ryZVIJlj/ZDb2rsNmEoZChkKGwqk+6iecxFBoWKvbaYly79qVOhs4RK3D79gokp2zROublGYnIyD+NKr82OROLryfiQl4hHCQKPCjdiPtLfwVFJfUPGAaKvmJuYihkKGQoZCg0126o8n+3NxYfbrqgc/oPj3fB5rOJWHP8ttaxdg08sGmmts9WrQwJ0cCfjwEZ1wFnL5zu/CGmn2iA2xnKl+jBoQFY+lgkHPRsvqvsGhgKGQoZCit7Sqp5nKHQsIBFRYk4fmISCgpuqjPRzmDaIUzHYi6+I/wiKhRyeHtT2Ly34OYWavSOlJbmIjbxPyxLdsRvWQ1F3la4iNGKNQjHcTRv/iJaNH/JrLvKUMhQyFDIUGiW0SiXOaugRPgmvJyUo/60byt//O+pbiBn1q//HY0dMckokZehSzMfvHlfW4Q30Wya01dvUUEeEla9iOCba8ThlfJBeK/kcRRB6dNwat/meOu+dmY3maGQoZCh0OzHxrwTGAqN61VWVozU1B0oKc2Cs1Mj+PgYeUOuRPqioiREHR8Hio5C6SzCsFYyDhfQXvw/DJswxfMWBnVeKv7PyT2PkuIMODoGwtVVE/aqYjUMhQyFDIUMheZZfu3ctMVk67lEMVXcwNMJA9roOt9XKJQ+qytL2YUlGL3kAGJT8jBMFoXP7JbBU5KHq4qGmF48AzGKpgIq105Xhh6lnc+puUUIcHdE60B3o8UzFDIUMhRW9gRW8zhDYTUFNOP069e/wdXYL3TOWI8HsU4yDoVwQiNpJl5pE4Y2ibOQlr5PnbdB0INo1+5zvbUxFDIUMhQyFJphiqya9ZeD1/Hu+nPqOvwlmVhi/yW6SWNQChm+LB2DQw0fx+rn++Lp5VH473ySOu99YQ2w5OHOBtvHUMhQyFBo1cfXtmMfV3bp+sLcVXZObR6n6ea4uN/0NuE6mmOdZCyOoqc43hP7MUqxBk2gmboOD/8FvnpGKhkKGQoZChkKa9O2la/7o80xWLbnqk5znrHbgNftlO62El1DcabHF3h6o9JdV/lEu5Jpd7K+xFDIUMhQaOUnnUcKrSxwueJp0wptXqmYJBJ72Nt7ICDgPhxzewGfX7mIRLkLXJEnwPA+rBOntGk9F40bT9Y5n6GQoZChkKGw5iyZ8Zq+3xeLDzbqblwhp9g9HWPxlWwRPEuSkWfvi68LhmJp6UitAufc0wbTB+pfLsNQyFDIUGjlJ52h0MoClys+I+MQTpykUFAaJ7EymTMG9D+r1YhDl77BV3G52Ilh4vMOiBZwOK7tZJAfw4qJoZChkKGQobDmLJnxmmiNIDnDLivT2DkHOylOvDUUbk52QEEm8PdU4PJ/oqBzZcGYVfIcLiqaiP/fG9kej/cK1lsJQyFDIUOhlZ90hkIrC1yu+GvXlyA2doFOhWEdv4W//1D151lZJxB1/CEcQ3ex1vAaWohjzzZyw/+1aA53O3Jgo0kMhQyFDIUMhTVnyYzX9NOBa5j373mdTAsnhOPBiEbqz+P3/Q/O21+DtyRXrDX8unS0+Nk+ezCC/VwZCo3IXFJSgpycHPj4+NjKba+1duTn50Mul8Pd3fgmJXMaKFHQt+pdmhgKa+7GG1pT2KbNPDRu9IhWQ9LSdiMhcS1yirLxV+lg/Jan3KHc/k4c5ZHl4igzFDIUMhQyFNacJTNek6E1ha8PD8Uz/UO0Tj567jIcts5BeLYyPnKBZ0s4T/oFCOrIUMhQaFKXZigEBBUXFhbC1VX3bcrYMX0KMxSa1O8skunata8Qe22RTllhHZfC3185VWwoHcrMFRFRdqcrfYlNauAjwuUFOzuiulCYmXVcxGJWlBULP4sBAcMtcr21UUhxcTHy8vLg7e1dG9XbVJ2kA/UNNzc3m2qXqY2htmdnZ8PTUxlLvHwy186Fh4fjwIEDem2mqe2prXzp6eliFMTeXunjz9bTj/uvYf4G3ZHCBeM7YUznxvqbf2krsG46kJeiDJPX80Vg4BuAnXbUlOpMH5++lYn9V1JFLOdWge4Y2UnpJ7YuJh4p1Ny1uwYKN2zYgJdffhl//PEHOnfWbNFfsmQJFi1aJIxb165d1X+TRMaOGer4DIU1ZxLICfaxqAdRUpKprtTdvQO6dVVuJDElfXsrBYtvJCKjRI6gO3GUpzT0RUpKCgICdH2LVVZmQuI/OH9+tla2Ro0mIbTN+5WdapPHGQo1t6UuQKEhO7dnzx7MnDlTXAz162+//RYtWiiXUVTFzjEU1tzjmpJThAe+3o/ErEJ1pa0C3LBxRl/Q2kKDqTAb2PIacOqOhwbvYGDsD0DjrupTqgqFFJnluRXHtaqmqWya0q6LiaHwLoPC+fPn4+jRo+KLngxgZKQycHh0dDSmTZuGdevWwc/PD7Nnz0aTJk0wa9Yso8eMdXqGwpo1CRQJJTl5C0pK0uHo1BANG4wF7T6uLBG85eddAcVHTnPuix/SPPFPUoY4bZivByZ7OmBIs8ZITFyLvLzLkMqchfsaD49ORos+fmIiMjOP6eTp2uVvuLg0h52dR2VNs6njDIV1BwoN2TmaBenRowe++eYb9OrVCytXrsSaNWvEjzEbaKwjMhTW7GOalluMDdHxwil1oIeTGCF0cdBeC62vRetOxaHg0h7cf3Uu3IqSld6yu00DhrwH2DtDBYXrT8cLp9eOdlL0CvFF12Dja+ue+PkYdl1M1qly1bQeaBvkAS+Xym1wzSpovDaGwrsMCnft2iWM4qRJk/D222+roXDx4sViOoU+o3T8+HG89NJL2LdvH4wdYyi0pcfZ/LacOTNdJ85yp7DvsbM0HItuJCE2vwj2EgkmOh/F0LzPIINcXUllU9MHDw1CQcENg41q0ngyWreea36ja+kMhsK6A4WG7NzBgwfx7rvvYtu2beJiCBI7duyI3bt346+//jJoAxkKa+mhs1C1s/44hb9PxonSXFCE1+1X4jHZdqW3Bq8mwIPfIckpBB/tTsDaO/lUVS+aEI7R5TaxVGzSfV/uw7n4bIMtnditKT4eo38do4Uuz6LFMBTeZVCoutwHHnhAGEfVSOEbb7yB0NBQTJ6s9FWXnJyM3r17IyYmRoCioWMymeE3NB4ptOizavHC8vNjceiwZmeyqoKAgHvRscMSJBeXYtH1RPwUlyoOtcIl4b4mAlHif2fnZujVc6fBdp04+TAyMo4YbXenTj/Az3egxa/NGgUyFNYdKDRk52gmZMuWLVi6VBnukdKgQYPw+eefCyisip3jkUJrPG2WKzMxuxA9PtyhU+BTTZPxdumXQHqsOJbVcjQ6nR2vky/QwxFH3hhisEFP/RqFHRc0kVP0Zfz64c64P6yB5S7KiiUxFGrEvWvWFNIlV4TCF154Af369cP48cqHgkYNCRhPnTqFV1991eAx1YaUjz76SKeb/vTTT4iKUgJEXUtFRUVwcHCAxJSAnHXt4u60Nzf3JGIuPqXTeje3Tght87P68zXXtuDnDOAy2ojPhmGzgENvSQ4iOx81ePXpGVsRG/u6UXUaN3oRQUFP1AkFy8rKUFpaKvrF3Z5IB0p2dnaVSqFvM0elJ1koQ0U7t2LFCpw4cQILFmjcN40ePVosk/nzzz+rZOfovE2bNsHFxcVCra65YuhFh+6hVGpkPV7NNccqNV1MysP4n07qlN06wBWrn4qA076P4BilfElIVnjh/dJHsV7eS51fKpHg5GvKWMr60p4r6ZixWnfzS/m8U3s1wYv9m1nl+ixdKNs5jaK06Yw2pVnSztmsS5qKxpJGA0NCQjBlyhShSGJiIvr27YuLFy9i7ty5Bo+pjMnOnbojRs888wzOnDlj6T5bI+WRnyYC3vpsLAsLb+L4Cd3dwM7OLeDt1Qeubm3h7/cAYq99i7jEpViHsVgrGQc5ZAhEIkbjb7ze80uj9yMvLwZZ2ceQmbEPGZkHdPI2D34VDRvqRlKpkZtsZiUEQvSyoG9nvplF1fnspAMZSycnp0qvxZQ8lRZSxQwV7RxtPvn333+xbNkydYk0UkiQSOsKDdlAY3bu//7v/7B9+/Y62S9yc3Ph7OwMYzM+VZTeZk5LzS1Gn881sd5VDWvi7YyBbfzQJtANDwUlI3fNi/DJvSQOHy5rhxXywdgg7wmpBDg/d7DR67mcnIfD19JxMDYduy4qZ1bKpxkDW+D5/s1tRhNjDSEQKigoqLOeBSwpMtk5gmR6RipLptq5OgOFNJ2SkJCAefPmKR+Kw4cxZ84csabQ2DFjQvH0cWXdqPaPnz8/BwmJfxtsSMOGE+DiPBRXrk4Vea6gNdZKxuIkuoj/RwV4Cfc17dyMPzQqp9kVK+rW9V+4u7erfSFMaAFPH2tEqgu7j6m1FaGQZi5eeeUVqF5i6csvLCxMrClcv369QRtorHvw9LEJD08tZ3nzn7P47Yjh9c2jwxthcmdf/PXrIrxqtwqekjzR4puKAPyAMZj33icmXcGFhGwMX6wLoKuf7VnphhWTKqiBTDx9rBH5rp4+vnLlCsaNG4eNGzciKCgIM2bMQHBwsABDY8cYCmvgKbVyFampO5CXH4vbt39FYWGCTm3t2+1E7LUntDaNbMNwbLB7HGlye3jYyQQYTm9q3G0N7V6Oi/8DxcXJcHQMQqOGDyMw8D4rX53limcorBiaiq8AACAASURBVPtQSKMgtFaalrsMHDgQtMSFYHDt2rVVtnMMhZZ7xqxZ0u6LybiUlIuVR2/ieqoS+sqnTdM64eX1sYhPTMLLdmvwpN1mzWGf5kC/V4Dwhytt4sboBAGg8VmFCHB3xISuTTDWkA/FSkur+QwMhXcpFNI6mnfeeUfLT+Hy5cvVa23If+HChQvVzl2NHTPUbXmksOYf6OrUuP9Ab5Bbm4optM0/aNiwHWJjFyE7J1q4rmkQNAY5bv2x+HoS/khMF6f08XLFc00DMdi3brmaMVUzhsK6B4X67ByNFtIaatp5TKG8yD0NbTChVBU7x1Bo6hNkG/mGLNiDK8m5Oo1ZNbk9erYLxsLtl3D8Rgb8JTl4wWkLQm6sAoru5PdrBXnfVyALGwdI6uc6TIbCuxQKDT2eHNFEqUxqaqqIXFGf19pU7APHj09AZpb2xiCJxA7t2+1CYKBhD/3fnfsd36d44JZCmWeYWzpebN0dXT31xxi1ja8G81vBUFj3oNDYXc7KyuKIJnUsoon5T63uGY//fBR7LqboHNj+fARaNtVj5wqzgENLUHTgGziWKqM+XZM0xsXQ6bh3/HNKf4f1KDEUMhRarTvzSKHVpLVKwUnJG3H27AytsoODp8Pd7VGDEU1S03bh9OmpyIMb1knGYCNGqc9/tKEv+it2oEHeBpSVFcPDvSOaN58hnFbLZNprEC9f/hApqdtFPnf3ULRpPQ9OTrYVKoqhsH5BoaUeIh4ptJSSNVPOjphkPPWLtlP9qX1b4OkuPggMDNTbiCOx6Xjyu1143G4rpso2w0ei9EuY59UarsPewtLk9thxIRn5JXK0b+iBFwe1gr+bI5wrONX+bOtFbDqToA6H997I9mjuZ1svzwyFDIVWexIZCq0mrdUKJt+FFIWkTFEKd7dQeHh0NhrmjqaUr13/St2eC2iP9ZIxiIYmxFNv7MUAxQ60w1nQyKNCQW5dfNGk8RQEBz+Pc+dnITFROxyfo2MA+vQ+ZLXrrErBDIUMhfr6DUNhVZ6m2j3nRlo+Dsemobi0DK2D3NG9uY86oom+li3bG4uPNl0Qh5xQjEfstmOabCMCJcrITzGKplhYOhbb5F2ggAR2UglKyxQimsnknsGYNbQ13vrnLFZU2Ozi5eKAU+/o+oqtTXUYChkKrdb/GAqtJm2NFUxuR4zFPq4IhaqGnQtcgDWpUlwsa6Jua1ccxgDFToRDEye0c8RviD7zLErvTMuUv7Du3TbAza1tjV1rZRUxFDIUMhRW9pTU3ePGYh+Xh8LyV/hz+2h0vP4T/OTKMHf7yjpio7wHNsq7Iwcav5U/Pt4Vr/x1Gml5xToCrZjaHX1a+tmMcAyFDIVW64wMhVaTtsYKrgwK09J249RpXQfYkZF/Ijr6aewu6YTdksE4jw7qNnfCCQGH3XAILVu+itjYhWLauGLqFPYd/PyM+werMSEAMBQyFDIU1uQTV7N1GYPCI9fSMWGZ7szFr092wyt/RWNQ3iZMt1uHxhLNWsW18t74Uz4AB8vaY8bgVvhhXyzyizVhQlVX9+m4ThjfpXHNXqyR2hgKGQqt1hkZCq0mbY0VXBkUUkOuXV+CuLgVKCpKgZNTAzEt3LTpU9izN1w9AngMPbBbMginEKlue1ucw2DZYfSSbxNTyhVTn94H4eiof41PjQlQriKGQoZChsLaePJqpk5jUEgt+G5vLH45cB0J2QUIcHfC5J7NMH1gS3R5fztSc4sghQL3yI5hqmwTIqVKJ9iULika4y/pcPxe3AfZcnudi9k4sw/aN/CsmYs0oRaGQoZCE7pJ1bIwFFZNN1s6yxQoVLWXwI7WDKrS/gN9UVQUr3U5pxEhRg6Poqf68xBcFmsOB2AnpFC+SXt6dEKXLoadateGRgyFDIUMhbXx5NVMnZVBoaoVtFaQ1gyq0rCFe3EpSbkrWZXCpLF4SrYZo2SaKE55cBIjh7+WDsN1RZDIGtrAHVtm9quZCzSxFoZChkITu4r52RgKzdfM1s4wBwortv3suZlIStqg9bFE+PaS4ryijYDD/eivPt5UEof73eIwKdADrZpMtDUpePq43B2pKxFNaqIT8UaTmlDZ+nWYCoUVW/Lammj8fuxWBTsH2Eml8CjLxKOy7XhYtkO9KYU2olx07YL41o9h0MjJNufShqGQodBqTxtDodWkrbGCqwOF+flXcfbcS8jJUQaLJ1c0bVq/Aze3djhydIT47CpaCTjcjUEog0x81tzZEZMa+ODhBr7wc9CMPCovWoGMzKMok1MM4hA4OTXSq0Vi0nqkpe1BmbwArm6haNb0aR03OOaKyCOFGsUYCjVaMBSa+yTZZv6qQmF8ZgGmrzyBkzczxYWRG5q372+Hvi390PfTXUrbBznulR3DZNk2dJPGaATwbgZ0eQqInAI4aU8hH72WjoISuXBZ09RHs2mlvHrk3oZc4eQVlaJVoBue6tsCXs66U9TmKM5QyFBoTn8xKy9DoVly2WTm6kCh6oLyC25AUVYMV9eWACRi/eCevZ0hl2tCTd1CMxxzexZbC0ORKy8TpwY52mNikA8mNPARoJiTcxano59FUZEmFF9IyGwEN3tOS7u4+FWIiXlL6zNv757oHLGiWhozFDIU6utADIXVeqxs5uSqQqHqAm6m5aOwVI4W/m7q6eWuH2xHSk6R1jVODS3GW767gOg/gZIC5TF7Z6DDOKDHc7giaYanfo3CjTSNfaSNKuTWpnxaezIOL/1xSuuziKZe+Of53tXSlKGQobBaHcjYyQyFVpO2xgq2BBTqa2xCwl+4dPkDlJYqncB6ekaiQ/vFSFD4YFVCOlYmpCG1WLn5xFUmxYQgH3TO/xne6b/oFDegP4Xe0ziAPXnyMaRnHNTJ17PHdri4NK+ydgyFDIUMhVV+fGz+xOpCob4L/Pd0PN799xzScpXeFTo29sTiCRFo4e8KUKSUE8uBqB+B9Gvq02+4dMAXWQOwSd4dpXdmT+jg0TeHiFjKqvTM/45j6zndsKQbXuyDDo2qvnGFoZCh0GoPK0Oh1aStsYKtBYWqC8jPvwap1FEnekliUQnWJ2diW1oW9mdo4pR2QDS6KI6gC47CG8qYy+X9GRYWJuB09FTk5paborlTWdeua0VUlaomhkKGQobCqj49tn+eNaBQddXXUvNgL5Oisbd2JCdxXKEALm8Djn4HXN2h/B9AisILK+WDsEI+RPz917O90CXYWxxLyCrECytPiBjNFdOqaT3Qs4VvlQVnKGQorHLnqexEhsLKFLL949aGQlMUiM4pEHD4180zuC73F6c4Ix9dcQRdFEfxYs9PxLrFy5ffR2G5qeWKZffrGyXWNV67/jVyss9AInWAj09vNG70iCnN4I0m5VTiNYUaMXj62KTHx+YzWRMKTb74jOvY9vM89MjeDA/ki9NotHCLvCs6PjgHsa5hmLvuHG6mK4/pS/tfHSTg86udV3DqVgZkUil6tvDBE71NmyVhKGQoNLm/mpuRodBcxWwvvy1AIalSUHBThML769oBHJN0B/k9LIDyrbu1qxM6Fv6DiNJdaI6rekVsHvwCWrR4GdHRz4gYy+VTSItZoBjPlSUeKdQoxFDIUFjZ81LXjtsCFN5Kz8fms4lYsOk0xsj2YbLdNoRKNDubY6XB+L5oCP6R90EhHHQkntavBd4Y0RYzfz+Jdae03YE9PyAEr9wbWultYShkKKy0k1Q1A0NhVZWznfNqGwppFzGNABYXpwlRXJybwdmlOdLK3BAl6YXDZeE4lHVnsTat2cFpMb1Mo4i+dgq0a/uJ2KXs4tICJSXp2Luvq464bm6h6N5tY6WiMxQyFOrrJDxSWOmjUycy1CYU0trAuevPITGrUGjVxMdFrDuUQoLBrlcwvmwrHGL+UetIPg//KB2IH+XDkW4XiMUTwxHs54rWge4oKi1Dm7c262jexNsF+14dWOm9YCjUSFS6/iUUtx0Ll1Z9K9XN1AwSBX2r3qWJobDu3/jahsK9+yJRUqJ09aBKUqkTpFJ7uLt3REiLl3GqwAm/XliDY+iOFASIbK7IQ1dJFJ7s8ASG+XmIzwoKbuHgoQE6N4Xc2vTutbfSm8VQyFDIUFjpY1JnM9QmFPb+eCfiMjUvtySik70M9jIJ2jXwwMwhrdHGNR8rv34bk2Q74SfJEjqTz8M9inAMePRNoOUQ4fMwPa8Ynef/p3MfvFzsceqdYZXeH4bCOxLF7gaWj0KZR2NIZ52rVDdTMzAUXr5sqlY2lS81NRXe3t6QyZS+8+7WVJtQmJd/FYcPGzdizs7NEN7pRxw6PATFcBDTyqrpZdU9C3V1wgh/Lwz380RKVAQUihKt2+nm2hrdu+u+WVe85wyFDIUMhfXXEtYWFNKmkZ4f7TAqrL+7I2hXcfcPd8AepbhPdgSPy7YiQnpFc55PC6DrVKDzZLT74IBOnGXydbj3FR4pNLkHb5oNHP0exZFPw+GBz00+rbKMDIUMhZX1EZs+XptQSOsIDx6q3Ih17fI3jkWN0dIxDo1xxmk0TtgNxrk8pd9DSp1w8s7u5SPwgNIdDvlP7NF9q859oKnrnJxzkErs4OXVHe7uPUBr6ehl4W5PvKZQ0wN4+rh+PA21BYUUN5niJ1eW/nm+Fx5adhild/y4Uv520ht4yW07hsr3QyK/4w/R3hm/F/XCjyX34rJC49y/oZczDr42SKeaDdEJiL6dCalEInY392/pg5ycHPj4+FTWpPp9/Is2QE4i8iesgUvbIRa7VoZChkKLdabaKKg2oZCu9+ixkQLMjCUa5YuP+x23bv+qN9sZaQ9c9Hgau/K8kVmqXM3hhpw7u5ePoIdTknr6OD19P4qKkpCUvAlpabu1ygsJeQueHqMZCgEBx9Q33NzcaqNb2lSdDIU2dTuq3JjagkJq8PhvD+HodaWLLUOJoHDb+SQs3a27mc5LkotH7HbjOdddcCvUOPc/WhaKX+X3YKu8C9xcnNTTxwevpoEisWw7n4ht55K0qpwzrBUmhfvd3VAYfwr4rj8Uzt7Iff7/2zsP6Kiq7Y1/kx6SEEhISIBAaAFBihTpRX3SFBBBbICACIpIURDF+rc/UYqA4LOCPrEhIiqgPpHeIfQSeoAECAkppJf/+k68k5lk0mcyN5O918oKzNx77rnfOXfnd/c+5QB8fHKHIFnDBAoFCq3Rj+xWhr2hkCnkM6fnIyHxADIzEwuML3Rz80eP7juVPtzWjusTcnZxfPxeM804BjGk5VJ8enApdhk64xBaG79v6HwFQ+u3Rui1OagZv6JQrb29bkJY2JcChQKFZn1EoNBu7smqF7YnFF6IS8F7645jX2QcElIyEZecu9i1Zp6uztj38p1qnOGmiBgcuRSP9cevYvvp3Al4mjkhB7/1TULc3wvRxXDQ+PnlnJr4vdpdGDnpVYxfcU7BZWHWwK8aVo5rU7Wh8K83gI2zkdn6IaTc+S58fHys1tcECgUKrdaZ7FGQvaHQ9J4zM5Nw5MgzxiVluDtJk8YzERBwp5k0u3bdg4TEPIdoSTfuuUw45OSUaAQbD2mJg2iXsxttsBfBMF/Swc0tEDe3/E2gUKBQoNAezsjG17QnFJr5uewcTF6+D9zXmMaZyDP6NsOgNnXMFHjw4+3YdsocCk0PCDVEY4zLWgxz3ggv5M5qznFyxY8ZXbAkc6BZatn0PC93F2ya0rFqQ+HirsDlw0gb+iXSQ28TKLTWsyezj62lpP3K0RMUaipkZ6ciOzsNLi6Wt3Las/cBXL++q0SiZcEZx6tPwI6cdlifVB38v2YtcAitcvarZW64/mF1n7Zo0uQTgUKBQoHCEj1dlesgvUChphqXlknNyIKvp6tFIcd8sQvrj10pVuRqSMNQ542Y6PkHgjMvGI/flN0K8zKHYk+2+Z7KYbW98c0jraouFMadA+a3Bty8kDz1JLKysgQKi+1lJTxAoLCEQun4MD1CYXFynT23BKdOzS7uMOP3XJImNPQJ/H1skZq9vNtwK07C3FESCnv7+aOXXzP0C8mLLJb4Ig52oIwpzGtQSR87RufWGxQWp+oXW8/i1Z9LvlQKl6T5pEss0jd9gK5OeedF5/jhu6xeWJ51O6Jy/PHm4Bbo38y36kLh9g+Btc8DLe9B8l2LBQqL64il+V6gsDRq6fPYygiFVJJb2cXE/A83bpxGVlbe3smWVObs45B6o3Hs+IvGryNRH4fRCifceuJAViOkZDsZv2tUzR29avqgl5+P+u3pnPddSVsxLm47YmL+QmZWolpYO6TeKLUHdH67fn2nSpdzPGU1z4aoV28knJ0t7J9a0gtb6TiBQoFCK3Ul3RRT2aCQwi3ZcArrDkXj9NUkxKdmFqllkK8HXhnYEk98tUftkjLGZQ0GO2+FB/LGLybV6wnPW0chvt4dVoHC3Wfj1GSW+JQMhPp7YUTnBvDxcClQz73n49R9XE/JAJfOebhTAxBi7WJf3AWc3QwM+wzJjfoLFFqzEQQKrammfcqqrFCoqcWIISOHRVmDBhPg5hagdk7Jb/VDxqJmg5nYFJeIDdfisTkuCRfS85xvoJurgsOeNb3Vb/7f1AimqamX4OpaAwEBfRT4xcSsx/4D48yOq1GjA9q3+9bss2uxGxEePsbsM1/fW9Ch/Q+F3k5W1g04O3vZvLMIFAoU2ryTVfAFKiMUahJ9tPE03v7taJGKPdIlFDfVqY7nVhwwHsexhgOdt+FJ3y0IST5i/Dzb0x9O7UYA7UcDXP+wGPvr2BVciEtWqe47bqoNb3cXNd6R4x5NrVVdX6x+qrvZZ7vOxuK+JdvMPmseXB1rpxS+i0hSWqa6htUtORaY3QgwOAEzzyE5y1mg0JoiCxRaU037lFXZoTA+fg927xleQDxPzxC4ufrDz78HGjWciitX1+LgwYL7H4c1fREhIblgpi1efQguCg4JinsT8jamZ8TQNIIYd2w0GOnTzMWlOvz9eyIx8RCSk88WqFMt/94qahgY2B++vu1w5OhMREUVBMD27b9DDd/2ZucfPTYL0dE/Ijs7Ax4e9dCw4VOoEzzMZp1GoFCg0Gady04FV2YoPBqVgP7zNxVQjlvb+Xm7oVvjWni2XzNsPHEVoz7L80naCc/0aYanbs4A9nwOhC8H0nLXcFXWoCvQ7hGgzQMWW+aRz3Ziw4mrxu84UaV3WACORyfi5NWCWZqeTQPQONAbfVvWRudG/ioFzlR4fls69lb0Cgsw+/jlVYfx3e5INdYy2NcDE29rgpGdG1ivx+z5Alg9BQjrCzz0HZKTkwUKracuIFBoTTXtU1Zlh0Kqdv78Jzgf+TnS0qLBJWzq1R2Bhg0nFxB0776HwbSuZt7ezdC+3Xdwccldi8/SjibHbqQqONQgMdl0Ydl8E1VK04KMBp4996FKMee3Nq3/g1q17kBCQjgSEg4iNm4brl4tuPh2927b4O6eu+2fZukZsbgWsx5p6XTiOUiID8eN5DNwda2O2oF3IyRkdImqKVCYJ5OMKSxRl9H9QZUZCinu0q1n8Z9Np3ExLgU1q7nhwVtD8Gy/5gV0H/P5Lqw/njdBhWnd7x7vgkCf3OEr3OYube+38D7+HXB6Q9757j5A6+FA7+cBr1xY23EmFvd/ZB7lK01D/3dcJwV5q8LNV3pgGfMfuAWD29bBoYvx2Hf+ulrHcfX+gsetn94bDWuZZ0cSUzNV2vpyQhqcDEB45HVEXE5SqesBrYIxvqeF6GfcWeDDzkBGCjBhIxDcRqCwNI1ZkmMFCkuikr6PcQQo1BTOzk6Hk5NbkYITwgiPrm7+CAzoaw5U6elF7mgSk55pBMT/XT6D6Oy8BU+DEIVQnEbTnBNoiuNquZtquFFoXQhzWVkpaixhfiOoJiTsQ8TJt4u8lzZtPkEt/7wdYW7ciMDOXYPVzO3CrGWLOQgKGlxspxQoFCgstpNUsgMqOxQaX/wys+HmUvQ4Z0Lhpeupatxenxa14WoyLtps72POxN23DNj3XyAxb1Fs1GwANBuA2TGdsehQ2cf++Xm5gdsJxN0wX5eR97LwwXa4npKOF386VGRPWvDgLRhoslwP13zsM3dDgW3+TAt5a0grPNSpvnm5n/UFzm8HOj8B9HtHfSeRQis/xAKFVhbUDsU5EhSWV77S7H28fccA7LzhhsOGVjiM1jiJpgUu74vrCg7VT84lBGn/xiUYlKu0bFybMfICI59FL0dRP+RRNG06C9fjd+N63C5cvLQcqakXi5QhOGgIWrR4T+0Oc/nyarVYeDXPUITUHwu/ml2N5woUChSW93nS2/mOAoXl1dUMCk0LO74GCP8vEPEHkJm77qGpXcgJQGROAC7+8/tCTi1E5gTiYk4t9ZPf3JEBZ2TDGVlwMfzzG1lwQjZckI2Rnepia8RlRMUmwcXAxcJ4DL/LUkex7Cs5NXBvu3qYM7yNiiZyMe/v917A6StFTy7sd3MQloxoj693nMeKvRdw+/Uf8GTap0j3DIDbtP1qORqBwvL2JAvnCxTaQNQKLlKgME/w0kBh+P6xaocVzaJQR+2icsjQGpFogMsIKrIlGVnMBcaLChhNF9KuXXsQrlxeBad/HCidKJ0lf+f+5DrWAL+e8PTwR/Slbwt8l3ds7jkahPpWb4OQkLE4dHiKWf0447lb101wdc3d91mgUKCwgl2RzS8nUJgrcaFQaNoCJ/8HnFiLcwc2oXpKJGoaioYwWzVeCtwR5VofCf5t8HFkXWzLvgmxOcVvSdesto9KrT+6dBdCDZexzv1ZEFInZkzBizOeB/eJFigsQatxEcfU1FR4eZVsdqNAYQlE1fkhAoVlg8KoqB9x5OiMQluXKObTZAFOJSdjz6VNiDbUAcGRu6vEoeI3og/BeYThGBrgPBo5XUDDrII7wrRutVjNoHZ0KCytn5MxhTp3YiWsnkBhKaDwH03/d/QyHl26WwEVd1CpbYhTv4MNsahvuKx+t/S8Bve0ovd1LmETleiwiJy62J7dAjuyb8K27Ba4ZgESnZwM8HJzxqCMtXjW5Vv4Gm6Ai3mPTH8ec+9viyG31BUoLE7tRYsWYd68eQoIO3bsaPx3UecJFBanqv6/FygsGxTyrK3bbkdKyjljAU4GFzRq/Aw83OvC17ctuGg2bdPmzkhXEz9yLRUeiAYhMVj9JjBeg7/xe2+vZkjPTEJy2mWT+KB5rJDQ6eTqh/SMRJPYoWl80Pz4/D2xOY6o7f7aYZcxStm40TMIDZ3o0FBYFj8nUKh/P1aSGgoUlh4KeUbfeRvVTGNTe6ZPmFqXsHW9GmjgX0191e2dv3DxekpJmkIdw7GC52OTMXvd8ULPCTRcx0udnXF61zp0cjqGzk55y+poJ51UkHiTAsWYfwDRBymY5vIDWjjl+udjOSEYlz4dTIFP6NkIzw+4SX0uYwoLkf7AgQMYP348Vq1ahVq1amH69OkICQnB008/XWQDCxSWuP/r9kCBwrymKU36mGdxzcBLl75X4/iYdg0M7KeWnMlvnFBy4eKXSEo8jujLPxXbF9zcaqlZ1N7eLeDuHoArV35DSkre9lVaAa1aLcTBg5OKLY8HRCAMJ9EMEYYw7EMHpCNvQs49+AFDcn5A8yZPo0H98Q4LhWX1cwKFJepiuj9IoLBsUJielY3lO84rgMuduBKEZkE+Bf1cdo5aeubIpQT8FH4RWdmFj5vmybW83cGJKC2CqyO4hgfWHb6sFunOb/Pub4up34YbP+7kdBSd1c8RdLEAiabncwzk+5nD8VNWN+PHE3s3Ucv3CBQW8cjOnz8fCQkJeOmll9RRe/bswdSpU7FpU8F1kUyLESjUvR8stoIChWWHwmLFzXdAVlYy/t7QqlSntWw5F9eu/Y3o6FUFzut06y/YsXOgWnqmNMbxjtvQHdsM3XABuTP0miAC00KDMLRh7oKyjjimsKx+TqCwNL1Lv8cKFJYNCsvSoo1n/VYsFJqW+/a9rXAkKhFfbiu4nuEPT3TFAx9tQ2YhkNnB6QQ6Oh1TkURObUnI8UJ8jheYZubWfvnNdDazRAoLad1Zs2ahefPmGDVqlDriypUr6NatG44dOwZnZ+dC+4RAYVkeF32dI1BYcVDIK+3cORCJSeYpkBq+HdSC1iciXi/QOerUuV8tMRMdXTDC2KHDClyIXIroyz+XuVOtwUD8ZhiI2H/S19NCa2Nmw2CHhMKy+jmBwjJ3L12dKFBYcVDIHUy4k4mp3VzHFyO6NDDbcUX7nkvOMGrItRjz21fjOmHNwSj8d8f5cvcnRjo3zLhN7cxCEygsRNJJkyahZ8+eGD48d2cIRg3bt2+P8PBw46STPn1yB6Cb2pkzZ7B58+ZyN5QUIApUFQWSbuzGpUuzkZ4eqW7Zw6MJ6taZpf4feeGVAjLUqDEA2VmJSEgsGLWvX/8dVPfpiasxy5CczK2tDMjIiEZq6ilVjsHgBk/PZnBy4ky7HKSlnUNGRu4yN66uAXBzawCDwQkJLmFYYxiEr6/nvgA+5OeFmUHFz/DLvYYBgYHmC2jrtS1L4ucGDRqkJtuZ2tWrV7Fy5Up4etp/T2q9aiv1EgVMFTgYlYS3/jiH09dyxxiG+nnguX81wI20LDyz6mQBsXo3qQkPVyesPXqtwHev9muI/jf546vd0dh3MQnZOTm4mpSBiKu5u005OxlwU20veLk5qZxJZFwqohJy10X093JV13ZxMqBOdXfc2yYAYQG5YyBLa7Vr1y7RKYYchloquTFt3LhxY4wenbvbQXR0NHr06IHjx4/DySl3kUxLtxkWFoaIiIhKefcxMTGoWbNmkZHQSnljpay0RArzBCvtmMJSSm12OPdLhsEAD/dg9TkXnt6+o1+BIsPCXsaNG6dw8eJ/C3zHXVG4V3J+y8iIU4tic6KLwWAe6U9N5QK1OfDwqFPgvNVXruOxw7lv6sNqVcc7DQPh7Z2724sjWFn93C233IItW7aUeFUGPWkVGxsLHx8fuLqWVlxGywAAGBxJREFUfQFiPd1PeeoikcJc9Uq0JE15hDY599I/E0+0JWC4G0u3fxfcxWlG32ZISMkA93jOb1892gndmxZcB/F6SoY6h9vhmS7OzfOj4lMVPNb9Z+mZwm5HIoWFKLN48WJERUXhtddeU0ds374dM2bMkDGFVnow9FyMQGFe61QkFFrqE+fOfYQzZxeonU5oQUH3oGWL9xGfEI49e+5DTk628TTusdy2zedW71qmYNjfzxuft2li9WvYq8Cy+jlJH9urxax7XYHCiodCSy34+ZYzmPPHCXCrOtpdrYKx6OF2aobzkA+3mO1U0qmhH76d0MW6HcGkNIHCQqQ9efIkhg0bhl9//RVBQUGYPHkyQkNDFRgWZTKm0GZ9tcIKFijUDxRqNWEU0cWlunFPZn6enHwGMdfWIzMzQe1AQmC0lREMV0bF4IPGQQ4VKSyrnxMotFVPq9hyBQr1AYVaqzOK6O3hguoeeVFsbmHHPY3jkzMQ4lcNw9rXs2knESgsQt5ly5Zhzpw56oh27dph7ty58PX1FSi0aZe0f+EChfqDQvv3CsecfUxdy+LnBAr10CPLXweBQn1BYflbtPwlCBQWo2FpV/qXSGH5O6W9SxAoFCi01AcdcUka7T5L6+cECu3tpaxzfYFCgcL8PUmg0DrPlrEUgUIrC2qH4gQKBQqrGhSW9jETKCytYvo8XqBQoFCg0MbPpkChjQWugOIFCgUKBQqLftAECivAEVXAJQQKBQoFCm38oAkU2ljgCiheoFCgUKBQoLACXI3dLyFQKFAoUGjjx1Cg0MYCV0DxAoUChQKFAoUV4GrsfgmBQoFCgUIbP4aEQjFRQBSougp4eXmpnY8c2Zg+5sQbMVFAFKi6CpR0ow6H2NGkKjbzmDFj8Prrr6NePduug6R3bVNSUnD//ffj55/Lvn+u3u+xpPXbt28fli9fjnfffbekpzjscd98840CoUcffdRh77Eq3NjEiRMxbdo0yAs8cOedd+KPP/6oCs1e5D1yp7IFCxZg4cKFVV6LVatWITIyEtwC01omUGgtJSu4HIHCXMEFCvM6nkBhnhYChRXskGx0OYHCPGEFCnO1ECjM6xMChTZyPJWxWIFCgcL8/VagUKCwMvqyouosUChQmL9/CBQKFDqan7PK/QgUChQKFBb+KEmk0Cpuxu6FCBQKFAoUFv4YSqTQ7i5KPxUQKBQoFCgUKNSPR7JNTQQKBQoFCgUKbeNdpFRRQBQQBUQBUUAUEAVEgUIVkIkm0jlEAVFAFBAFRAFRQBQQBSBQKJ1AFBAFRAFRQBQQBUQBUUCgUPqAKCAKiAKigCggCogCogAECitLJ0hLS4OTkxNcXV0LVDkrKwupqang7gxVxbKzs5GZmQk3NzezW+a6hS4uLhZ1clRt0tPTkZycDF9fXxgMBuNtxsfHw8fHR/WbqmBse09PzwK3yq0QExISlD5i+lZA/FzB9qEm9HOmz7b4OfFz+XuKtfycpI/17SNx7NgxvPHGGzh06JCqad++ffHqq68a//gtWrQI8+bNU0DYsWNH4791flvlrh41WLt2LbZv367KopOcMWMGNm/erP4/cuRIPP3002aOtNwX1VkB7BsvvPACLl68qCB42bJlaNiwIc6fP48JEyYgKipK1Zg7nPTp00dntbdedfbv34+3334bZ8+eRbVq1TBq1CiMHj1aXWDDhg2YMmWK+ndgYCCWLFmCRo0aWe/iUpJVFBA/Z1nGNWvWYPLkyfj999/Vsy1+Tvycrf2cQKFVXJrtCjlw4IDaxmbAgAEqGsRtu4YPH457770X/G78+PHgWkW1atXC9OnTERISomDIkW3r1q148cUXlR4aFH722Wf4+++/8emnn6rPhwwZgtdeew3du3d3SCmuXbuGO+64A7Nnz1bbX5naY489hlatWqk/JkeOHMHgwYOxe/duh42U3XPPPRg2bBhGjBihALl3797YsmULqlevjs6dO+PDDz9E165d8fXXX2PFihXqR0xfCoifK9geV69eVVt4xsbGYuXKlQoKxc/l6SR+zjZ+TqBQX76x2Np88MEHSExMVBGi+fPnq7TYSy+9pM7bs2cPpk6dik2bNhVbTmU9gClRAt8rr7yCmTNnGqHwgQceANduZCSVxojQhQsXVJTVEY2gw/t76623zG6PkYTWrVuD4BwQEKC+Y9SMLxGDBg1yRCnAtmdk+K677lIvBG3atFEvCOfOnVNRdUZZaBxiQVjmd3Xr1nVILRzlpqq6n2M7Mtrfv39/vP/++8YsgPi53B4ufs52fk6gsBJ5UY4ZIBA9+eSTKjo0a9YsNG/eXKXLaFeuXEG3bt1UytnZ2bkS3VnJq0oQDAsLU+nQ++67zwiFPXr0wEcffYQWLVqowph2+f7779WbtSPaE088gfbt2yMuLk79sF906NBBRcpuu+02REREGG+bYFSnTh0VVXZEI+TxZYj3RwBkdPC5555TEXQOMVi8eLHxtm+//Xa89957aNeunSNK4RD3JH4O+PHHH5UP+/jjj1V/Xr58uYoUip8TP2drPydQWIncKKGHUcAvvvhCTaaYNGkSevbsqdLJNEYNCQrh4eEOOenkzz//VODHLcwuXbpkBoVNmzbFunXrjOPFCAoLFixw2FQhU6bR0dEqWspJNxxX+vLLL6vhA4wmsA9oxjGFnGzC4QWOaDExMSpKzGEWN27cUGlijq/96quvsHfvXsyZM8d429SNwyv43IjpU4Gq7uf4Yjd06FD1UlO7dm0zKBQ/J37O1n5OoFCffrFArX799Ve88847+Omnn+Dv76++Z9q4cePGxkH1hAS+SXLDcEebccpxNYzyMC3cpEkTlTplWpSgWLNmTTWOjBGhm2++WWnzyy+/qLdtR40UMq30+OOPq/GCNA2ACH69evUyixRqsMgxOI5o/APK6Cijp4wUciwl25/R0tWrV6sXCc3YhwiJbdu2dUQpKv09VXU/xxc8+jWOgeU4Wdrdd98NTihkFoQZEvFze9ULrvg52/g5gcJK4EY5g5IRoaVLl6JZs2bGGtM5cIYpJ1TQOOmCM3AdcUzhxo0b1SQbS8Y0CzVgxJQOlLZw4UIVSXPUMYUcb8TJRxoU8mWBOnAsFsGYegUHBystHnzwQfXjiGMKGTHmHwfOznd3d1f3y9nG/APKqPmzzz6Lv/76S32ujUOSMYX6dHri54CkpCTccsstFhvozTffVC874ufEz9nSzwkU6tM/GmvFWaPjxo1Ts2pbtmxp/NzDwwMnT55Ub5N8uw4KClIRktDQUAWGjm4MoZuOKWRKmWDE1DonGxCWXn/9dRVBdERjaolRU943x2BxTB1To/yZNm2aAkL2Ay7XQp127dqFGjVqOJwUXKOTbay1NSPKhGWmzDm+lj9croaRREaNf/75Z9VPxPSlgPi5wtvDdEyh+Dnxc/R3tvRzAoX68o0FasOUHyMb+e3w4cNqQVOuTaeNmeLg+blz5zrs0iOmGuSHwoyMDLVMDccVclzZ2LFjVXTV0dLomgaEIc48ZvtzOAGjgHwp8Pb2VhOOmEo9deqUOpzRUi2CqvPuXqbqMRLI9BrHYnGdQmpBSKYRNjj2ljOP/fz81PI0nJwlpi8FxM8VDYWEQb7wi58TP2drPydQqC/fWKbaVMUdTQoTqqqt9M/dTGj5d3bhZ1y6iIuaOyoY5+8DnGjFtQktGZcykh1NyuRedHOS+Lm8phA/l6eF+Lk8Lazh5wQKdePypCKigCggCogCooAoIArYTwGBQvtpL1cWBUQBUUAUEAVEAVFANwoIFOqmKaQiooAoIAqIAqKAKCAK2E8BgUL7aS9XFgVEAVFAFBAFRAFRQDcKCBTqpimkIqKAKCAKiAKigCggCthPAYFC+2kvVxYFRAFRQBQQBUQBUUA3CggU6qYppCKigCggCogCooAoIArYTwGBQvtpL1cWBUQBUUAUEAVEAVFANwoIFOqmKaQiooAoIAqIAqKAKCAK2E8BgUL7aS9XFgVEAVFAFBAFRAFRQDcKCBTqpimkIqKAKCAKiAKigCggCthPAYFC+2kvVxYFRAFRQBQQBUQBUUA3CggU6qYppCKigCggCogCooAoIArYTwGBQvtpL1cWBUQBUUAUEAVEAVFANwoIFOqmKaQiooAoIAqIAqKAKCAK2E8BgUL7aS9XFgVEAVFAFBAFRAFRQDcKCBTqpimkIqKAuQIpKSnYtGkTmjdvjvr164s8ooAoIAo4nALi5/TVpAKF+moPXdYmIyMDly5dKrRufn5+8PHx0WXdK1ulzp8/j8DAQERFRWHy5Mm45557sHv3btx888148skn1e1cuHABWVlZZrfm6ekJFxcXZGdno1atWpXttqW+ooAuFLD0bGkVq1atGgICAnRRz8peiStXrsDd3R2xsbHi53TWmAKFOmsQPVbn2LFjGDhwYKFV+7//+z889NBDeqx6qevEt9Z9+/aha9eupT63vCf8/vvvePbZZ/H3339j+fLlqF27Nu69914Qyvv27Ys//vgDzs7OaNq0aYFLderUCffddx9eeeUVbNy4EdWrVy9vdeR8UaDKKWDp2dJE6N+/Pz744AOH0MSefo4Bhl69emHZsmUIDw8XP6ezHiVQqLMG0WN1cnJykJ6erqqWmpqKDh064NNPPwVBhMYIFWHFEWzNmjX4/vvv8dlnn1Xo7dBJ9+nTB4888gjGjRuHSZMmYdSoUbj11ltVPfgH6csvv1RRQP7heu+999CvXz9jHZ2cnMAfRhYJtM8//3yF1l8uJgo4ggL0c/R3tBEjRqBbt2544okn1P/p4+jrHMHs5eeoHTMgycnJ+OSTT8TP6bAzCRTqsFH0XCXCS+vWrRWgdO7c2VjVq1ev4o033sCGDRvAdPIDDzyARx99VDlSRr5++eUXtGnTBp9//rlyCASaadOm4Z133sH69esRGhqKoUOHqmgXjef8+uuv6hy+UTLd0LNnT7z88svG9CgjaPPmzcPPP/+somm33347nnvuOWOUbOzYsZg4cSJ+/PFH/Pbbb3jssccwZMgQzJ8/H1u3bkViYqI656mnnkLDhg2xcuVKMOp548YN9X/exzfffKNAixE80+ghU7n/+te/VHm894cffhj/+c9/jBpo+vDavOfIyEi0bdtW1b9Ro0YFmpj3+OGHHyotmApevHgx0tLSMHXqVJW6Zx1XrFihziMUMmJBUMxv1J9QuWXLFpWGFhMFRIGyKUAf1r17dwUumtnDz/HaRfkRS35u/Pjxys8x+3DmzBn1Av/444+r+ynMz73++uvKt2oQzOsS3JhSf/XVV63i544cOYLBgwdj1apVaNGihfi5snVNm54lUGhTeR2vcEtQyPFtd999N3x9fUFndO7cObz11lugk6FjJRASAAmTBJakpCTMmjULXl5eKo1AENyxYweWLFmionSEJ+0cTrKg02OEkk6O8EhQo7F8Oj2CE8enzJkzR0Hk3Llz1fcEPgIoAY9lsCwPDw/1fY8ePVR933//fTVejzDIcXwLFizA8ePHVdkE2mbNmikIW7RokYrkaUZQJBAyshcdHa3KCwoKUuDIVDvvddu2beoPCu+d12D08dSpUyoNzHqY2syZM5UuvA6NOvONmmX7+/srR61FZouCQoJuu3btsHTpUrukwB2vx8sdVVUF8kOhvfzcunXrivQjlvxcSEgIXnvtNYSFhakfDkfZs2cP/vrrr0L9HF9069SpgxdeeMHY5O+++66CSr6kWsPPEUj5gn3ixAkYDAbxczp8uAQKddgoeq6SJSjcvHkzxowZowCNAEabMmWKesNkdEsDPEb/6tatq74npHFm7aFDhxTQ0eG2b99eweLw4cON53z99dfo2LGjOocpD4LS2rVr1YBvHv/2229j2LBh6nvC4ksvvaTGBHp7eysoZASRY+zogCwZ38DpPDm2hUbw3L9/v1n6uKRQSLglDGvGyCejgrNnz1YfRUREYMCAASr1zqinqfHYLl26YPr06WafM53l5uZm9hnrQwjVtOaXt912m4oC0BjBZWSR0UsxUUAUKJsC+aHQHn6ucePGKoNSlB8piZ/jizozG5qPtuTnSgqF5fFzfHFnFkPLemgtI36ubH3UFmcJFNpCVQcu0xIUMirF1HHv3r2Nd86IGGeWEbY0KCQUacZIHI/54osvjJ8xwkbAY/RNO+fgwYPGqBpTyBzj8/HHHysoZLSOYKjNfOb1Dhw4oFLFBCc6y0GDBqlIomaERL55ExyZlmV08PDhwwrYyguFTBNrYMZxSXxDJ7g1aNBAlc3PmN7VIqim3YTRUQIt/wAUZ7w3AiSjpprdcccdKupK41gopmYI2GKigChQNgXyQ6E9/Byf6eL8iCU/xzvetWuXGobDl/P4+HgjjDGLUR4oLI+fY+aEw2O0F+WiWkb8XNn6bXnPEigsr4JV7HxLUMixdHzImYrlZAfNmH7luDcCHqFx+/btZlAYExOjnJNmlqDQFCSvX7+uooZMM9esWRP333+/Ss3mX8NPSw3TWXJMoRZJ5HUYoeS4FkYj6RxPnjyp6l1aKGQqmZE40/SxaaSUkU+mqwmuGqxp99myZUuzKB8/JxQybaONqSzOWRY2ppDnPfjgg2jVqpVAYRV7NuV2ratAfii0h5/ji3ZxfsSSn+OLM1O/I0eOVL6FqxFwTDUjdKWBQmZR+OJsmj4uj59jpoeZD06UK86KGiYjfq449cr+vUBh2bWrkmdagkJtzMvq1auVA8tv5YFC0wkTnITBMYscpMxIIcfvcQkWRsYsWX5nSefGtC3HFHIMJO3f//63GkytQSFha+fOnfjqq6+MRdKpMq2rXYfjGwldL774YqFQyJMJjnzLX7hwYbF9hTBI4OV4m+KsOGfJ+nKMIuFQTBQQBcqmQH4otIefY8S/OD9iCQr5GbMqzErQNN+pQaElP/f000+rVSZM/dXo0aONE9+0MYWmUFhaP8eJgYxe/vTTT8U2ivi5YiWyyQEChTaR1XELtQSF/Ixj2po0aaJmuPFhPnr0qFq+genU8kAhnRvHugQHB6uo4LVr19SsZEYk+dbJNDCdGR0gF37mD9f2o+V3lkwdE7w4K5oRPk5umTFjhpptrEEhB2JPmDABf/75p7om32oJg7xHRkPpNJk+4VjE4qCQ4yEJrbwGxxImJCSA6fC77rpLjXk0NS4hw/T3Rx99VGznKcpZatFUmWhSrIxygChQpAL5odBefq44P2IJCukzuXoBI3IcpsNVHjiUR4NCS36Ok9wIbZyUUq9ePfAln9FGjkUsLFJIAYurn6nIhEH6Q07mM80qWWoI8XP2eUAFCu2je6W9qhYlYyRNmw3Lm+FsMqY/tQkb/Ixj2jgBpaRQyFQrgY7r82nn8C2ZTopG6OQbrrbALMfJ8E2YkUPNuMiz9qarAaXpOD3Obma6mHDJWb2s4zPPPGOEQm3WL99maYRFjjnkOZwYQ2M9eT5TO6yr9gbNWcWm4/yYQibkabOheS7HGH777bcq/W1qvEdGLRkZ5azsoqwoZ6lFMzjzWXY2qbSPmVRcBwpYWpLGHn6uOD9iyc/RD3MZGfouGl9OufoBh+swy2HJz/GF8s033zRG8Zhm5phtLqdlCoXl8XPUjy/F2ioT4ud00NHzVUGgUH9tUqlrRGfDyFuNGjXKtdCrKUgyOsdyuYSMJaPTZJSNE07yL/Vi6XhuBceoHetYmHFpF0Y6OShaM57DmdL8KY1xggkhkucVth0gYfvOO+9UY4CYIi+LaUtmMGpbkjR0Wa4h54gCokDuklEV7edK4kfytw1fnJmVKGxzAUt+jvdGX5I/m1Fcu5e0fszsEEDLukGA+LniWqJ83wsUlk8/OdtGCliKLtroUroplkvuMI3MiGRZ9pLWzucM58IAWjc3KxURBUQBi1kUR5fl4sWLKsvCJcQYiSytiZ8rrWKlO16gsHR6ydEVpEBVhEK+aXMsJlPQ1apVK7XSnEjDKKi2FmSpC5ATRAFRoEIVqIp+jgKfPXtWDZPhhMHSmvi50ipWuuMFCkunlxxdQQpwDUEORmYqVEwUEAVEAUdUQPycI7Zq5b4ngcLK3X5Se1FAFBAFRAFRQBQQBayigEChVWSUQkQBUUAUEAVEAVFAFKjcCggUVu72k9qLAqKAKCAKiAKigChgFQUECq0ioxQiCogCooAoIAqIAqJA5VZAoLByt5/UXhQQBUQBUUAUEAVEAasoIFBoFRmlEFFAFBAFRAFRQBQQBSq3Av8PlVNHC80VtlQAAAAASUVORK5CYII=", "image/svg+xml": [ "204060800100200204060800100200204060800100200204060800100200204060800100200204060800100200Temperature (​oF)Temperature (​oF)Gas (ft^3)Degree 1Degree 2Degree 3Degree 6Degree 8Degree 12" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "ys = [make_ys(mod=mods[j], deg=degrees[j], xs=xs) for j in range(6)]\n", "\n", "fig = make_subplots(rows=3, cols=2)\n", "\n", "for i, degree in enumerate([1, 2, 3, 6, 8, 12]):\n", " row = (i // 2) + 1\n", " col = (i % 2) + 1\n", " fig.add_trace(\n", " go.Scatter(x=X[\"temp\"], y=y, mode=\"markers\"), row=row, col=col)\n", " fig.add_trace(go.Scatter(x=xs, y=ys[i]), row=row, col=col)\n", " fig.add_annotation(\n", " x=60, y=200, text=f\"Degree {degree}\",\n", " showarrow=False, row=row, col=col)\n", "\n", "fig.update_xaxes(title='Temperature (oF)', row=3)\n", "fig.update_yaxes(title='Gas (ft^3)', row=2, col=1)\n", "fig.update_layout(height=500, width=500, showlegend=False)\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The degree 1 curve (the straight line) in the upper-left facet misses the curved pattern in the data. The degree 2 curve begins to capture it, and the degree 3 curve looks like an improvement, but notice the upward bend at the right side of the plot. The polynomials of degrees 6, 8, and 12 follow the data increasingly closely, as they get increasingly curvy. These polynomials seem to fit spurious bumps in the data. Altogether, these six curves illustrate under- and overfitting. The fitted line in the upper left underfits and misses the curvature entirely. And the degree 12 polynomial in the bottom right definitely overfits with a wiggly pattern that we don't think makes sense in this context. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In general, as we add more features, models get more complex and the MSE drops, but at the same time, \n", "the fitted model grows increasingly erratic and sensitive to the data.\n", "When we overfit, the model follows the data too closely, and predictions are poor for new observations. One simple technique to assess a fitted model is to compute the MSE on new data, data that were not used in building the model. Since we don't typically have the capacity to acquire more data, we set aside some of the original data to evaluate the fitted model. This technique is the topic of the next section. " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.4" }, "toc": { "nav_menu": {}, "number_sections": false, "sideBar": false, "skip_h1_title": false, "title_cell": "Table of Contents", "title_sidebar": "Contents", "toc_cell": true, "toc_position": {}, "toc_section_display": true, "toc_window_display": false } }, "nbformat": 4, "nbformat_minor": 4 }