{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "import sys\n", "import os\n", "if not any(path.endswith('textbook') for path in sys.path):\n", " sys.path.append(os.path.abspath('../../..'))\n", "from textbook_utils import *" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "df = pd.read_csv('data/fake_news.csv', parse_dates=['timestamp'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "(sec:fake_news_exploring)=\n", "# Exploring the Data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The dataset of news articles we're exploring is just one part of the larger FakeNewsNet dataset. As such, the original paper doesn't provide detailed information about our subset of data.\n", "So, to better understand the data, we must explore it ourselves.\n", "\n", "Before starting exploratory data analysis, we apply our standard practice of splitting the data into training and test sets. We perform EDA using only the train set:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from sklearn.model_selection import train_test_split\n", "\n", "df['label'] = (df['label'] == 'fake').astype(int)\n", "\n", "X_train, X_test, y_train, y_test = train_test_split(\n", " df[['timestamp', 'baseurl', 'content']], df['label'],\n", " test_size=0.25, random_state=42,\n", ")" ] }, { "cell_type": "code", "execution_count": 324, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
timestampbaseurlcontent
1642019-01-04 19:25:46worldnewsdailyreport.comChinese lunar rover finds no evidence of Ameri...
282016-01-12 21:02:28occupydemocrats.comVirginia Republican Wants Schools To Check Chi...
\n", "
" ], "text/plain": [ " timestamp baseurl \n", "164 2019-01-04 19:25:46 worldnewsdailyreport.com \\\n", "28 2016-01-12 21:02:28 occupydemocrats.com \n", "\n", " content \n", "164 Chinese lunar rover finds no evidence of Ameri... \n", "28 Virginia Republican Wants Schools To Check Chi... " ] }, "execution_count": 324, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train.head(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's count the number of real and fake articles in the train set: " ] }, { "cell_type": "code", "execution_count": 325, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "label\n", "0 320\n", "1 264\n", "Name: count, dtype: int64" ] }, "execution_count": 325, "metadata": {}, "output_type": "execute_result" } ], "source": [ "y_train.value_counts()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our train set has 584 articles, and there are about 60 more articles labeled as `real` compared to `fake`. Next, we check for missing values in the three fields:" ] }, { "cell_type": "code", "execution_count": 326, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Index: 584 entries, 164 to 102\n", "Data columns (total 3 columns):\n", " # Column Non-Null Count Dtype \n", "--- ------ -------------- ----- \n", " 0 timestamp 306 non-null datetime64[ns]\n", " 1 baseurl 584 non-null object \n", " 2 content 584 non-null object \n", "dtypes: datetime64[ns](1), object(2)\n", "memory usage: 18.2+ KB\n" ] } ], "source": [ "X_train.info()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Nearly half of the timestamps are null. This feature will limit the dataset if we use it in the analysis. Let's take a closer look at the `baseurl`, which represents the website that published the original article." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exploring the Publishers" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To understand the `baseurl` column, we start by counting the number of articles from each website:" ] }, { "cell_type": "code", "execution_count": 327, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "baseurl\n", "whitehouse.gov 21\n", "abcnews.go.com 20\n", "nytimes.com 17\n", " ..\n", "occupydemocrats.com 1\n", "legis.state.ak.us 1\n", "dailynewsforamericans.com 1\n", "Name: count, Length: 337, dtype: int64" ] }, "execution_count": 327, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train['baseurl'].value_counts()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Our train set has 584 rows, and we have found that there are 337 unique publishing websites. This means that the dataset includes many publications with only a few articles. A histogram of the number of articles published by each website confirms this:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "bingroup": "x", "hovertemplate": "variable=baseurl
Number of articles published at a URL=%{x}
count=%{y}", "legendgroup": "baseurl", "marker": { "color": "#1F77B4", "pattern": { "shape": "" } }, "name": "baseurl", "offsetgroup": "baseurl", "orientation": "v", "showlegend": true, "type": "histogram", "x": [ 21, 20, 17, 16, 15, 14, 11, 11, 11, 9, 6, 6, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ], "xaxis": "x", "yaxis": "y" } ], "layout": { "barmode": "relative", "height": 250, "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autosize": true, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "height": 250, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "margin": { "b": 10, "l": 10, "r": 10, "t": 10 }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.5, "xanchor": "center" }, "width": 350, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "width": 450, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ 0.5, 21.5 ], "title": { "text": "Number of articles published at a URL" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 274.7368421052632 ], "title": { "text": "count" } } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAFoCAYAAAAhG4EVAAAAAXNSR0IArs4c6QAAIABJREFUeF7tnQu8VlWZ/x843O8iKloIRhZ5YYxLagyo6dQ4IWogKpNINpIVEjAwjjh4gbyhcUtiUscLWqOmjaR4aZqUMCUVJUoCxZq8QXhBEQFROf/Ps/q/Zw7n8p73bPZa+1l7f/fn40fg3Ws9v/X7rXP2911r7/dtUV1dXS0cOIADOIADOIADOIADhXagBVBY6PwZPA7gAA7gAA7gAA44B4BCJgIO4AAO4AAO4AAO4ABQyBzAARzAARzAARzAARxgpZA5gAM4gAM4gAM4gAM4wPYxcwAHcAAHcAAHcAAHcEAd4J5C5gEO4AAO4AAO4AAO4ABQyBzAARzAARzAARzAARxgpZA5gAM4gAM4gAM4gAM4wPYxcwAHcAAHcAAHcAAHcEAdKPQ9hQcffLC88MILzIScO/DRRx/J5s2bpUePHjkfKcNL4sCHH34o77zzjuy9995JmtMm5w588MEH8u6770r37t1zPlKGl8SB999/X7Zv3y7dunVL0txcG6AQKDQ3KdMWBBSm7Wi++gMK85Vn2qMBCtN2NF/9AYU5ypOVwhyFWWYoQGExck46SqAwqXPFaAcUFiPnpKMECpM6Z7AdUGgwFA+SgEIPpuaoS6AwR2F6GApQ6MHUHHUJFOYoTKAwR2GyUliMMD2MEij0YGqOugQKcxSmh6EAhR5MzapLoDAr58PWZaUwrN+xVQMKY0ssrF6gMKzfsVUDCmNLrIxeoDBHYbJSWIwwPYwSKPRgao66BApzFKaHoQCFHkzNqkugMCvnw9ZlpTCs37FVAwpjSyysXqAwrN+xVQMKY0uMlcIcJZZsKEBhMt+K0gooLErSycYJFCbzrSitgMIcJc1KYY7CZPu4GGF6GCVQ6MHUHHUJFOYoTA9DAQo9mJpVl0BhVs6HrctKYVi/Y6sGFMaWWFi9QGFYv2OrBhTGlhjbxzlKLNlQgMJkvhWlFVBYlKSTjRMoTOZbUVoBhTlKmpXCHIXJ9nExwvQwSqDQg6k56hIozFGYHoYCFHowNasugcKsnA9bl5XCsH7HVg0ojC2xsHqBwrB+x1YNKIwtsSa2j3/5m98GG1G71lWyT+e2wepR6K8OAIXMhHIOAIXMj3IOAIXMj3IOAIU5mh+6UnjyFXfL0tUbvI/q0AO6yKKvDgQKvTtdvwBQmIHpEZUECiMKKwOpQGEGpkdUEiiMKKympJag8O6VrzR16h6/Pqj3XkDhHruYrAOgMJlvRWkFFBYl6WTjBAqT+VaUVkBhjpIGCnMUZpmhAIXFyDnpKIHCpM4Vox1QWIyck44SKEzqnMF2QKHBUDxIAgo9mJqjLoHCHIXpYShAoQdTc9QlUJijMIHCHIXJSmExwvQwSqDQg6k56hIozFGYHoYCFHowtW6XurKzc+dOad++fbOqabsdO3ZIx44dK2oHFFZkU/QnsVIYfYReBwAUerU3+s6Bwugj9DoAoNCjvZs3b5bZs2fLgw8+6KoMGjRILrzwQunbt69s375d+vfvv1v1uXPnyvDhw92/LVy4UObNm+eAcPDgwTV/LicXKPQYpqGugUJDYRiUAhQaDMWQJKDQUBgGpQCFHkN5++235Z577pExY8ZImzZtHCDqv1199dWyYcMGOfXUU2XZsmU1Clq1aiVVVVWyevVqGT9+vCxZskR69OghU6dOlV69esmUKVPKqgUKPYZpqGug0FAYBqUAhQZDMSQJKDQUhkEpQGHAUB5//HGZNWuWWzlcu3atTJs2Te677756CubPny9btmyRGTNmuNdWrlwpkyZNkuXLlwOFAfOyWgootJqMDV1AoY0crKoACq0mY0MXUBgwB10p1F/Y06dPlyeeeEImT54sI0eOdKuBJ5xwglsN1ENf79evn4wdO9b9fdOmTTJkyBAHkrqS2NjBSmHAMDMsBRRmaH4EpYHCCELKUCJQmKH5EZQGCgOF9NRTT8n5558v9957r/Ts2dOB3h133CHdu3eXNWvWyAMPPCBXXnmlnHjiiTJhwgQZNmyYjB492qnTVcOBAwfKqlWrah46WbFiRT3lZ511lvtGk1AfXn3dmCNkr3aNQ2ogawtXZteuXbJ161bp0qVL4cbOgJt2QN80bNu2TTp37tz0yZxROAeYH4WLvFkD1jcN+mBspQ+4NqvzFE9u27ayr9htUV1dXZ1i3VS6evHFF92K4I033ugeNmnouP322+Whhx4S/b9uG+vDKOPGjXOnbty4UYYOHSrr1q2Tli1bun8rbS3X7kshMyQUzh99uHSs+igVj+ikcgd0iusPrt6nyoEDdR1gfjAnyjmgbyoVDFu3bo1ROFDPgVjmR7du3SpKzxwUvvrqqw4IdUt4xIgRjQ7isccecyuEuhq4aNEi9yDKzJkz3fm6Kqj3H3JPYUVzIPcnsX2c+4j3aIBsH++RfblvzPZx7iPeowGyfbxH9pVvrFvEZ5xxhpxzzjkyatSompN1hef5559328hKu3qervx16NBB9GNp1q9f785funSpO2fixInSp08fB4blDu4p9Bimoa6BQkNhGJQCFBoMxZAkoNBQGAalAIUeQ7npppvcfYJ1j9tuu03eeOMNWbBggbtfUJfxdRVR4XHvvfd2py9evFjmzJnj/jxgwAAHi127dgUKPeYVS9dAYSxJZaMTKMzG91iqAoWxJJWNTqAwG99rquoDA3pDZ4sWLeop4RtNMg7HaHmg0GgwRmQBhUaCMCoDKDQajBFZQKGRINKQwfZxGi7a7wMotJ9RlgqBwizdt18bKLSfUZYKgcIs3U+5NlCYsqFGuwMKjQZjRBZQaCQIozKAQqPBGJEFFBoJIg0ZQGEaLtrvAyi0n1GWCoHCLN23XxsotJ9RlgqBwizdT7k2UJiyoUa7AwqNBmNEFlBoJAijMoBCo8EYkQUUGgkiDRlAYRou2u8DKLSfUZYKgcIs3bdfGyi0n1GWCoHCLN1PuTZQmLKhRrsDCo0GY0QWUGgkCKMygEKjwRiRBRQaCSINGUBhGi7a7wMotJ9RlgqBwizdt18bKLSfUZYKgcIs3U+5NlCYsqFGuwMKjQZjRBZQaCQIozKAQqPBGJEFFBoJIg0ZQGEaLtrvAyi0n1GWCoHCLN23XxsotJ9RlgqBwizdT7k2UJiyoUa7AwqNBmNEFlBoJAijMoBCo8EYkQUUGgkiDRlAYRou2u8DKLSfUZYKgcIs3bdfGyi0n1GWCoHCLN1PuTZQmLKhRrsDCo0GY0QWUGgkCKMygEKjwRiRBRQaCSINGUBhGi7a7wMotJ9RlgqBwizdt18bKLSfUZYKgcIs3U+5NlCYsqFGuwMKjQZjRBZQaCQIozKAQqPBGJEFFBoJIg0ZQGEaLtrvAyi0n1GWCoHCLN23XxsotJ9RlgqBwizdT7k2UJiyoUa7AwqNBmNEFlBoJAijMoBCo8EYkQUUGgkiDRlAYRou2u8DKLSfUZYKgcIs3bdfGyi0n1GWCoHCLN1PuTZQmLKhRrsDCo0GY0QWUGgkCKMygEKjwRiRBRQaCSINGUBhGi7a7wMotJ9RlgqBwizdt18bKLSfUZYKgcIs3U+5NlCYsqFGuwMKjQZjRBZQaCQIozKAQqPBGJEFFBoJIg0ZQGEaLtrvAyi0n1GWCoHCLN23XxsotJ9RlgqBwizdT7k2UJiyoUa7AwqNBmNEFlBoJAijMoBCo8EYkQUUGgkiDRlAYRou2u8DKLSfUZYKgcIs3bdfGyi0n1GWCoHCLN1PuTZQmLKhRrsDCo0GY0QWUGgkCKMygEKjwRiRBRQaCSINGUBhGi7a7wMotJ9RlgqBwizdt18bKLSfUZYKgcIs3U+5NlCYsqFGuwMKjQZjRBZQaCQIozKAQqPBGJEFFBoJIg0ZQGEaLtrvAyi0n1GWCoHCLN23XxsotJ9RlgqBwizdT7k2UJiyoUa7AwqNBmNEFlBoJAijMoBCo8EYkQUUGgkiDRlAYRou2u8DKLSfUZYKgcIs3bdfGyi0n1GWCoHCLN1PuTZQmLKhRrsDCo0GY0QWUGgkCKMygEKjwRiRBRQaCSINGUBhGi7a7wMotJ9RlgqBwizdt18bKLSfUZYKgcIs3U+5NlCYsqFGuwMKjQZjRBZQaCQIozKAQqPBGJEFFBoJIg0ZQGEaLtrvAyi0n1GWCoHCLN23XxsotJ9RlgqBwizdT7k2UJiyoUa7AwqNBmNEFlBoJAijMoBCo8EYkQUUGgkiDRlAYRou2u8DKLSfUZYKgcIs3bdfGyi0n1GWCoHCLN1PuTZQmLKhRrsDCo0GY0QWUGgkCKMygEKjwRiRBRQaCSINGUBhGi7a7wMotJ9RlgqBwizdt18bKLSfUZYKgcIs3U+5NlCYsqFGuwMKjQZjRBZQaCQIozKAQqPBGJEFFBoJIg0ZQGEaLtrvAyi0n1GWCoHCLN23XxsotJ9RlgqBwizdT7k2UJiyoUa7AwqNBmNEFlBoJAijMoBCo8EYkQUUGgkiDRlAYRou2u8DKLSfUZYKgcIs3bdfGyi0n1GWCoHCLN1PuTZQmLKhRrsDCo0GY0QWUGgkCKMygEKjwRiRBRQGCEIv4jt37pT27dvXq6av7dixQzp27Nis1xqSDRQGCNNACaDQQAiGJQCFhsMxIA0oNBCCYQlAocdwNm/eLLNnz5YHH3zQVRk0aJBceOGF0rdvX/f3hQsXyrx58xwQDh48uObPTb3WmGSg0GOYhroGCg2FYVAKUGgwFEOSgEJDYRiUAhR6DOXtt9+We+65R8aMGSNt2rRxgKj/dvXVV8vq1atl/PjxsmTJEunRo4dMnTpVevXqJVOmTCn7Wjm5QKHHMA11DRQaCsOgFKDQYCiGJAGFhsIwKAUoDBjK448/LrNmzXIrh/Pnz5ctW7bIjBkznIKVK1fKpEmTZPny5WVfAwoDBma0FFBoNBgjsoBCI0EYlQEUGg3GiCygMGAQulKov7CnT5/u/uvXr5+MHTvWKdi0aZMMGTJE1q5d60CxsdeqqqoaVcxKYcAwMywFFGZofgSlgcIIQspQIlCYofkRlAYKA4X01FNPyfnnny/33nuv9OzZUyZMmCDDhg2T0aNHOwW6ajhw4EBZtWqVXHDBBY2+Vnog5dFHH62n/Nxzz5WTr7hb7l75ivdRDeq9l1w35gjp1ral91oU2N2BXbt2yXvvvSedO3fGGhyo54DOj23btkmnTp1wBwfqOaBvKrdv3878YG406IC+qdQHYzt06GDaoXbt2lWkr0V1dXV1RWcGPOnFF1+UkSNHyo033ugeNtFDVwP1gZNx48a5v2/cuFGGDh0q69atk0suuaTR11q2/CuEXX755fVGcMsttwSFwvmnHy6dqnYFdJJS6oBOcf2hbdu2LYbgQINQqKtBzA8mR0MO6JsGvfDrfe4cOFDXAX3ToP9Znx9du3atKDxzUPjqq686INTt4hEjRtQMYtGiRbJhwwaZOXOm+7cVK1bItGnT3D2F5V4r5wLbxxXNkehPYvs4+gi9DoDtY6/2Rt8528fRR+h1AGwfe7RX7xM844wz5JxzzpFRo0bVVFIC/+Mf/+j+benSpW47eeLEidKnTx8HhuvXr2/0NaDQY2CRdA0URhJURjKBwoyMj6QsUBhJUBnJBAo9Gn/TTTfJlVdeWa/CbbfdJkcddZQsXrxY5syZ414fMGCAzJ07V0pLouVea0wyK4UewzTUNVBoKAyDUoBCg6EYkgQUGgrDoBSgMONQ+EaTjAOIsDxQGGFoASUDhQHNjrAUUBhhaAElA4UBzfZdipVC3w7b6B8otJGDVRVAodVkbOgCCm3kYFUFUGg1mQS6gMIEpkXYBCiMMLSAkoHCgGZHWAoojDC0gJKBwoBm+y4FFPp22Eb/QKGNHKyqAAqtJmNDF1BoIwerKoBCq8kk0AUUJjAtwiZAYYShBZQMFAY0O8JSQGGEoQWUDBQGNNt3KaDQt8M2+gcKbeRgVQVQaDUZG7qAQhs5WFUBFFpNJoEuoDCBaRE2AQojDC2gZKAwoNkRlgIKIwwtoGSgMKDZvksBhb4dttE/UGgjB6sqgEKrydjQBRTayMGqCqDQajIJdAGFCUyLsAlQGGFoASUDhQHNjrAUUBhhaAElA4UBzfZdCij07bCN/oFCGzlYVQEUWk3Ghi6g0EYOVlUAhVaTSaALKExgWoRNgMIIQwsoGSgMaHaEpYDCCEMLKBkoDGi271JAoW+HbfQPFNrIwaoKoNBqMjZ0AYU2crCqAii0mkwCXUBhAtMibAIURhhaQMlAYUCzIywFFEYYWkDJQGFAs32XAgp9O2yjf6DQRg5WVQCFVpOxoQsotJGDVRVAodVkEugCChOYFmEToDDC0AJKBgoDmh1hKaAwwtACSgYKA5rtuxRQ6NthG/0DhTZysKoCKLSajA1dQKGNHKyqAAqtJpNAF1CYwLQImwCFEYYWUDJQGNDsCEsBhRGGFlAyUBjQbN+lgELfDtvoHyi0kYNVFUCh1WRs6AIKbeRgVQVQaDWZBLqAwgSmRdgEKIwwtICSgcKAZkdYCiiMMLSAkoHCgGb7LgUU+nbYRv9AoY0crKoACq0mY0MXUGgjB6sqgEKrySTQBRQmMC3CJkBhhKEFlAwUBjQ7wlJAYYShBZQMFAY023cpoNC3wzb6Bwpt5GBVBVBoNRkbuoBCGzlYVQEUWk0mgS6gMIFpETYBCiMMLaBkoDCg2RGWAgojDC2gZKAwoNm+SwGFvh220T9QaCMHqyqAQqvJ2NAFFNrIwaoKoNBqMgl0AYUJTIuwCVAYYWgBJQOFAc2OsBRQGGFoASUDhQHN9l0KKPTtsI3+gUIbOVhVARRaTcaGLqDQRg5WVQCFVpNJoAsoTGBahE2AwghDCygZKAxodoSlgMIIQwsoGSgMaLbvUkChb4dt9A8U2sjBqgqg0GoyNnQBhTZysKoCKLSaTAJdQGEC0yJsAhRGGFpAyUBhQLMjLAUURhhaQMlAYUCzfZcCCn07bKN/oNBGDlZVAIVWk7GhCyi0kYNVFUCh1WQS6AIKE5gWYROgMMLQAkoGCgOaHWEpoDDC0AJKBgoDmu27FFDo22Eb/QOFNnKwqgIotJqMDV1AoY0crKoACq0mk0AXUJjAtAibAIURhhZQMlAY0OwISwGFEYYWUDJQGNBs36WAQt8O2+gfKLSRg1UVQKHVZGzoAgpt5GBVBVBoNZkEuoDCBKZF2AQojDC0gJKBwoBmR1gKKIwwtICSgcKAZvsuBRT6dthG/0ChjRysqgAKrSZjQxdQaCMHqyqAQqvJJNAFFCYwLcImQGGEoQWUDBQGNDvCUkBhhKEFlAwUBjTbdymg0LfDNvoHCm3kYFUFUGg1GRu6gEIbOVhVARRaTSaBLqAwgWkRNgEKIwwtoGSgMKDZEZYCCiMMLaBkoDCg2b5LAYW+HbbRP1BoIwerKoBCq8nY0AUU2sjBqgqg0GoyCXQBhQlMi7AJUBhhaAElA4UBzY6wFFAYYWgBJQOFAc32XQoo9O2wjf6BQhs5WFUBFFpNxoYuoNBGDlZVAIVWk0mgCyhMYFqETYDCCEMLKBkoDGh2hKWAwghDCygZKPz/Zm/btk06dOgQ0PqmS+nFf8eOHdKxY8emTxYRoLAim6I/CSiMPkKvAwAKvdobfedAYfQReh1AoaDwmmuukX333VfOPvvseqYeccQRsnTpUvnYxz6WuuH333+/TJ48We68804ZMGCA63/79u3Sv3//3WrNnTtXhg8f7v5t4cKFMm/ePAeEgwcPrvlzOXFAYerRmewQKDQZixlRQKGZKEwKAQpNxmJGFFAoIq+88oocd9xx8qtf/Ur233//VMOZNWuWPPnkk/L666870Bs4cKDrf8OGDXLqqafKsmXLauq1atVKqqqqZPXq1TJ+/HhZsmSJ9OjRQ6ZOnSq9evWSKVOmlNUGFKYandnOgEKz0ZgQBhSaiMGsCKDQbDQmhBUCCp955hm55JJL5OWXX5Z27drJPvvsU2O+/gJdv369g7U77rgj9VAeeeQROeqoo+TMM8+UGTNm1EDh2rVrZdq0aXLffffVqzl//nzZsmWLO1+PlStXyqRJk2T58uVAYeoJxdchUBhfZiEVA4Uh3Y6vFlAYX2YhFRcCCnft2iXPPfecXH311dK5c2c5+uijazxu0aKFuxdv0KBBoit1vo6TTjpJLr300hoofOKJJ9yW8siRI91q4AknnOBWA/WYPn269OvXT8aOHev+vmnTJhkyZIgoSOpKYmMHK4W+0rPVL1BoKw9raoBCa4nY0gMU2srDmppCQGHJ9Oeff162bt1ac19fyDDqQqGCnq5Mdu/eXdasWSMPPPCAXHnllXLiiSfKhAkTZNiwYTJ69GgnUVcNdSVz1apVNQ+dPPzww/Xka7uTr7hb7l75ivehDeq9l1x35t9I17YtvdeiwO4O6JscfTCqU6dOWIMD9RxgfjApyjnQ3AcYcbNYDuibyp07d5p78LZuCu3bt68omBbV1dXVTZ2pPxR6j1/dY7/99hNdOfRx1IXCujVuv/12eeihh0T/r9vGffv2lXHjxrnTNm7cKEOHDpV169ZJy5Z/hbBrr722nswf/vCHQaFwwemHS6dWTdrtw85C96lTXN/N6a0QHDhQ1wGFQl0Natu2LebgQINvGpgfTIzGHFA+0v/atGlj2qQuXbpUpK8sFOrqylVXXSU/+9nP5L333qvX4dNPPy1du3atqFBzT2oKCh977DG3QqirgYsWLXIPosycOdOVWbFihbv/kHsKm+t6Ps9n+zifuaY1KraP03Iyn/2wfZzPXNMaVaG2j3UlTu/ru/DCC+Xwww+vtyrYu3fvmpW4tAwu9VMXCvX+wJ49e0q3bt3cPYO6Oqifk6gfS6MPvowaNcp9RI6eM3HiROnTp48Dw3IH9xSmnZrN/oBCm7lYUQUUWknCpg6g0GYuVlQVCgr1AY699tqrSbjyEc4pp5wiF198cc39jPrZhQsWLHD3C7Zu3VpGjBgh55xzjuy9996u/OLFi2XOnDnuz/rZhgqLTa1iAoU+krPXJ1BoLxNLioBCS2nY0wIU2svEkqJCQaF+GPQf//hHB2NWDn3wRT+guqF7GZt7QzBQaCVVvzqAQr/+xt47UBh7gn71A4V+/Y2990JB4Z///Gc5/fTT5YorrnAfQVPpjYqxhAwUxpLUnukECvfMv7y3BgrznvCejQ8o3DP/8t66UFB40003uY99aezw+aBJiIkEFIZwOfsaQGH2GVhWABRaTid7bUBh9hlYVlAoKPzf//1fee211xrN48gjjyz74dCWg1RtQKH1hNLRBxSm42NeewEK85psOuMCCtPxMa+9FAoK8xpiaVxAYd4T/uv4gMJi5Jx0lEBhUueK0Q4oLEbOSUdZKChctmyZPPvss416dd5550X9gcBAYdIfg7jaAYVx5RVaLVAY2vG46gGFceUVWm2hoPAnP/mJ1P56OP0qlz/96U/uG0OOPfZY91RypV+dEjqoSuoBhZW4FP85QGH8GfocAVDo0934+wYK48/Q5wgKBYUNGalfGfaDH/zAfVuIfhdxzAdQGHN6lWsHCiv3qohnAoVFTL3yMQOFlXtVxDMLD4Ua+ptvvilHHXWU/PrXv5Z999032nkAFEYbXbOEA4XNsqtwJwOFhYu8WQMGCptlV+FOBgpF3Pbx0KFD5Te/+Y1079492kkAFEYbXbOEA4XNsqtwJwOFhYu8WQMGCptlV+FOLhQUrlq1StatW7dbyJs3b3bfMazfKsL2ceXzf1DvvWTRVwfKPp3bVt6IM1NxAChMxcbcdgIU5jbaVAYGFKZiY247KRQUXn/99fXAT2Hw+OOPl5NPPlkOOuigqINmpTDq+CoWDxRWbFUhTwQKCxl7xYMGCiu2qpAnFgoK854wUJj3hP86PqCwGDknHSVQmNS5YrQDCouRc9JRFhIK3333XfdRNFu3bpUDDjhAevfuLS1atEjqoZl2QKGZKLwKAQq92ht950Bh9BF6HQBQ6NXe6DsvHBTefvvtctlll+0W3MCBA+Xaa6+Vj3/841EHChRGHV/F4oHCiq0q5IlAYSFjr3jQQGHFVhXyxEJB4eOPPy5nn322TJ482T1t3LNnT3nmmWfk5ptvdlty+uHWMR9AYczpVa4dKKzcqyKeCRQWMfXKxwwUVu5VEc8sFBRefvnl8sILL8gtt9yyW9arV6+WkSNHyhNPPCE9evSIdh4AhdFG1yzhQGGz7CrcyUBh4SJv1oCBwmbZVbiTCwWFF1xwgXTp0kUuuuii3YJ+66235Mgjj5T/+Z//kQMPPDDaSQAURhtds4QDhc2yq3AnA4WFi7xZAwYKm2VX4U4uFBQuXrxY5syZ477/eL/99nNh6wV2/vz5ctddd8mKFSuingBAYdTxVSweKKzYqkKeCBQWMvaKBw0UVmxVIU8sFBRu375dRo8eLWvXrpVPfvKT7sGSRx991AV/4403yjHHHBP1JAAKo46vYvFAYcVWFfJEoLCQsVc8aKCwYqsKeWKhoFAT1h+IJUuWyO9//3t577335NBDD5Vhw4bJJz7xiegnAFAYfYQVDQAorMimwp4EFBY2+ooGDhRWZFNhTyoUFL722mvSsmVL99Rx7eOdd96RV199VQ455JCoJwJQGHV8FYsHCiu2qpAnAoWFjL3iQQOFFVtVyBMLBYXXXHONvPzyy7JgwYLdwl6zZo37mjvdVq6qqop2IgCF0UbXLOFAYbPsKtzJQGHhIm/WgIHCZtlVuJMLBYX6+YR9+/aVCRMm7Ba0mnDYYYfJz3/+86i//xgoLMbPL1BYjJyTjhIoTOpcMdoBhcXIOekoCwWFs2fPluXLl8t99923m1+PPfaYfO1rX5Onn35aunbtmtTLzNsBhZlHEEQAUBjE5miLAIXRRhdEOFAYxOZoixQKCletWiWnnXaa++/YY49133v87LPPym233eb+Pn369GiDVOFAYdTxVSweKKxX63BSAAAgAElEQVTYqkKeCBQWMvaKBw0UVmxVIU8sFBRqwkuXLpVZs2bJm2++WRP4CSecIDNnzpR99tkn6kkAFEYdX8XigcKKrSrkiUBhIWOveNBAYcVWFfLEwkGhprxr1y554403ZMuWLbL//vtLx44dcxE+UJiLGJscBFDYpEWFPgEoLHT8TQ4eKGzSokKfUEgozGviQGFek919XEBhMXJOOkqgMKlzxWgHFBYj56SjBAqTOmewHVBoMBQPkoBCD6bmqEugMEdhehgKUOjB1Bx1CRTmKEygMEdhlhkKUFiMnJOOEihM6lwx2gGFxcg56SiBwqTOGWwHFBoMxYMkoNCDqTnqEijMUZgehgIUejA1R10ChTkKEyjMUZisFBYjTA+jBAo9mJqjLoHCHIXpYShAoQdTs+oSKMzK+bB1WSkM63ds1YDC2BILqxcoDOt3bNWAwtgSK6MXKMxRmKwUFiNMD6MECj2YmqMugcIchelhKEChB1Oz6hIozMr5sHVZKQzrd2zVgMLYEgurFygM63ds1YDC2BJjpTBHiSUbClCYzLeitAIKi5J0snEChcl8K0oroDBHSbNSmKMw2T4uRpgeRgkUejA1R10ChTkK08NQgEIPpmbVJVCYlfNh67JSGNbv2KoBhbElFlYvUBjW79iqAYWxJcb2cY4SSzYUoDCZb0VpBRQWJelk4wQKk/lWlFZAYY6SZqUwR2GyfVyMMD2MEij0YGqOugQKcxSmh6EAhR5MzapLoDAr58PWZaUwrN+xVQMKY0ssrF6gMKzfsVUDCmNLjO3jHCWWbChAYTLfitIKKCxK0snGCRQm860orYDCjJPWC/yOHTukY8eO9ZSUe60h2awUZhxmoPJAYSCjIy0DFEYaXCDZQGEgoyMtAxQGCO7++++XyZMny5133ikDBgyoqbhw4UKZN2+eA8LBgwfX/FlPKPdaY5KBwgBhGigBFBoIwbAEoNBwOAakAYUGQjAsASj0HM6sWbPkySeflNdff92B3sCBA13F1atXy/jx42XJkiXSo0cPmTp1qvTq1UumTJlS9rVycoFCz2Ea6R4oNBKEURlAodFgjMgCCo0EYVQGUOg5mEceeUSOOuooOfPMM2XGjBk1UDh//nzZsmWL+zc9Vq5cKZMmTZLly5dLudeAQs+BRdA9UBhBSBlKBAozND+C0kBhBCFlKBEoDGT+SSedJJdeemkNFE6fPl369esnY8eOdQo2bdokQ4YMkbVr1zpQbOy1qqqqRhWzUhgozIzLAIUZB2C8PFBoPKCM5QGFGQdgvDxQGCigulA4YcIEGTZsmIwePdop0FVD3VpetWqVXHDBBY2+VnogRbed6x66BX3yFXfL3Stf8T6qQb33ku+f+TfStU0L77UosLsD1dXVsm3btgYfTsIrHNi1a5ds376d+cFUaNABfVOpF/4OHTrgEA7Uc0DfVOobh/bt25t2p9L526Jar5gGj7pQqKuBffv2lXHjxjm1GzdulKFDh8q6devkkksuafS1li1buvOvu+66eqPUbeeQULjg9P7SubVJuw3OgPQk6UVff6lb/6FNb8T01BwHdH7s3LlT2rVr15xmnFsQB5gfBQk64TD1TYOCYdu2bRP2EKZZ586dKyoUDRQuWrRINmzYIDNnznQDW7FihUybNs3dU1jutXIusH1c0RyJ/iS2j6OP0OsA2D72am/0nbN9HH2EXgfA9rFXe/+v87orhevXr5dRo0bJ0qVLpWfPnjJx4kTp06ePA8NyrwGFgQIzXAYoNByOAWlAoYEQDEsACg2HY0AaUBgohFNOOUUuvvji3T6ncPHixTJnzhynQD+/cO7cudK1a1f393KvNSaZlcJAYWZcBijMOADj5YFC4wFlLA8ozDgA4+WBwowD4htNMg4gwvJAYYShBZQMFAY0O8JSQGGEoQWUDBQGNNt3KVYKfTtso3+g0EYOVlUAhVaTsaELKLSRg1UVQKHVZBLoAgoTmBZhE6AwwtACSgYKA5odYSmgMMLQAkoGCgOa7bsUUOjbYRv9A4U2crCqAii0mowNXUChjRysqgAKrSaTQBdQmMC0CJsAhRGGFlAyUBjQ7AhLAYURhhZQMlAY0GzfpYBC3w7b6B8otJGDVRVAodVkbOgCCm3kYFUFUGg1mQS6gMIEpkXYBCiMMLSAkoHCgGZHWAoojDC0gJKBwoBm+y4FFPp22Eb/QKGNHKyqAAqtJmNDF1BoIwerKoBCq8kk0AUUJjAtwiZAYYShBZQMFAY0O8JSQGGEoQWUDBQGNNt3KaDQt8M2+gcKbeRgVQVQaDUZG7qAQhs5WFUBFFpNJoEuoDCBaRE2AQojDC2gZKAwoNkRlgIKIwwtoGSgMKDZvksBhb4dttE/UGgjB6sqgEKrydjQBRTayMGqCqDQajIJdAGFCUyLsAlQGGFoASUDhQHNjrAUUBhhaAElA4UBzfZdCij07bCN/oFCGzlYVQEUWk3Ghi6g0EYOVlUAhVaTSaALKExgWoRNgMIIQwsoGSgMaHaEpYDCCEMLKBkoDGi271JAoW+HbfQPFNrIwaoKoNBqMjZ0AYU2crCqAii0mkwCXUBhAtMibAIURhhaQMlAYUCzIywFFEYYWkDJQGFAs32XAgp9O2yjf6DQRg5WVQCFVpOxoQsotJGDVRVAodVkEugCChOYFmEToDDC0AJKBgoDmh1hKaAwwtACSgYKA5rtuxRQ6NthG/0DhTZysKoCKLSajA1dQKGNHKyqAAqtJpNAF1CYwLQImwCFEYYWUDJQGNDsCEsBhRGGFlAyUBjQbN+lgELfDtvoHyi0kYNVFUCh1WRs6AIKbeRgVQVQaDWZBLqAwgSmRdgEKIwwtICSgcKAZkdYCiiMMLSAkoHCgGb7LgUU+nbYRv9AoY0crKoACq0mY0MXUGgjB6sqgEKrySTQBRQmMC3CJkBhhKEFlAwUBjQ7wlJAYYShBZQMFAY023cpoNC3wzb6Bwpt5GBVBVBoNRkbuoBCGzlYVQEUWk0mgS6gMIFpETYBCiMMLaBkoDCg2RGWAgojDC2gZKAwoNm+SwGFvh220T9QaCMHqyqAQqvJ2NAFFNrIwaoKoNBqMgl0AYUJTIuwCVAYYWgBJQOFAc2OsBRQGGFoASUDhQHN9l0KKPTtsI3+gUIbOVhVARRaTcaGLqDQRg5WVQCFVpNJoAsoTGBahE2AwghDCygZKAxodoSlgMIIQwsoGSgMaLbvUkChb4dt9A8U2sjBqgqg0GoyNnQBhTZysKoCKLSaTAJdQGEC0yJsAhRGGFpAyUBhQLMjLAUURhhaQMlAYUCzfZcCCn07bKN/oNBGDlZVAIVWk7GhCyi0kYNVFUCh1WQS6AIKE5gWYROgMMLQAkoGCgOaHWEpoDDC0AJKBgoDmu27FFDo22Eb/QOFNnKwqgIotJqMDV1AoY0crKoACq0mk0AXUJjAtAibAIURhhZQMlAY0OwISwGFEYYWUDJQGNBs36WAQt8O2+gfKLSRg1UVQKHVZGzoAgpt5GBVBVBoNZkEuoDCBKZF2AQojDC0gJKBwoBmR1gKKIwwtICSgcKAZvsuBRT6dthG/0ChjRysqgAKrSZjQxdQaCMHqyqAQqvJJNAFFCYwLcImQGGEoQWUDBQGNDvCUkBhhKEFlAwUBjTbdymg0LfDNvoHCm3kYFUFUGg1GRu6gEIbOVhVARRaTSaBLqAwgWkRNgEKIwwtoGSgMKDZEZYCCiMMLaBkoDCg2c0tpRf/HTt2SMeOHStqChRWZFP0JwGF0UfodQBAoVd7o+8cKIw+Qq8DAAq92tt459u3b5f+/fvvdsLcuXNl+PDh7t8WLlwo8+bNc0A4ePDgmj+XkwsUZhRm4LJAYWDDIysHFEYWWGC5QGFgwyMrBxRmFNiGDRvk1FNPlWXLltUoaNWqlVRVVcnq1atl/PjxsmTJEunRo4dMnTpVevXqJVOmTCmrFijMKMzAZYHCwIZHVg4ojCywwHKBwsCGR1YOKMwosLVr18q0adPkvvvuq6dg/vz5smXLFpkxY4Z7beXKlTJp0iRZvnw5UJhRXpbKAoWW0rCnBSi0l4klRUChpTTsaQEKM8rkiSeekMmTJ8vIkSPdauAJJ5zgVgP1mD59uvTr10/Gjh3r/r5p0yYZMmSIKEjqSmJjByuFGYUZuCxQGNjwyMoBhZEFFlguUBjY8MjKAYUZBaagd8cdd0j37t1lzZo18sADD8iVV14pJ554okyYMEGGDRsmo0ePdup01XDgwIGyatWqmodO7rrrrnrKL7roIjn5irvl7pWveB/VoN57yffP+Bvp0sZ7KQrUcaC6ulr0ntQOHTrgDQ7Uc2DXrl3uATXmB5OjIQd0fuiFv3379hiEA/Uc0EUHfePQrl070+5U+gBui2q9YkZ43H777fLQQw+J/l+3jfv27Svjxo1zI9m4caMMHTpU1q1bJy1btnT/dsMNN9Qb5ezZs4NC4YIz+kuX1hGaHblkLvqRB+hZPhd9zwZH3r1e9Hfu3AkURp6jL/m606D/WYfCTp06VWRBtFD42GOPuRVCXQ1ctGiR6IMoM2fOdINesWKFu/+QewormgO5P4nt49xHvEcDZPt4j+zLfWO2j3Mf8R4NkO3jPbIveWO9P7Bnz57SrVs3d8+grg7qdo9+LM369etl1KhRsnTpUnfOxIkTpU+fPg4Myx3cU5g8j5haAoUxpRVeK1AY3vOYKgKFMaUVXitQGN5zV/H++++XBQsWuPsFW7duLSNGjJBzzjlH9t57b/f64sWLZc6cOe7PAwYMcLDYtWtXoDCjvCyVBQotpWFPC1BoLxNLioBCS2nY0wIUZpzJ1q1b3cMjLVq0qKeEbzTJOByj5YFCo8EYkQUUGgnCqAyg0GgwRmQBhUaCSEMG28dpuGi/D6DQfkZZKgQKs3Tffm2g0H5GWSoECrN0P+XaQGHKhhrtDig0GowRWUChkSCMygAKjQZjRBZQaCSINGQAhWm4aL8PoNB+RlkqBAqzdN9+baDQfkZZKgQKs3Q/5dpAYcqGGu0OKDQajBFZQKGRIIzKAAqNBmNEFlBoJIg0ZACFabhovw+g0H5GWSoECrN0335toNB+RlkqBAqzdD/l2iGh8KtHHihfH/oJaVVV/6nplIdV012vvfhaNzUDKPQ1w/LRL1CYjxx9jQIo9OVsPvoFCvORoxtFaCg89GNdZe5/Px/EwXu++Xnp1R0oBAqDTLeoiwCFUcfnXTxQ6N3iqAsAhVHHt7v4LKDwwp/+zruDPTq1lf/6FlBYMpqVQu9TLuoCQGHU8XkXDxR6tzjqAkBh1PEBhTmKr+KhAIUVW1XIE4HCQsZe8aCBwoqtKuSJQGGOYmelMEdhlhkKUFiMnJOOEihM6lwx2gGFxcg56SiBwqTOGWwHFBoMxYMkoNCDqTnqEijMUZgehgIUejA1R10ChTkKEyjMUZisFBYjTA+jBAo9mJqjLoHCHIXpYShAoQdTs+oSKMzK+bB1WSkM63ds1YDC2BILqxcoDOt3bNWAwtgSK6MXKMxRmKwUFiNMD6MECj2YmqMugcIchelhKEChB1Oz6hIozMr5sHVZKQzrd2zVgMLYEgurFygM63ds1YDC2BJjpTBHiSUbClCYzLeitAIKi5J0snEChcl8K0oroDBHSbNSmKMw2T4uRpgeRgkUejA1R10ChTkK08NQgEIPpmbVJVCYlfNh67JSGNbv2KoBhbElFlYvUBjW79iqAYWxJcb2cY4SSzYUoDCZb0VpBRQWJelk4wQKk/lWlFZAYY6SZqUwR2GyfVyMMD2MEij0YGqOugQKcxSmh6EAhR5MzapLoDAr58PWZaUwrN+xVQMKY0ssrF6gMKzfsVUDCmNLjO3jHCWWbChAYTLfitIKKCxK0snGCRQm860orYDCHCXNSmGOwmT7uBhhehglUOjB1Bx1CRTmKEwPQwEKPZiaVZdAYVbOh63LSmFYv2OrBhTGllhYvUBhWL9jqwYUxpYY28c5SizZUIDCZL4VpRVQWJSkk40TKEzmW1FaAYU5SpqVwhyFyfZxMcL0MEqg0IOpOeoSKMxRmB6GAhR6MDWrLoHCrJwPW5eVwrB+x1YNKIwtsbB6gcKwfsdWDSiMLTG2j3OUWLKhAIXJfCtKK6CwKEknGydQmMy3orQCCnOUNCuFOQqT7eNihOlhlEChB1Nz1CVQmKMwPQwFKPRgalZdAoVZOR+2LiuFYf2OrRpQGFtiYfUChWH9jq0aUBhbYmwf5yixZEMBCpP5VpRWQGFRkk42TqAwmW9FaQUU5ihpVgpzFCbbx8UI08MogUIPpuaoS6AwR2F6GApQ6MHUrLoECrNyPmxdVgrD+h1bNaAwtsTC6gUKw/odWzWgMLbECrh9/Kn9OsttX/+c7NelXY7SSj4UoDC5d0VoCRQWIeXkYwQKk3tXhJZAYY5SzutKoULhlV85XF7dvD1IWp/u2Vn0P6sHUGg1GRu6gEIbOVhVARRaTcaGLqDQRg6pqMg7FI5c9HgqPjXVycOThgGFTZnE62YdAArNRmNCGFBoIgazIoBCs9E0XxhQ2HzPGmoBFKbjI71k4wBQmI3vsVQFCmNJKhudQGE2vnupChSmYytQmI6P9JKNA0BhNr7HUhUojCWpbHQChdn47qUqUJiOrUBhOj7SSzYOAIXZ+B5LVaAwlqSy0QkUZuO7l6pAYTq2/mLKMdK2Vct0Oqugl17dO1Rw1v+dwoMmzbKrcCcDhYWLvFkDBgqbZVfhTgYKcxQ5UJhOmAqFpyz8tbz/4a50OizTy9zTj5Dh/fdvVh2gsFl2Fe5koLBwkTdrwEBhs+wq3MlAYY4iBwrTCbMEhVvf/zCdDsv0ct2YAUChd5eLVQAoLFbezR0tUNhcx4p1PlBoOG9dEdqxY4d07NixIpVAYUU2NXkSUNikRZxg2AGg0HA4BqQBhQZCMCwBKDQazsKFC2XevHkOCAcPHlzz53JygcJ0wgQK0/GRXrJxACjMxvdYqgKFsSSVjU6gMBvfy1ZdvXq1jB8/XpYsWSI9evSQqVOnSq9evWTKlCll2wGF6YQZEgrv+dbnpXf3ylaCS6Orrt4l+oPbrl37Zg+4R6c2zW5Dg7gcSAqF7+74MMh9tCU39WGuzu1axWVuDtQChTkI0eMQgEKP5ibtev78+bJlyxaZMWOG62LlypUyadIkWb58OVCY1NRmtAsJhT/91uflqgfXNkNd8lPHHt1bhh28T/IOErTs0r51glY02RMH9gQKJ935rCgc+j4UBued/lmg0LfRDfQPFGZgekQlgUKDYU2fPl369esnY8eOdeo2bdokQ4YMkbVr10pVVVWjilkpTCfM0FB48ZLn5PevvpOO+DK9XDfms/Lg7zfKewEeoFEZ+mT1Xh3ytzK54wP/T6XXjrFd6+Z9PNKeQuH//GGT97l4/Gf2zS0UhpwfH35ULa2qWjQrr10ffeR2Gtp3aN5HYSWp1SxhtU6uatlCdn64S/T/oY7m/pyF0rUndZLMRf398eGHHzR7Jyrk/FBPKs2rRXV1dfWemGih7YQJE2TYsGEyevRoJ0dXDQcOHCirVq2qeehk8eLF9aTOmjVLTr7i7iBD6NOjo+zdsY2s/PNm7/V0VWF4/wPkP598yXstLXDeMX3l35e9GKTWmCMPlB//Jsy4jv30PvLouteDjEuLXPTlz+QSCl/evE2WPPtaEB//9uAeckSvbs2qtSdQeNl9zzWr1p6cfMlJh+ZypfClt7bJz1aFmR9/d8h+suz51x1A+T6GfWofWf3K2/L2tg98l5IBvfeSN7e+L39+c5v3Wh3btpITD+8pPbu0814rdIGX39om96/eIB/t8o9Fen155qXNsmW7/52Gnl3byaiBH6/IzlxAoW4b9+3bV8aNG+cGvXHjRhk6dKisW7dOWrb866pBY1BYkUuchAM4gAM4gAM4gAOROvDCCy9UpDwXULho0SLZsGGDzJw50w16xYoVMm3atCbvKazIIU6K3oHXXntNLrzwQrn11lujHwsDSN+B9evXy/e+9z3R3yMcOFDXgd/97ndy8803y5w5czAHB+o58OSTT7qHXC+//PJcuJMLKNRf6qNGjZKlS5dKz549ZeLEidKnTx8Hhhw4ABQyB8o5ABQyP8o5ABQyP8o5ABQanR+6PVx6JzdgwACZO3eudO3a1ahaZIV0ACgM6XZ8tYDC+DILqRgoDOl2fLWAQsOZNfcbTQwPBWkpOgAUpmhmDrsCCnMYaopDAgpTNDOHXQGFOQyVIeXbAaAw3/nu6eiAwj11MN/tgcJ857unowMK99RB2uMADuAADuAADuAADphzIBcPmphzFUE4gAM4gAM4gAM4EJkDQGFkgSEXB3AAB3AAB3AAB3w4ABT6cJU+cQAHcAAHcAAHcCAyB4DCyAJDLg7ggF8H3nnnHencuXPNtyH5rUbvOIADsTmwdetW6dSpU4OyY//9ARTGNhvR2ywHTjvtNPcd2KXjzDPPrPnmm2Z1xMm5ceCtt96SqVOnuvHcdNNNNeN66aWX5Bvf+Ib7diQ9Zs+eLV/84hdzM24GUpkDjc2PefPmycKFC2s66dWrl/zyl7+srFPOit4B/ci7G2+8seabj/QLMs4//3w5/vjj3djy8vsDKIx+qjKAcg584QtfcD/E+gOsR6tWraSqqgrTCurA2rVr3XekH3bYYfLhhx/KLbfcUuPEueeeK4cffrj7RqQ1a9bIySefLE8//TQfgl+guVJuflx88cVyyCGHyKmnnuocadmypbRu3bpA7hR7qLt27XJfd3jSSSfJvvvuKw8//LB897vflUcffdRdU/Ly+wMoLPY8z/3oDz74YHnqqaekW7duuR8rA2zagc2bN8sf/vAH2blzpwPCEhRu375d+vfvL48//rjss88+riOFx6985SsyYsSIpjvmjFw40Nj80MF9+9vfdvOhtDKUiwEziMQO7Nixw72JXLFihXTo0CE3vz+AwsRTgobWHXj//ffditB5553n3tEfe+yx7oe4RYsW1qWjz7MDjzzyiNx66601UPjKK6/IcccdJy+88EJN5UsvvVQOOOAAGT9+vGc1dG/NgbrzQ/WdccYZbj707NlTjjzySDn66KOlTZs21qSjJ5ADukJ49dVXy4MPPih5+v0BFAaaQJQJ74DeA3LDDTe4d3F/+ctf5Gc/+5l7l68Xe45iO1D3oq/bhnrRr33/qd5TqFuEpfsPi+1YsUbfEBQuWbJEdCVR32z+4he/EH2gQLcQeZNZrLmho3399dfdqvHll18uw4YNkzz9/gAKizefCzti/cHV+0GeffbZRp8cK6w5BRt43Yu+fhXiMcccs9tKod5Dpg8T6L1CHMVyoCEorO3ABx98IIMHD5brr79ePve5zxXLnIKPdtu2bXLWWWfJl770pZpdhDz9/gAKCz7BizR8/RiBz372s/LQQw9J3759izR0xlrHgboX/dKtBr/61a9k//33d2frk+r6H/cUFm/6NAWF6oh+ssHo0aPd/zmK4YD+ntBPKDjwwAPlsssuq1klztPvD6CwGHO5kKPctGmTvPfee3LQQQe5/+vHj/zoRz+S5cuX89RgIWfE/w26oYv+5MmTHRBOmzZNfvvb37qLPQ8pFXOi1J0feiuK7jAMHDhQ9ClU/R2iK8jPPPOM+0xLjvw7oJ9WoB9Bo/eRXnXVVTVAqPer69PHefn9ARTmfy4XdoTr1q2TCy64QDZu3Cj6pNiJJ57olv31YyU4iu2A3iRe++ljdUPfRHzzm9+UF1980ZmjHzcxfPjwYhtV0NHXnR8KBKNGjZLnnntOOnbs6LaOx4wZ4x5O4iiGA6tXr5aRI0fWG+x3vvMdmTBhQm5+fwCFxZjPhR6lAqG+k+MzxQo9DSoe/Lvvvusu/PqQCQcO1HZA54b+LtGH1zhwoCEHYv/9ARQyr3EAB3AAB3AAB3AABwQoZBLgAA7gAA7gAA7gAA4AhcwBHMABHMABHMABHMABAQqZBDiAAziAAziAAziAA0AhcwAHcAAHcAAHcAAHcECAQiYBDuAADuAADuAADuAAUMgcwAEcwAEcwAEcwAEcUAd4+ph5gAM4gAM4gAM4gAM4ABQyB3AAB3AAB3AAB3AAB1gpZA7gAA7gAA7gAA7gAA6wfcwcwAEcwAEcwAEcwAEcUAe4p5B5gAM4gAM4gAM4gAM4ABQyB3AAB3AAB3AAB3AAB1gpZA7gAA7gAA7gAA7gAA6wfcwcwAEcwAEcwAEcwAEcUAe4p5B5gAM4gAM4gAM4gAM4ABQyB3AAB3AAB3AAB3AAB1gpZA7ggBkHXn/9dfnoo4+kZ8+e9TS9/PLLsu+++0rbtm296Z04caKceuqpctxxx3mrUWnHq1evljvuuEPWrFkjZ555ppx++umVNm3WeY899ph86lOfct6WO2644QZ5//33ZcKECc3qP8TJTWl788035bzzzpMFCxbI/vvvL2vXrnXz7NBDDy0r7/HHH5ebb75ZtP80j2nTpsnxxx8vf//3f59mt4n6+stf/iLt2rWTrl277tZ++/btoj+PBx54oPv3d999V9566y3351atWsnee+/t2tU+XnnlFffv7du3T6SFRjhgwQG2jy2kgAYcEJFvf/vb8vOf/1zuu+8+6dev326eHHzwwfKf//mfMmjQIG9efeELX5BvfetbMmrUKG81Kum4urpajj76aDnhhBPk7/7u7xzIKLjt6aEX+meffVY+//nP13R11FFHuTGPHTu2bPcXX3yxaPtrrrlmT2Wk3r4pbRs3bpShQ4e6uXXQQQfJBRdcIFu2bJFFixaV1XL//ffLd7/7XVmxYkWqmk888UT5x3/8R/nqV7/a7H71zZHmkMZ80OIjR4508+yb3/zmbloeffRROffcc+WFF15w/3777bfLZZddtts5OkdnzZolvXv3dv+uP6MK3jo+DhyI1QGgMNbk0J07B0pQqCs4d7rpZRoAAA2ySURBVN99t1uRKB1FgkJdyTrppJMcjOjKS1rHgw8+KD/5yU/kpptuquny1VdflR49ejS5AtsUeKWlMUk/TWmrC4XvvPOO7Nq1S/baa6/ooPDSSy+VAw44QMaPH5/EqnptmgOFOm8UrHXV8A9/+IMDwA8++EDuueceoDCVNOjEggNAoYUU0IAD/3+lsFevXm7bVFeval/4akPhkiVL5IEHHpAf/vCHNb795je/cas6usqoxznnnONWQf7rv/5Lnn76abeKUVohWrhwoSgM/cM//IOcffbZNSsdulKobXTrVvtTLbpaMmLEiJo6+tqVV17pLop9+vSRSZMmybHHHute19UVBa8vf/nLMmfOHHnuuedcX3W303RbTvvQ7Uk9tK5q0y08bT937lz505/+5Fa1FAp1hbTuoRfiH//4x/Liiy+6rd+zzjrL/deYjssvv1yuuOIKee+991y/3bt3dz6rT7o1/aUvfcm1ra1tx44d0r9/f7n11lvlkksu2W2lUM9Tv5ctW+b6OuOMM+TrX/+6VFVVua3ZH/zgB84P1aeru6eccooMHz683jhK9RVWNSddFdXcdRtfj0qyVihUUFHI++///m9p3bq1q6W3A+gbi7pQ+P3vf190bLqNW05raaVQM/7Rj37kvNFsx40b5+ZG6fjpT3/qtpl1Fe+II44Q1fOJT3zCvbx161ZR7x955BHp0KGDW4XWjNXzhlYKX3vtNZk/f76bGzomnRvnn3++y2zmzJly2223SceOHV3mugWt86b2oZCm7RXedA4deeSRbuv8b//2bxv8HdNcKPzlL3+527i1vr6J0dxZKeTXeB4cAArzkCJjyIUDulKoEKKQMX36dHn44YdrLq61oVC3svQirRfX0lF3u0svpnqRVsAYMmSIu2jrOXq/ooKeXtQVzPSeqRtvvLEGzrSNwtUxxxzjwFMv+FpPL64bNmyQYcOGyVe+8hU5+eST5Re/+IW7SC9dutRt5ylE/Nu//Zu710q3BwcOHLjbVq0WUQgpba/pxXrnzp1y/fXXO/i76667XA0FCF0Ruvfeex3gNLRVqJoU8BS4Vq5c6bZ1ly9f7sbXkA6FCoWhdevWuS0/vYh/+tOfdtBR2jIvafvwww8dLPbt21c2bdrkxlp7NU7PU+hSiFV///znPzvg1H4VDtWT733ve24lqUuXLrJq1Sp3/97gwYPrzdNSTl/72tdcTjpm1b948WK3hV5J1qpNwVnhXOvrfZj/8R//If/0T//k7oGsC4W1x1JOq+qYPHmyfPKTn3R+6LycN2+ey1Xz0UPnqNbQ8w477DC3CqsgrHCq8+A73/mOPPPMM3L11Ve7e/J0rumbBYXshqBQwVPfFOh2t/qrPmq/unW7fv16B4jqi8Klvv6xj32snqcKjzpn9D/1RedHbZir3WBPoFDH9rvf/a6mb6AwF7+GCz8IoLDwUwADrDigUPiZz3ym5h43hROFv9IqROmewkpAQWFD753T1Sw9FExOO+00+ed//me3cqKHroDpBVhf00Pb6AW/9n1zuo2rFztd+dP/FNx+/etfO026BTlgwAAHkdpvCSKuvfZaB1INHSV41RWwQw45xJ2iK2T6MElpfLpKpCuYzz//vLRo0aLJeEr3IKoGHWNjOnQF6be//e1u28e1oVBX/RSkdHVVQaT2URuk9OEUhbjSPXp6ngKCPmigK5jXXXedA+U777zTQWG5Q+vrdqhmWjq++MUvuvrqdyVZqzbVUspF+7nqqqvcSqhmWw4Ky2kt+ajwX7pvTt8kKHQp6LVs2dKtLOuqYGnO6D14ugKtUKpj0DcTer7mq4dCn87LxqCwrleleqU5qtCrnlW6fazArvcM1s4qKRTqvP6Xf/kXefvtt90bEJ23el+m9q8HUNjkjyonROAAUBhBSEgshgMlKNSVl9LFTC/4Cl1JVgp1m6/0AEXpYqygoOCnh67I6cW1dDO9Xmx19UZXhUqHrn7pSouuYOnN+E888cRuK15PPfWUW1VU4CpBhJ7fGAzpiqWeq+coWOqhT/UqQCjA6rZiJVCoW4O6kqn/14u0XqB1u1S1N6ajKShUSFYNpe3AxqCwdF5p21zP09UxXQkrQdiYMWPc39VP/bOCX0OHeq6rXrpaWTp0FU77Uc8rhUJdYa39lHBpBU993rZt224PmtQGXAXGxrSWfCzND9WnMKgZ6W0BuhKoq3G6CluCRgV0hWudNwr9Co11H5zSh3t0jje0Uqjbv6pdHwjSrWQdl64sljRUAoU6J/XNh0K63j+psKywrqvwdY/mrBTqaqWuYOqDLjrf9BYBfRCqdACFxfg9nfdRAoV5T5jxReNAbShU0braois+uvWl8FBupfChhx5yW2u1Aa/2k8QlKFSQ0otXY1BYGyT1nNmzZ7tVEb2wK3Ap6OhqWu1Dt2x1G7eSp1VvueUWtwWpF/3SKqBuxyqo6iqMAkpTUFhaWdQVNd1y1W3eCy+8sAZoG9PRFBTqPZoKrQ09bVsbpHS7W1fGdGtTV8tKh0JuaWtcQVcz0fs3FVw1S916r3tornU9L91vqZ43BIV1s1Ztmm/tp4lLK7IKSHr/YO2nj+s+mNKY1oZ8rA2Fbdq0cU/J6/2S+sag9qHb5Zs3b3YAWXulUc/RMetcaggK9d91+3v06NEO4nTLWH2uFAoVjHXO6hspvb9R35zo7RKNQaGuYCq8zpgxYzf9ukKp9wvWfvpYt8b1Z1HBV+ep5q3b76V5DBRG86sWoWUcAAqZHjhgxIG6UKiwpCsZemHTlRm9H0vhS7clFRxqr7b9+7//+24Xz7ofL1MpFCq4lO4XU1t0O1afzlXg0NUfvbjWrlvbukqgUB9gURiovZ2nK0EKFjo+hYumoFChRrdw9b41vTArfHzuc59zYFhaKWzoo1T0Hr8nn3xyt63a2j7plq8+VKH96kM0tY/aIFVahWvoo4PqTiXNcOrUqU6jAnFDUFjXc92y//jHP+48ryRr1aYgq56WDgVvBVKFmnLbx7X11NXaFBTqA0QK5rpaqNvQdQ9d6dM89RaF0kM2pVXhhraPS/es1j5f70XUeVEbChVw9WeloUPz1DcKOlf1KK2GNwaFCoOad+2td22nb3zeeOMNt1qrh8J5CQr17wqueotE7Y+gAQqN/CJFxh45ABTukX00xoH0HKgLhdpz6eNZ9M+llUIFG32QQ+/V0qdmFZD0QQf9kOI9XSnUB030gqofLKxbmLrKohd8rVPSoqs/ulKiT4Hqjfb6wIZeECuBQt1604upPuCi9+HpdqFeWF966SW3sqarT01BYenhCIU4fVBFV4f06d2moFBXeb7xjW+4lSt9yldr1YZCfVJWn1LV+yR1e1MfftFVPt0mrg2FOgb9gG99AEPvz9Sx69PY+qSvttctdn0IQv9dYfBf//VfHbw29CHQpQdNSp5rW90GL3leSdalB000K50Xqk/veVRgU+gpB4XltFYChfoEuAKePsms9xLq5x/qnNCnlDt16uQefNGVyosuusg9Ha1gpVk1BIU6F/RhHH2KW+8p1TcQ2q8+UFSa17pyrquf2o9CqWZY+9CfIQVPvf9Pt/T1fJ3HjUGhvtnSN1768JS+MdHcdB4qkCuQ6r83BIX6b/owmM4pBU/VonnrGwCF1tKhT1zXfYOR3m8MesKB9B0ACtP3lB5xIJEDCiL6oEndVZDSqk/pfkDdvtKtUP27gqDCi65s6EWsNhRqP3rB00NXPfSpzdrbxw09sawXY12ZUZDQQ/tQSCltkypQ6b1VpdcVDHU7VVfqKoFC7VM/Dke35vSir4duE+qWn24D69EUFCpoKSzovWt66D15+tCLbmUqDDWmQ2FJx6Lj1kO9Uiir7ZMChG5jKwzqoQ9K6CpR3S1XfQhGQaf0AEQJErS+5qIwojCjhz6IoGBYuu+u9uTQ+gqSChYNeV5J1qpNoUQBR7fW9VAg1DcKCjklKCytgNYeSzmtDflYemCp9FFDurqo2+66ulc69B5DXeFUCFTY1yeT9Xw99A2B3oJQun+17g+KAqNuF5fmtYKXPkBUmtf6xkS91NVl7aP2xzJpX6pPV7r1dT0UPhUg9efl8MMPb/DnUue0eqVviPTQnyddMdY3P6WtYZ0D+kR47dVYfTJdVyX1zY3+7JZuy6hdpDR/GizMP+KAQQeAQoOhIAkHKnFAL8i6MtPUhxBX0lfdc/Thjc6dO9c8DFL3db2BX4FFt7Zr31fXnFoKadqHrqYkOXRlT1eK6q4WNdWXfv6druqV+zoy7VtX95r6yjIdg8Jft27ddvuwcc1GwUY/xqX2h5DX1VZ7pbKc55VmrVo0j6Z019ZRqdZyvmqOOl79GkadN3UP9Vw/XqjuV8M11KcCvs5r9bSxQ8FS62ifDR06P3WlsvQwU1NzQl/XzLV2U0+MV9IX5+BArA4AhbEmh24cwIHoHbDy1YLRG8kAcAAHUnEAKEzFRjrBARzAgeY7ABQ23zNa4AAO+HMAKPTnLT3jAA7gQFkH9L5I/fDn2l8bh2U4gAM4kJUDQGFWzlMXB3AAB3AAB3AABww5ABQaCgMpOIADOIADOIADOJCVA0BhVs5TFwdwAAdwAAdwAAcMOQAUGgoDKTiAAziAAziAAziQlQNAYVbOUxcHcAAHcAAHcAAHDDkAFBoKAyk4gAM4gAM4gAM4kJUD/w+FDT0+dqjF4gAAAABJRU5ErkJggg==", "image/svg+xml": [ "5101520050100150200250Number of articles published at a URLcount" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig=px.histogram(X_train['baseurl'].value_counts(), width=450, height=250,\n", " labels={\"value\":\"Number of articles published at a URL\"})\n", "\n", "fig.update_layout(showlegend=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This histogram shows that the vast majority (261 out of 337) of websites have only one article in the train set, and only a few websites have more than five articles in the train set.\n", "Nonetheless, it can be informative to identify the websites that published the most fake or real articles. First, we find the websites that published the most fake articles:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=baseurl
Number of articles published at a URL=%{x}
Base URL=%{y}", "legendgroup": "baseurl", "marker": { "color": "#1F77B4", "pattern": { "shape": "" } }, "name": "baseurl", "offsetgroup": "baseurl", "orientation": "h", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 3, 3, 3, 3, 3, 3, 4, 4, 5, 15 ], "xaxis": "x", "y": [ "worldnewsdailyreport.com", "newsweek.com", "cnn.com", "washingtonpost.com", "trendolizer.com", "observeronline.news", "thehill.com", "dailyusaupdate.com", "thegatewaypundit.com", "yournewswire.com" ], "yaxis": "y" } ], "layout": { "barmode": "relative", "height": 250, "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autosize": true, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "height": 250, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "margin": { "b": 10, "l": 10, "r": 10, "t": 10 }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.5, "xanchor": "center" }, "width": 350, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "width": 550, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 15.789473684210526 ], "title": { "text": "Number of articles published at a URL" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ -0.5, 9.5 ], "title": { "text": "Base URL" }, "type": "category" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAFoCAYAAAAhG4EVAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQeUVMXWtveQcxAEBAQRPkBAQHIUkCAgCBIE5ZJBJCg5g5Kz5CBBBUSiJEkSFQHJCBJEQVGQcEXS/cjxX+++/5mvaSf0DKdPn+p+91oume46VbveXT39zN5V54Q9evTokdCoABWgAlSAClABKkAFQlqBMEJhSMefk6cCVIAKUAEqQAWogCpAKORCoAJUgApQASpABagAFSAUcg1QASpABagAFaACVIAKMFPINUAFqAAVoAJUgApQASrA8jHXABWgAlSAClABKkAFqAAU4J5CrgMqQAWoABWgAlSAClABQiHXABWgAlSAClABKkAFqAAzhVwDVIAKUAEqQAWoABWgAiwfcw1QASpABagAFaACVIAKQAHuKeQ6CGkF/ud//kdOnDgR0hpw8r4rcP36dQkLC5OkSZP6fhFbhqwC//u//ytx48aVJEmShKwGnLjvCvznP/+R+PHjS+LEiX2/yOaWhEKbBWV3ZilAKDQrXoH2llAY6AiYNT6h0Kx4BdpbQmGgI8DxQ14BQOEPR34KeR0ogG8K3LlzRzOFCRIk8O0CtgppBe7cvi1hceJwvYT0KvB98rdv35bkieJLwoQJfb/I5pbMFNosKLszSwFAYZUBi+Q/t++b5Ti9pQJUgApQgaBS4IVnkkvXis8TCoMqqpyMUQpYULjm8Hmj/KazVIAKUAEqEFwKvPPy84TC4AopZ2OaAoRC0yJGf6kAFaACwakAoTA448pZGaQAodCgYNFVKkAFqEAQK0AoDOLgcmpmKEAoNCNO9JIKUAEqEOwKEAqDPcKcn+sVIBS6PkR0kApQASoQEgoQCkMizME7yfv378vff/8tGTJkMHaShEJjQ0fHqQAVoAJBpQChMKjCGXqT2b59uwwaNEg2bNhg7OQJhcaGjo5TASpABYJKAUJhUIUz9Cbz4MEDuXLliqRNm9bYyRMKjQ0dHacCVIAKBJUChEKDw/nw4UOpX7++9O3bVwoVKqQzOX78uHTu3FlWrVolv//+uwwYMEB2794tOXLkkJ49e0r58uW1XYsWLaRTp06SP39+/XnFihX6/N3u3bvLgQMHZPXq1ZIuXTr5+OOPpWPHjhInThy5ceOGvrd161apVKmSvp47d269/uTJk9KvXz/Zv3+/FClSRIYPHy5//vmnzJkzR2bOnKltPv30U1m3bp0sWbJEf8b/4W+7du20/aZNm3TMWrVqSYECBXy69rXXXtP+p02bJnfv3pW6detK165dNXsI2Jo6daq+N2/ePB2zadOm0rZt239EHXA5ffp0WbBggVy4cEFq164to0ePlmvXrsmwYcNk/fr1kjx5cmncuLG0atVK9cDc8AipPXv2yM6dO1VbaIz20Kly5crSrVs3SZ8+fZSrjFBo8IeQrlMBKkAFgkgBQqHhwQRM3bp1SyEINn78eDl//ryMHDlSGjZsKHny5FGQ2bFjhwwcOFB+/PFHfdB1lSpVFF4AcDBA0+HDh/U6AE6TJk0UcgCYzz77rMyePVsmTpyo8FayZEmZMWOG4HE4aA/DWHgdUAb4u3r1qvTq1UtKly6tgASgqlmzpkIgwBCQ2r59eylVqpRcvHhRLl++LF26dJFz587JvXv35JlnnvHp2ueff159ANTi8V/58uWTvHnzqt/49y+//KLQPHbsWMH+QwDd0qVLJXv27I9FHnPGNf3791fABgwCeCdNmiR79+6VHj16qK7QGX0VLVpU34Mm48aNCx/z6NGjqlGxYsUUyMuWLSvNmzcnFBr+OaP7VIAKUIFQUIBQaHiUAVkAsl27duljaSpWrChDhgxRoClevHg4BFrg1qZNG6lQoYJPUPjdd98pnMEAQJs3b1b4glnjHjx4UAEQkIRMX/z48eX06dMKooDM119/XT744AMBvFWvXl1/zpYtm0Jn4cKF5csvv5Q1a9YoiAK4cubMGR4RgGt01wIovaEQkFajRg3tB+/FjRtX3n77bf158ODBCn2tW7d+LPIjRoxQWEb209MAsn369FHghU2YMEFhGBlBaALYXrhwob6HTCOA09rfuGzZMs0w4nXLMH9v++mnn/Qxd3yiieEfRrpPBagAFTBcgXfKZpN2pTNq5c1uQyXQF+Ozj31RKYo2KHWiBJsxY0bNhAFUtmzZolkslJEtQwYLZU8AjXemEKXQY8eOhWcKP/zww8cObwCAAH/IpMHOnj2rmUSUnAGDKMki++dpKOvOnTtXkiZNqiVUlJYxLsZCqblZs2YKg1h8KPFOmTJFwRFZuUyZMmkmM7prAcPeUIg+rT2G1apV0z2HqVOnDnftlVde0TK5p6EdSr2AasuQvQRY79u3T1KmTKkvA4yRjYWu0OQ///mPZiJh8+fP16zomDFj9GfAIV5DltUyZHW9DSV8QuETfgh4ORWgAlSACjyxAlamMEGCBE/cl3cHYWFhPvVJKPRJpsgbIVOFfW2ZM2cW7I0D8KBMjFIuQA/ZOxj2EdapU0ezaIAgAB7KtzCAIswqH1ugZY0KAEKGzIIpTyi0ys3IDCZKlOgxRwGngMMUKVLo2Cgnv/TSSwpgv/32W3j5GRcBOkeNGqWvY06+XIuxvaEQ8InxYMiiAgLfeeedKFVGO+wBbNmyZXg7aImMK/Y+FixYUF/HXJAJRcbRWxMA4KFDh8LnFBEURuQE9xQ+4QeAl1MBKkAFqIAtCrB8bIuMge0E+9/KlSun+/YALQAZZKRQJsa+PQAPyrwooWJ/XKpUqbRUi7Iq9v3hQEqjRo20j9hAIQ5bYO8cStM4yIG/Bk6dOqX7GeEb9i0i44fbxyRLlkyzmci+YY8jDpWgbZYsWdQftBk6dKjuO/Tl2uigcNasWbJ48WLNmubKlUvOnDmj4Io09vLly7VcjT2IkydP1ownSs/wBWVp3PsQ+sFnlJABrR06dNC9j9CWUBjYdc/RqQAVoAJUwF4FCIX26hmw3pB5wyEHwJRlR44c0cweTgbDsD8Pe/1gyCACdACEgCScJkZmDCVmT9Cy+ooqU4g2gE1kGwFdMOzBQ+kYhozlU089FX4KGSd84Yu1ZxFAhoMuyGgCwACqAFRfro0OCnH4BJCJMS377LPPpEyZMlrKRrkap7Bv3rwpvXv3lrVr12ozZFMBiABTHEDZtm2bvl6vXj09QIL9m4TCgC13DkwFqAAVoAJ+UIBQ6AdRA9ElMlo4QOFZ/rT8wL43wBb2E3oboMfaL2eH3xgrXrx4kiRJkhh19+jRI7l+/bpmO/1hAF5kNNE/MpIwzB26WD/jNUAkbvWDQyeehswr5mWV4u30keVjO9VkX1SAClABKhBbBQiFsVXOJdfhEW/IYqHsi0MQKNPSzFKAUGhWvOgtFaACVCBYFSAUGh5ZnDzGyV6c/rUOQxg+pZBzn1AYciHnhKkAFaACrlSAUOjKsNCpUFKAUBhK0eZcqQAVoALuVYBQ6N7Y0LMQUYBQGCKB5jSpABWgAi5XgFDo8gDRveBXgFAY/DHmDKkAFaACJihAKDQhSvQxqBWwoPDMlZtBPU9OjgpQASpABdytQInn00jXis/rbdcCZXyiSaCU57iuUABQuH3/YVf4Qifcr8Dde/ckTMIkfvx47neWHgZcgbt370mcOGF6Sy0aFYhOATx2Nl3yhITC6ITi+1TAXwoACvEMaRoV8EUB3M8TTw3i7ad8UYttcH9W3Is1pveOpXKhqQDuNYz78Xrfq9dJNZgpdFJtjuU6BQiFrguJqx0iFLo6PK5zjlDoupC42iFCoavDQ+dCQQFCYShE2b45Egrt0zIUeiIUhkKU7ZsjodA+LdkTFYiVAoTCWMkWshcRCkM29LGaOKEwVrKF7EWEwpANPSfuFgUIhW6JhBl+3L59Wx1NlCiRGQ7Ty4AqQCgMqPzGDU4oNC5kdDjYFAAUVhu8ONimxfn4SYEEcePIkJq5CIV+0jfYuiUUBltE/TsfQqF/9WXvVCBaBXjz6mglYgMPBeoVzkwo5IrwWQFCoc9SsaGIEAq5DKhAgBUgFAY4AIYNTyg0LGABdpdQGOAAGDY8odCwgNHd4FOAUBh8MfXnjAiF/lQ3+PomFAZfTP05I0KhP9Vl31TABwUIhT6IxCbhChAKuRhiogChMCZqsS2hkGuACgRYAUJhgANg2PCEQsMCFmB3CYUBDoBhwxMKAxSwvXv3yv3796VkyZIB8iB4h/3kk0/kzTfflOTJk8uZM2fk2WefdfVkCYWuDo/rnCMUui4krnaIUOjq8LjOOUKhQyH597//LQ8ePJCMGTPqiJMmTRLcb6x79+6OeHDgwAEpVKiQI2MFehBA1rfffiupU6eWAgUKyM6dOyVt2rRy/PhxyZo1a0Cf6RiRNoTCQK8Ys8YnFJoVr0B7SygMdATMGp9Q6FC8xowZI/jyr1WrluNQeO3aNXnjjTdky5YtDs02sMNYUJgpUyb566+/JF26dOpQ3bp1ZeLEiYLX3WSEQjdFw/2+EArdHyM3eUgodFM03O8LodCBGH3++ecyaNAgSZo0qTz11FMKJt9884388ccfcvXqVdm3b5+ULl1a3nvvPcmdO7d6tHHjRhk9erScOnVKateuLQMGDNDrkXGcPHmyvg9LkiSJwub06dNlwYIF8tlnnykIvfLKK9K1a1dJliyZ1K9fX/tBGbVw4cLa78mTJ6Vfv36yf/9+KVKkiAwfPlz+/PNPmTNnjsycOVP7/vTTT2XdunWyZMkS/Rn/R7atb9++6s+GDRv09ddff1169uypbeHXhAkTwlXFGC+++KJmRW/cuCG7du3SzB38wJjZsmWTK1euKLDh2rhx4+q1H374oWpSpUoV6dixo5QoUULmz5+v5WCMh7mlTJlS2y5cuFCmTJki9+7dk4YNG+q/kSl8+umnpWrVqrJq1Srp06ePrF27VtKkSaOabd68WcLCwsL9RBbX0vDChQuqOXQCUA8bNkzWr1+v5ejGjRtLq1atJE6cOKoVfuHu2bNH51S+fHnVAe2Rma1cubJ069ZN0qdPH+UqIxQ68CEMoiEIhUEUTAemQih0QOQgGoJQ6EAwAUQdOnSQSpUqyWuvvaZQMnXqVIVDgBH2Fc6YMUPBaeTIkQpPBQsWVPjLkSOHQhgyfQ0aNAh/H7AFCAM8AUAAKd9//71CFUALEJonTx5p27atQieAE9AVL148LZ8CnjAuYAzwBzjt1auXghj6AwDVrFlTIRDjwI/27dtLqVKlpFGjRrJy5UrJlSuXJEyYUFq2bKl+Pf/88wpv3333nTzzzDMKTChZb9q0Sb766iud76hRoyR//vz677t378q0adPk4sWL2i/GsqAQY0EvzBu+nj17VoYMGSJZsmSRHj16yFtvvSV16tSRS5cu6ZgjRozQUjF0BQQCClEyzpcvn4Iv5o338V7mzJkVlj0NUNe5c2fp37+/+gwYBKCjzI/9nxjz/PnzquvYsWOlaNGi+h7mMW7cOMmbN69ef/ToUY1psWLFFJzLli0rzZs3JxQ68DkLlSEIhaESaXvmSSi0R8dQ6YVQ6FCkAWfIWnmWj5GtWrFihXoAIAL8HDx4ULOIgMSPPvpI31u9erVm2ABvaPP2229rtgxZwzJlyug1yCJaBqABhKH/2bNny7Fjx6RNmzaybds2bQIABNQA1uLHjy+nT5/WDNjhw4e13w8++EABr3r16vozILNJkyaa3fvyyy8VEC1DVhJAljNnTnn33XcVfl966SUFRfiA7B4yeQAowKKVdUTmElnAn376STOF0UEhxrb2X86bN0/BFXAGYP3iiy8Er8EswPSGwhQpUmhGFa9HVD7GHADLyEp6GsAYWUbrQBCyoIB3ZAQxpx07duj8YMg0Ll26NDyDumzZMs0w4nXLIgLE7du3S5UBi2TN4fMOrUYOY7ICdQtnlg9fzaZ/VNGoQHQKPHz4UKsinpWR6K7h+6GrgD/XCxI1vljYo0ePHvnS0OQ2EUEh4AyZKRgyYSg/njhxQsuPixcv1mwbDKVNlD1RHkYmDGVblDC3bt2qXwxWuRaZxTVr1ug1yIyhvApY8oZCwCD88YQ7XIOy8dy5cxUwUfJEhg3ghjIpMpPNmjXTMikymYMHD9YMGvxCuRWZu3bt2il0IWsIWAOIVqhQQUEWAOU5X4QcIImMI8q83lAI/zC2lSls0aKF/gzDNV9//bVmGeFHggQJFNJgWNDIYMYUCqtVq6al3ooVK4Yvs8uXL0vx4sU102qVqgHa48eP14wj5oS/qpDJhQGAAavYPwpDnPAawNwylOi9DRoRCk3+dDvrOzKFg2vk1HVPowLRKYDf16gk4Y9eGhWIToHr168rPyRKlCi6pjF+36oERndhyEKh5+ljTygEbPzwww+aGfQ2ZAdfffVVveUKgAXlXgQPMAJwQpYRp24BgwCniKAQYIfMHzKD3oHHYRTAITJrKM+if2T+AEy//fabAh+ymABC7N3DFxNKvSifAgoBsLgG8IpyN9qlSpVKAQp7KC1gQin25Zdf1mwmSrmYy48//hj+iwslYYCeBYXIQgKavaEQgPbzzz8rIMKw5xD7KSODQuiD8rG3AVyxBxAZTsswF5SQkd1EOR8GbZBZBYx6nyAHAB46dEg1igwKI/owcE9hdL8i+L6nAiwfcz3ERAGWj2OiFtuyfOzQGkD2D3+tYd8ezBsoPKEQ5WAcDpk1a5aWh5FhQ6BQxkWpEgcmsJcQpV+UQkHfyJ7hkAnKl9hn98477yhsAQqtfXe7d+/Wgy74JYG9bsjkNW3aVMsKKOdiDyJKzzh4gmwhyproA1lJZMsGDhyo5W+UUwGNmAuykHgN++kAhTCUdQFf2P8HcLTmi/sHIusI0MJePJSXAW/wH1lA9AHgxWvwDfsPo4NC+IiSNYAse/bsCqzoOyIoRDYQJWhAI2z58uWarQTQIsuKDCr2B8JvlKEzZMigwAsNMGfEAWN16dJFM6CEQoc+PBzmMQUIhVwQMVGAUBgTtdiWUOjQGkBWDvvVcEIWewUBaJFlCuES9snh9CtS/7BOnTopoKAUOXToUAVEBA99AIQANoA37NGDIeOFLB3KwTDsEwSEATIBQHgPmThk1mDYM2e1xeETwKN1Chlla1xvHSA5cuSIghH2E6IdMn647YsFhdZ+QQChVfIFQKEc/euvv2q5GWVn+AEAhcE3ZP1Qsn3uuee0pIxDOTgFjCxeZJlClKFxsANADKtRo4YCLODZ86AJIBbAjAwffEaZHTCLfZPQ9ubNm9K7d28FbqsfACIgGbBq7cesV6+eHiDBARtCoUMfHg5DKOQaiLUChMJYSxeSFxIKHQw7AAaQgXKqL2a1x2lllGkBW8icYS+htccN2TeULJEdg+EXALJ8yEp6GwATewUANJZhAeA1jBFTw7WALW+zDs3gcIxVnvYEKGhg+e99LfzHyeeYGvZWotwb3b4ZtMN/yP7BD/zfc5/DnTt3dF+idz+3bt1SnZCdtdtYPrZb0eDuj5nC4I6v3bMjFNqtaHD3Ryg0KL4oMSN7hpIwSpzY44fMF0qZKGsG2gBO2POIsjIycNi3aJnTT3AJtBYxGZ9QGBO12JZQyDUQEwUIhTFRi20JhYatAdyeBieTsecNB0BQfkUZ1NdTPf6cLnzD7Vdwghf3RfT0CWVvZOGwV5D2uAKEQq6ImChAKIyJWmxLKOQaiIkChMKYqMW2VMAPChAK/SBqEHdJKAzi4PphaoRCP4gaxF0SCoM4uJyaGQoQCs2Ik1u8JBS6JRJm+EEoNCNObvGSUOiWSNCPkFWAUBiyoY/VxAmFsZItZC8iFIZs6GM1cUJhrGTjRVTAPgUsKDxy7j/2dcqeglaBos+lliE1c/nliQNBK1oIT4xQGMLBj8XUCYWxEI2XUAE7FQAUbtp9yM4u2VcQK3D/3n3JlDIBoTCIY2zn1AiFdqoZ/H0RCoM/xpyhyxUAFOKZ1zQq4IsCeDYpnkKE+5HSqEB0ChAKo1OI73sqQCjkeqACAVaAUBjgABg2PKHQsIAF2F1CYYADYNjwhELDAkZ3g08BQmHwxdSfMyIU+lPd4OubUBh8MfXnjAiF/lSXfVMBHxQgFPogEpuEK0Ao5GKIiQKEwpioxbaEQq4BKhBgBQiFAQ6AYcMTCg0LWIDdJRQGOACGDU8oNCxgdDf4FAAUtpq0KvgmFkIz6lk1t2OzJRQ6JnVQDEQoDIowOjYJQqFjUnMgKhCxArx5tdkrAzeTHlO/gGOTIBQ6JnVQDEQoDIowOjYJQqFjUnMgKkAoDMY1QCgMxqgGz5wIhcETSydmQih0QmWOQQWiUICZQrOXB6HQ7PgFu/eEwmCPsL3zIxTaqyd7owIxVoBQGGPJXHUBodBV4aAzXgoQCrkkYqIAoTAmarEtFfCDAoRCP4jqYJeEQgfF5lAxVoBQGGPJQvoCQqGh4f/kk0/kzTfflOTJk0c6g/v378vff/8tGTJkkLNnz8quXbukbt26Rs74xx9/lMuXL0v58uWN9D8qpwmFZoeUUGh2/ILde0JhsEfY3vkRCu3V07HeABLffvutZMqUKdIxt2/fLoMGDZINGzbIzp07ZeTIkbJixQrHfLRzoDlz5sjPP/8sw4YNi7Lbf//73/LgwQPJmDGjncP7tS9CoV/l9XvnhEK/S8wBnkABQuETiBeClxIKDQ26L1AIOLpy5YqkTZs2ZKBwzJgxAm1q1aplTGQJhcaEKkJHCYVmxy/YvScUBnuE7Z0fodBePf3W28KFC2XKlCly7949adiwof7byhQuWLBAPvvsM/nrr7/klVdeka5du2oG8cCBAzJz5kyZNm1aOBROmDBBWrduLStXrpTEiROrv19++aXs379fqlatKqtXr5bRo0eHz6NatWqCUjUyb4sXL5ZFixbJr7/+KkWKFJHevXtL9uzZJbLxJ0+eLKlTp5ZGjRppf7iub9++grncvXtXS9kNGjQQtIM1btxY2rVrJ2FhYTqXPn36yNatW6VgwYIKejBkCi9cuCAffvih7N69W8vnbdq0kX/961/y+eefa2Y0adKk8tRTT8nEiRPlhRde0PnPmzdPr2/atKm0bdv2H3ECQE+fPl3ngv5r166tOly7dk3HXL9+vY4FH1u1aiVx4sQRZC/xC3fPnj2qL0rbPXv21PbQvnLlytKtWzdJnz59lOuCUOi3j40jHRMKHZGZg8RSAUJhLIUL0csIhQYE/tKlS1KiRAkZMWKEFChQQKZOnSqrVq0Kh8Lvv/9e4saNK9myZVMoypMnj8KVZ8nY8981a9ZUkKpRo4bOvn79+vLWW28pTH3xxRcyd+7ccFUALJs3b5Z48eJJuXLldNw0adLI4cOHpWTJkgqWkY0/ePBgzVJaEHb8+HFp1qyZ7m28c+eO5MuXT/vs0qWL/PHHHwqZ8+fPV/8BVidPnpRevXrJL7/8Iv369ZPq1avr67du3ZI1a9bo+KdPn5YmTZoI9hwCJjt06CCVKlWS1157TZIkSaLABhAdO3asYI8lgG7p0qUKs54GfTp37iz9+/eXQoUKKQzmzp1bJk2aJHv37pUePXrI+fPnVV/0VbRoUX0P4Dlu3DjJmzevXn/06FEZPny4FCtWTAYMGCBly5aV5s2bEwoN+JzF1kVCYWyV43VOKEAodELl4BmDUGhALNetW6ewZmW7Ll68KKVKlfrHnkKAzFdffaUQN3v27EihEP0gA4csIg6gIMOFTCHAKDIoTJUqlRQuXFhBBxm+RIkS/UM57/F9gUJkOMuUKaN9de/eXTN7LVq0kCpVqsiQIUMUrmCAsdu3bz+2pxDZRhykQbZx/Pjx6h8AFBlPq3yMfZQA5rffflv7gU+APmRLPQ3ADcDt2LHjY68DoJGxBIDCkGmFH8gIAgp37NihmU8YMo0ATuzhhC1btkwzjHjdMmQOvQ1Z2yoDFsmaw+cNWI100VuBuoUzy8Bq2TWL74Qhqw3DuqZRgegU4HqJTiG+76kAkidIsPjj9wsqh75Y2KNHjx750jBU2wBkEiRIoCACe/jwoeTKlSscClF+ReYMhoxeypQpFSAjyxRinyFgCxk+XHfo0CHNdgFgIoPCLFmyKDgiU4cyMLJiKKWijBrZ+N5QiCxay5YtH8sUwoenn35afQfIIis3cOBAhbB9+/bpXGAA2FOnTun4x44dUyD74YcfJGfOnDpPZBiRvfOGQpS/MV/PxYgSOwDU09AOwFaxYsXwl3HauXjx4o/5AeAGgCJjCh/wVxUykTD4gLIx9jXCAId4DfOyDFp7W7169QiFBn+4kSkc8UZe/Vw6YciU45d2RH+YOTE+xzBLgZs3b+oXfMKECc1ynN4GRAGsF3AEmMNu87VPQmE0ygNCcPIWe+NgZ86c0b2D2FOI07bIrH3zzTcKPoDBr7/+OkooRB/IiCHbiH2C7733nmYLN27cKDNmzJAlS5boOCjpohQLEAIUWoZTzSjTooyNL6bIxgfAoYTbqVMnvRSZs1GjRj0GhQAnlL1hH3zwgZaVkY3Mnz+/npRGWRaG0jK+CNEnysWARpTA8fcEMoSAxoigEPsvodU777wTpcpohz2AgFbL8Bc2SsjQA/saYRgHJWsAL6AQWUMLMAGAgD5kJ2ERQWFETnBPod2/epztj+VjZ/XmaDFTgOXjmOkV6q1ZPjZgBVgQBujAXjiAG/ayAQqRTUMJFmVL7D0E/CRLlixaKESfgBcAJrJz8ePH18MdpUuXlu+++05QLkbZEwdaAIXYG4iMGw6wICOCcuwbb7yhUBjZ+IBTQBRAFX99INN55MiRx6AQ/SBDd+7cOT0EgjboFyVq7J8EcOHgB/Y8Au6GDh0qL7/8smYTsR8RoInyrpUpBDQie4m9iLBZs2Yp+EIvZFcxX/icLl06Wb58uWYaAZ7Idm7atEkzpgBglOhxf8f27durnhjj6tWrCsPYA1mhQgVCoQGfHSdcJBQ6oTLHiK0ChMLYKhea1xEKDYg7smE4vAD4guGACGB7PGbHAAAgAElEQVQQe9kAbzg88dNPP+l7yHQB8nBYJLLyMdohCwYAxJ45q/yJ1wGKOIELA4ShLwAXyg/YuwfD3imUn9EWgBjZ+NevX9csIfYv4hALbraNPY+eB03q1KmjYAfDvwF9SF3jUAoOywDicK11KAb7DK2MI7J0yA5iLmiLE9E4AIMsKHz86KOPFCzRpzUnjGPtY8S+RRxegY+AVmQj165dG64xABH7JFEq37Ztm76OUi8ymSjFMFNowIfHARcJhQ6IzCFirQChMNbSheSFhEKDwo6DFQAg61Yynq7jgw94QpbMF0NfADvAI0q1noaNpoAq73EAp9hnBxD13oQa1fiAQ/TleY11+hj7FAFY6DuywyspUqTQ0rGnQQf0gfK0t6EvwBz8tAzt4SNuK2P5gTbIAnr7BdD1njv2cQFWkVG121g+tltRZ/sjFDqrN0eLmQKEwpjpFeqtCYUhtgKsR9+hrIuSrbVP0WkZPKEQ0BfKRig0O/qEQrPjF+zeEwqDPcL2zo9QaK+eru8NJ4exL+6ll17Ssin21gXCkKnErWNQTka2LpSNUGh29AmFZscv2L0nFAZ7hO2dH6HQXj3ZGxWIsQKEwhhL5qoLCIWuCged8VKAUMglERMFCIUxUYttqYAfFCAU+kFUB7skFDooNoeKsQKEwhhLFtIXEApDOvycvBsUIBS6IQqx94FQGHvteKX/FSAU+l/jYBqBUBhM0eRcjFTAgsIdv/5tpP+h7nSlF9LLmPoFHJMBp/lxGh93G6BRgegUIBRGpxDf91SAUMj1QAUCrACgcN2OHwLsBYd/EgVypHPusBSh8EkiFXrXEgpDL+ZPMmNC4ZOox2upgA0KAApPnDhhQ0/sIhQUIBSGQpTtmyOh0D4tQ6EnQmEoRJlzdLUChEJXh8d1zhEKXRcSVztEKHR1eFznHKHQdSGhQ6GmAKEw1CL+ZPMlFD6ZfqF2NaEw1CL+ZPMlFD6ZfryaCjyxAoTCJ5YwpDogFIZUuJ94soTCJ5YwpDogFIZUuDlZNypAKHRjVNzrE6HQvbFxo2eEQjdGxb0+EQrdGxt6FiIKAAo/+HxTiMw2OKfZuERWxyZGKHRM6qAYiFAYFGF0bBKEQsek5kBUIGIFePNqs1cGb15tdvyC3XtCYbBH2N75EQrt1ZO9UYEYK0AojLFkrrqAUOiqcNAZLwUIhVwSMVGAUBgTtdiWCvhBAUKhH0R1sEtCoYNic6gYK0AojLFkIX0BoTCkw8/Ju0EBQqEbohB7HwiFsdeOV/pfAUKh/zUOphEIhcEUTc7FSAUIhUaGLdxpQqHZ8Qt27wmFwR5he+dHKLRXT/YWQwXOnj0ru3btkrp168boyuiu++uvvyR16tQSP358WblypRQsWFCyZs362L9jNKAfGxMK/SiuA10TCh0QmUPEWgFCYaylC8kLCYUhGfbATfrOnTty8uRJyZs3rzqxc+dOGTlypKxYsSJGTkV3HSCzTZs2UqVKFWnYsKG8++67Ur58+cf+HaMB/diYUOhHcR3omlDogMgcItYKEApjLV1IXkgoDMmwB27SW7dulfXr18uwYcP8CoWXLl2SVKlSSdy4cQmFgQt3SIxMKAyJMBs7SUKhsaELiOOEwoDIHpqD7t+/X1q2bCk3btyQZ599Vlq3bi3PPfecAmLRokVl2bJlki9fPmnWrJlUqlRJRUJWsV+/foJrixQpIsOHD9drkCmM6rqOHTvKW2+9JSVKlPAJCh88eCDTp0+XBQsWyIULF6R27doyevRouXbtmo4DkE2ePLk0btxYWrVqJXHixJE5c+YIfuHu2bNH/UEmsmfPntr+wIEDUrlyZenWrZukT58+yoAzU2j254FQaHb8gt17QmGwR9je+REK7dWTvUWhwP379+WTTz5R0Pvggw8kYcKECntNmjSR5s2bS6NGjWTv3r0yZswYhaywsDAFupIlS+qew08//VSuXr0qY8eO1fejuy6ikrFnKdnTVfTXuXNn6d+/vxQqVEhhMHfu3DJp0iT1qUePHnL+/HkZNGiQjg+IxXsTJ06UcePGaTkc1x89elTBtVixYjJgwAApW7aszi0qIxSa/bEhFJodv2D3nlAY7BG2d36EQnv1ZG/RKDB37lw5fvz4Y+VjwN2+ffskZcqUgoxd4cKFZenSpZImTRqFr02bNumBkdOnT2um7vDhw/LDDz8oFEZ0Xfbs2SPNDkYGhSNGjJDEiRMLMoyeVrNmTenTp4+CKWzChAly+/ZtzQgCCnfs2CELFy7U95BphN8bNmzQn5H5RIYRr1sGYPQ2wG6VAYtkzeHzXD8GKgAoHPTa/8i9e/cc8R5/XMHixYvnyHgcxGwFsF7wBza20tCoQHQK4PcYKmH+WC/4jvfFwh49evTIl4ZsY74CEUHhhx9+GA5SmCGyawCpc+fOSdu2bSVHjhyPTXzmzJly5swZiey6PHnyxBgKq1WrpqXeihUrho91+fJlKV68eDh44o3NmzfL+PHjZdWqVQqF+Kuqb9++es38+fO1bIxMJwxwiNdmz54d3ueWLVv+EUQ9EEMoNHZxAwqH1XpBHj586Mgc8EcJvuSRaadRgegUuHXrln7Jc71EpxTfhwJYLwDCBAkS2C5IokSJfOqTUOiTTMHRKCIo9D59bEEhSrjIBiIz6L2YIjp9bF0XGyhEBhF7ALHn0TJkLVFCXrJkid7SBgYgRcZy8ODBCoX4gu7evXs4FB46dEhPU0cGhRFFkeVjs9c2y8dmxy/YvWf5ONgjbO/8WD62V0/2Fo0CGzdulClTpmiZFX+NRAV3OIwC0EMmrWnTppodOXXqlAD67IDC5cuXS86cOXU/4OTJk7VMjf2BWbJkkYsXL0qGDBmkffv2kixZMi0hYz9jhw4dpEuXLlKhQgVCIVe7KkAo5EJwswKEQjdHx32+EQrdF5Og9ggnj3G6GOVfnOIFkEWWKQT84ZAH9u+hPQx7+5BttAMKcQ/D6tWrS6dOneTmzZvSu3dvWbt2rY5To0YNBURkK3GAZNu2bf8FgHr19AAJSjHMFAb1UvV5coRCn6ViwwAoQCgMgOgGD0koNDh4JrsO2EIGztfNrFio2FifJEkS26YdkQ+4uTb2huHQiadhnwXGx4EXu43lY7sVdbY/QqGzenO0mClAKIyZXqHemlAY6iuA8w+4AoTCgIfgiRwgFD6RfLzYzwoQCv0scJB1TygMsoByOuYpQCg0L2aeHhMKzY5fsHtPKAz2CNs7P0KhvXqyNyoQYwUIhTGWzFUXEApdFQ4646UAoZBLIiYKEApjohbbUgE/KEAo9IOoDnZJKHRQbA4VYwUIhTGWLKQvIBSGdPg5eTcoQCh0QxRi7wOhMPba8Ur/K0Ao9L/GwTQCoTCYosm5GKmABYXrjlww0v9Qd7pOoUwypn4Bx2S4fv263rMzadKkjo3JgcxVgFBobuwC4TmhMBCqc0wq4KEAoHDt9gPUxGAF/id9cse8JxQ6JnVQDEQoDIowOjYJQqFjUnMgKhCxAoDCEydOUB4q4JMChEKfZGKj/68AoZBLISYKGAuFeAxZo0aN9HFpyZM791d6TMRlWyrgiwKEQl9UYhtLAUIh10JMFCAUxkQttjUWCs+dOyflypWTffv2ScqUKRlJKmCsAoRCY0MXEMcJhQGR3dhBCYXGhi4gjhMKAyI7B6UC/6cAoZCrISYKEApjohbbEgq5BmKiAKEwJmqxLRXwgwKEQj+IGsRdEgqDOLh+mBqh0A+iBnGXroTCe/fuyZIlS6KU/cqVKzJ+/HiWj4N4cYbK1ACFk1dsC5XpOjLPV/NmcGScQAxCKAyE6uaOSSg0N3aB8NyVUIhfeq+//rpPeqxcuZIHTXxSio3cqgBvXm1vZGq/lEnGNyhob6cu6o1Q6KJgGOAKodCAILnIRVdCoYv0oStUwO8KEArtlZhQaK+e7M1sBQiFZsfPae9dD4VwEHfujxs37mPa3LhxQ6ZOnSrt2rXjnf2dXjUcz1YFCIW2yimEQnv1ZG9mK0AoNDt+TnvvWij8448/pGPHjnL06FGFvlatWkmHDh1Un3Xr1snAgQPl9u3bsmPHDkKh06uG49mqAKHQVjkJhfbKyd4MV4BQaHgAHXbftVDYtm1b+fnnn6V169Zy9epVmT59unTu3Fm++eYbBcG33npLoTFNmjQOS8bhqIC9ChAK7dWTmUJ79WRvZitAKDQ7fk5771ooxBfluHHjpEaNGqrJxIkTZdKkSVK4cGH54IMPJE+ePE5r5Zrx9u7dK/fv35eSJUu6xie7HcEBooIFC0rWrFnlr7/+ktSpU0v8+PHtHsYV/REK7Q0DodBePdmb2QoQCs2On9PeuxIKcbrupZdeko0bN8pzzz2nmuzcuVOQPfzhhx8kLCzMaZ1cNR7gGKXz7t27u8ovO51p2LChvPvuu1K+fHmpW7eutGnTRqpUqWLnEK7pi1BobygIhfbqyd7MVoBQaHb8nPbelVB47do1KVKkiHz//ffy9NNPqyY//vijNGnSRA4ePOi0Rq4bL9Sg8NKlS5IqVap/HDZyXWBi6RChMJbCRXIZodBePdmb2QoQCs2On9PeuxoKIQYOmcBw2tjzZ0uo7777TlKkSOG0bn4fD2A8bNgwWb9+vd6HsXHjxnrYJk6cOFpGP3XqlFy+fFkh+YUXXtC22bJlk0ePHsno0aPl66+/lps3b2qJeeTIkZIgQQLNvOI9XFu7dm0ZMGCA6jtnzhxJnDix7Nq1S1atWiVVq1aVEiVKSKNGjXSed+/elVq1amkJP3369Hrdli1bJF26dNK3b199BjXaIKPXtWtXGTRokAB0sA9006ZN8tFHH8nJkyfVFxwQgp9WnwB9nCJHabhevXp6mhzmmSnE3lHsIYVP8BVr4cCBA7J161apVKmS7i3NnTu3XhfZHD0DhmsXLVqkc1+2bJle26JFi/BMJHzt16+f7N+/X/84GT58uPz555869syZM7WrTz/9VA88WTdZx/+PHz+u/qM95g19oFv79u2jXC+EQns/ToRCe/Vkb2YrQCg0O35Oe+9KKMR+OUCNL/bqq68G5V4zgB/2Dvbo0UPOnz+voDV27FgpWrSoQiEAbcSIEVpmB3yh5D5lyhTNrgJKPvnkE7l165b8/vvvCm0AKezRmzx5suTIkUNh7o033pAGDRqE9wfoBIwdOnRI4QeACPv22291/M2bN+v1x44dU78ATWPGjNGDP4hZvnz5JG/evHogCP8GaBYoUEBBEEA3e/Zs+e2332TevHly584dbVO6dGnp1q2bXl+/fn2FKewj9IRCz39bc8ccAZkzZszQUjrAN6o5eq4lbEUAjDZv3lzBFzpjHngdWxMwHvoG5AL+cNCpV69e6iuAEpBes2ZNhUCAIfQE+JUqVUouXryosN6lSxc5d+6c4Ok80CAqIxT68kn3vQ2h0Het2DL4FSAUBn+M7ZyhK6HQzgma2hego0+fPuGHSSZMmKDw07NnT4U4AAkgEIYsVoUKFeSnn36SPXv2KJCMGjVKypYtG77/Eqe2AVDI2sFWr16tmUFAD/pbvny5Zv9ggMn8+fNrlvL555/XvYvI7iELBr/ef/99hT9Y9erVFfaQrQTkeR4OAkQCLhcuXKhtkbkEIAHCAIxoP2vWLIVWGMDq5ZdfVlCNCgrR74oVK/Qa6IC2yJhGNceIoHDfvn2SMmVKefDggR5gWrp0qZ5mB3gDTpG9PH36tGZpDx8+rE/ZwSEnaIJ542foAsDE9V9++aWsWbNG4RIQnTNnzn8sPwC8twFIqwxYJGsOnzd1ubrK79oFM8nwWrn0D41gNPyhAQvWg1fBGLNAzglVGVSY4sWLF0g3OLYhCvhzvSCh4ouFPULN08tQPo3IsLh97diXwd3YBpmm4sWLP/ZcZ4AQnvWM7B0gDtmr/v37h7uPbBNO7OJUNgAPWUUADiCmUKFCWl5evHixPPPMM3oNQAjvL1iwIML+evfuLc8++6xm0wCIgCSU6YsVK6YgZN1MHP2gZIwDIYA8AFHatGl1DIwJA9xaBqgEtCKr5t0e7VDKBWRFBYWecz979qyOfeLEiSjn6A2FH374oWzYsCH8ZQA0gA3ZPRxoQvbP0wC3c+fO1ZIzSujIkuLgC0rKKDU3a9ZM544P1LRp0xTYAY7IqGbKlCm8K4Cjt0FrQqF9n0RA4cg3XtA1HoyGLDsy2tgSQqMC0SnA9RKdQnzfUwEkn/D97o8/OpMkSeKT2P+AQuugSWRX44sZsIIv72D8xYgvM8AR9qmh5AsDlCBrNXjwYIU43NwbGSYYSpaALIBjlixZ9DVkE7BvDqVblDyRzcPJbWQGvS2igysAHIATsoTIMMIXLJYXX3xR+wVoeppVDgYsWXs8Mdb27dvDx4RPgFbsBQSQAgo92/sKhZ4nrz2hEPOIbI7eUIhys5VtxHsWFGLtAUqRGUyUKNFjc0QmFXHA/OrUqaPlZJTvUf5GWRx9WgZwRbYWr1uZ0sjWM8vHPv2e8LkRy8c+S8WGIaAAy8chEGQbp+jK8jGg6MiRIxFOE/vGkOHBFzr2gwXrbVlQSk2WLJlm2QAYeJoLMmwoEwN+sGcQWSqUbQFtADXs/QMgApqRTQXgoDSLwxeAJ+zZQ7m2TJky2ieCj6xfRFCIGAB6kOXCdcjcwbDvELSP7BjADhk63DYImQtvyEMMsW9x/vz5CreAI2Qrke2MCCKfFApRQo5sjoBP3O+wWrVqmtGLDAqRHQUg4hY4TZs21XnhYA5g1vpjBfoCdhEf6IEyNOAbh0rQFmCOv7TQZujQobrvMCojFNr4G02ETzSxV072ZrgChELDA+iw+66EQl80AGCgfIrH4AVjthAAggMb27ZtUzlwMhenfhMmTKgQB8ABBF64cEHhDAdAcFLWOhRiZQuR9cJTYWBffPGFnj62TnJ36tRJ9/FFdosbZCJRUsU+Rdw8GobyKg5dAKxgGBuQh+yZNxTifZzuRcYMt5XJkCGDZjdRGvcHFEY1R2RYcVsjZDyjgkLAH/Y8Yu/mmTNndI44dILSMQyHT5566qnwU8gov6NEj1PwKM0jDjhIg9Q7oBFaWXsmI1vXhEJfPvG+t2Gm0Het2DL4FSAUBn+M7ZyhsVBolUyRNUS2K1gNhz6wQTiy+j7gEYclvA2BjehWPdi+iWuQ7XsSmIZf2D+HMXy5mXhkfvojbhHNERCK8jVAzVeDhtDe130QVr8YH6fBfd37Sij0NSK+tSMU+qYTW4WGAoTC0IizXbM0Fgqt0iT2p2XMmNEuPdgPFXBcAUKhvZITCu3Vk72ZrQCh0Oz4Oe29kVCIDBX2auG0LQ5R4EQyjQqYqgCh0N7IEQrt1ZO9ma0AodDs+DntvSuhEKdLcUuViAwLHBv3sS8Oe+Hw9A0aFTBZAUKhvdEjFNqrJ3szWwFCodnxc9p7V0Ih9qvhEEREhj1eOO362muv6YlQGhUwXQFCob0RJBTaqyd7M1sBQqHZ8XPae1dCodMicDwqEEgFCIX2qk8otFdP9ma2AoRCs+PntPeEQqcV53hUwEsBQqG9S4JQaK+e7M1sBQiFZsfPae8JhU4rzvGoQARQuGDTHupiowJFsv73vprBaLjdEW4DhZuo06hAdAoQCqNTiO97KkAo5HqgAgFWAJlCPBmGRgV8UYBQ6ItKbGMpQCjkWoiJAoTCmKjFtlTADwoQCv0gahB3SSgM4uD6YWqEQj+IGsRdGgGFeNzY559/LidPnpTq1avrI9+QWfn555+lRo0aQRweTi0UFCAUhkKU7ZsjodA+LUOhJ0JhKETZvjm6HgrxC7BMmTKSKFEifdxY7dq15f3339fn07799tty6NChGD+GzD752BMVeHIFCIVPrmEo9UAoDKVoP/lcCYVPrmEo9eB6KPz0008FzzdesGCBTJw4UTdYAwrxi/Gll16S9evXy/PPPx9KMeNcg0wBQmGQBdTP0yEU+lngIOueUBhkAfXzdFwPhV26dJHMmTML/j9hwoRwKPzjjz+kUqVKsmnTJsmaNaufZWL3VMB/CgAKefrYXn15+thePdmbuQoQCs2NXSA8dz0UIlP42WefyYoVK2TevHkKhe+8846MGjVKli1bJvv375e4ceMGQjuOSQVsUYD3KbRFxvBOeJ9Ce/Vkb2YrQCg0O35Oe+96KMQj79566y05evSo3pcLewsvXbqkOvHZx04vF47nDwUIhfaqSii0V0/2ZrYChEKz4+e0966HQghy//59Wb16tfz4449y9epVyZIli546zpEjh9N6cTwqYLsChEJ7JSUU2qsnezNbAUKh2fFz2nsjoNBpUTgeFXBSAUKhvWoTCu3Vk72ZrQCh0Oz4Oe2966EQ2cE9e/ZIq1atVJtdu3bJRx99JE899ZR07NhR8uTJ47RmHI8K2KoAodBWOYVQaK+e7M1sBQiFZsfPae9dD4WffPKJ3osQt6PB/sKSJUtKuXLlJGXKlFpOxgEUmlkKIG6XL1+W8uXLR+n4gwcPZNasWdKsWTNJmDCh4Cbmzz77rFmT9cFbQqEPIsWgCaEwBmKxadArQCgM+hDbOkHXQ2H37t0lV65cmilcunSpDB48WHbu3KknjvPmzas3sU6VKpWtooRiZ//+978FEJYxY0a/T3/OnDn6NJphw4ZFOdadO3ckX758esI8Xrx4UqBAAY192rRp/e6jkwMQCu1Vm1Bor57szWwFCIVmx89p710PhdOmTZMrV65Iz5499XBJnTp1pHXr1qpTwYIFZdWqVUGZPXJ6IYwZM0YAJ7Vq1fL70LGBwhQpUshff/0l6dKl87t/Tg9AKLRXcUKhvXqyN7MVIBSaHT+nvXc9FB4+fFhBEGVDlBy3bt2qpWPcvBoA88MPP+i9C2mxVwDPlR40aJDe8gd7NVGqR3YuceLEuocT4P3ll19KtmzZZMCAAbJlyxaFs759+2op/+7duxqLJk2ayNSpUyV+/Pj6fOp27dqpU4C5Pn36aOwA8oAgmJUpxA3IsU8Uz7bG9oCBAwfqWJ6ZQtyKqGrVquoLssPwF3bv3j0db/HixZpB3Lhxo4wePVpOnTqlj0SEv5gX9p++8cYb8vHHH+vcjh8//tj9LZElnT59uj4558KFC3ot+rl27Zr6iSfnJE+eXBo3bqxZ6zhx4gjgFr9wsecVGUyUw/HHC9ofOHBAKleuLN26dZP06dNHGRxCYezXbkRXEgrt1ZO9ma0AodDs+DntveuhEIL8+eefCiIAEOvpJfhS/+mnn/SLnvZkCty+fVs6dOigT4h57bXX9FnSgDvAIQCoYcOGWlYGUB07dkx69OihYIXs4o4dO/SWQSjzli5dWiEIP9evXz/8aTOAJABfr1695JdffpF+/fpJ9erVFZ5u3rypZWGAYIkSJWT27Nny22+/6Y3KPaEQewqtUjIgD9fB0P7bb79VKMQ8AJ2TJ0/W2xUBWrE+GjRooHPAmoEPWEfPPPPMY6IB6jp37iz9+/eXQoUKKQzmzp1b74UJCMWcz58/rzA6duxYKVq0qL4HjcaNG6dbGXA97qc5fPhwKVasmAJp2bJlpXnz5oTCJ1uiMbqaUBgjudg4yBUgFAZ5gG2enhFQaPOc2V0ECrRt21YzcVb5GMCzfPlyhXHLatasqc+dBgDBAHaAshdeeEGBDYdCAFyw9u3by8svv6xAVqVKFRkyZIiCEgxgBYADFG7evFlmzpwpCxcu1PcsSASIIVNpgaAnFKKUDPv99981o4csJiDwm2++kRkzZmjWEYZ7WyLTiafiAApz5swZnmH0lmDEiBE6HjKKnoY5I8uJDCYMj1qE78gIQiNAseU7Mo3Y94pndcPwxB1kGPG6ZfDV23r37i1VBiySNYfPc23aoEDtgplk5Bsv6B7ZYDT8sYTqSIIECYJxepyTzQpwvdgsaJB3h+83nNlABc5uQ8LJFwt79OjRo8gaIuuEL9Z169ZppsbbUMJLliyZL+OwTRQKRASFuFE4Mmcw7OsE1KGsaz1WEF+6Xbt21bIp4M3zEAhACpk2gCOAat++fVr2hwECUd4FFFolZLS3DCCGZ12XKlUqUijE2I0aNdLspnW7IvSFjKGVBUSbNGnSaEkYUNiiRQsF1IisWrVqmuWsWLFi+NvYrlC8ePHHfAfEjh8/XsvYgEL8VYWMJGz+/PlaNkYGFQY4xGsAZ8s8AdF6De0JhfZ9PAGFw2vl0ox1MBq2TMD88Us7GPUK9Tlhew+2u+CwHo0KRKeAP9cLtmD5YlFC4fbt27X8hozT6dOnBVkiLHBAYqdOneTdd9/ls499UTmaNhFBIf5iwOlvGP794osvyqJFi7S86mmeZV4ri2dBIcrI+fPn11sHWRlGZMaQ6QDEIYuHGOP/MHzh4d6T2H8IoIssU4h9kOgTEGhBKiANe0ytvjx9BBRirUR2Gxy8jz2ALVu2DL8MUAmwXbJkiZalYQBarEOcgsd4nhoBAHH7pJEjR0YKhRGFgXsKbVjAHl2wfGyvnuzNbAVYPjY7fk577/rysWcmCV/CIE3ctw77yLA/DOU7CwqcFi+YxoPOgG1oCvMGHryGjBzSv9gTCGA7ceKEPPfccwp4Frx5QyEOn9StW1f3DQIwcYgDz7J+5ZVXFAqPHDmi+/4AVAAvlGIBesjERbanEFlLlLlRqs2ePXt4GA4ePKh7GVHGLlOmjD4SEQsc2c2IoBDlcZSUAavYh4gDL9gfiMcoXrx4UTJkyKBlcGSiAbnoD3svkcWsUKECodClHwBCoUsDQ7cCogChMCCyGzuo66Hwgw8+UBAEUAAYcMABp0KtjBK+yK3DJ8ZGwQWO45Q39tNBV+zJ271792NZMLh47tw5hUaUiWEAQ8AbQDAqKMQBD5xExs2ncUgEtxaCYZ8hDHvvRo0aJZcuXVIQQzkVZdvIoBAlWOwdRFvLUKIFIH7xxRe6Pm7cuKFvIZsMsIsIClFKRnkbbbCXERnMtY/CMqAAACAASURBVGvX6nXwEYCIAyc4QLJt2zZ9HaeqcYAEexyZKXTBwo3ABUKhO+NCrwKjAKEwMLqbOqrroRAgiH2DKBdjvxb2hSEThLIdysp4zdc6talBcspvbO0EBEV3M3A8WQb7DgCDMbkdEPqO6hq8b+07fJI5W/NAVjOqzfgYD1lAz0wzQPThw4d66MTTMGfsyfHHPi6Wj58k2v+8llBor57szWwFCIVmx89p710PhfjiRtYKWR182QMEUTKGIfuDvV00KmCyAoRCe6NHKLRXT/ZmtgKEQrPj57T3rodCb0GQocJmftyoGHvFaFTAdAUIhfZGkFBor57szWwFCIVmx89p710NhcgMwkGrpIiyHg4T4GkmhQsX1gMBNCpgugKEQnsjSCi0V0/2ZrYChEKz4+e0966FQpxKxWlXHD7ALU3wDOShQ4eGHwSAUDixiidL0KiAyQoQCu2NHqHQXj3Zm9kKEArNjp/T3rsWCnErE9wWpE2bNnofu7///lvvD4dHjKVOnVpvZ4LTr9Yta5wWjuNRAbsUIBTapeR/+yEU2qsnezNbAUKh2fFz2nvXQiG+KPGsXTxhwrpxcuvWrfUZtLDvv/9eb3OCW9TwPoVOLxuOZ6cChEI71SQU2qsmezNdAUKh6RF01n9XQqH1/Fs8yzZz5syqCB59hqyhdY8767Frno9Pc1Y6jkYF7FEAUDh5xX/vg0izR4FX8/7fPSzt6dE9vVy/fl1vBYV7ftKoQHQKEAqjU4jveyrgSijEbWiKFCkie/bs0VIxzPvZtXAch00IhVzQpisAKMTTYWhUwBcFCIW+qMQ2lgKEQq6FmCjgaijEo9Dw5AjYd999p0+syJQpk/6Mmwxv2bKFUBiTaLOtKxUgFLoyLK51ilDo2tC40jFCoSvD4lqnXAmFeHrE8OHDfRINjybzfvqETxeyERVwiQKEQpcEwhA3CIWGBMolbhIKXRIIQ9xwJRQaoh3dpAK2KEAotEXGkOmEUBgyobZlooRCW2QMmU4IhSETak7UrQoQCt0aGXf6RSh0Z1zc6hWh0K2RcadfhEJ3xoVehZACgMK12w+E0Iz9P9X/SZ/c/4MEaARCYYCEN3RYQqGhgQuQ24TCAAnPYamApYB1n8J1Ry5QFBsUeL1gRhnfoKANPbmzC0KhO+PiVq8IhW6NjDv9IhS6My70KoQU4M2r7Q02n2hir57szWwFCIVmx89p7wmFTivO8aiAlwKEQnuXBKHQXj3Zm9kKEArNjp/T3hMKnVac41EBQqFf1wCh0K/ysnPDFCAUGhawALtLKAxwADg8FWCm0N41QCi0V0/2ZrYChEKz4+e094RCpxUP4Hh79+6V+/fvS8mSJSP04syZM/Lss88G0MPQHJpQaG/cCYX26snezFaAUGh2/Jz2nlDotOIBHG/SpEly+/Zt6d69+z+8uHnzphQoUEB27twpadOmjbWXBw4ckEKFCsX6en9eePz4ccmaNavrnoBDKLQ36oRCe/Vkb2YrQCg0O35Oe08odFrxAI4XFRTCrb/++kvSpUsXaw+vXbsmb7zxhj6T2o1Wt25dmThxYvjzs93iI6HQ3kgQCu3Vk72ZrQCh0Oz4Oe09odBpxaMZ7+rVq1KnTh1ZsWKFpEiRQvbt2yc9evSQzz//XGEG2a5evXrp+wsWLJDPPvtMYe6VV16Rrl27aptLly7ps6M3bdqkkFerVi1p3769AAr/+OMPwRjot3Tp0vLee+9J7ty55e7du1K1alVZtWqVxI8fX69p0qSJTJ06VX+uV6+etGvXTr0/ePCgTJ8+XbOKyZMnD2+/Zs0aOXXqlJagCxcuLKNHj5aTJ0/KgAEDZPfu3ZIjRw7p2bOnlC9fXvvp2LGjlChRQubPny8oXb/++us6h5QpUwoyjosWLZIECRKoT5gH5o15wqLqd/HixXrtr7/+KkWKFBE8HxswuHbtWkmTJo0kSZJENm/eLGFhYeHRePDggc4Jml64cEFq166t/gN0hw0bJuvXr9e5Nm7cWFq1aiVx4sSROXPmCH7h7tmzR7XAvDA/tIf/lStXlm7dukn69OmjjDqh0N4PIaHQXj3Zm9kKEArNjp/T3hMKnVbch/GqVKki/fr1k5dffllGjBghn3zyiQwePFgaNmyocIi9gYCc77//XuLGjSvZsmWTQYMGSZ48eRTcxo8fL5cvX5YuXbrIuXPn5N69e1oaBhTiOgAj9hXOmDFDy8kjR46UO3fuSL58+WT//v2SMGFC/TegEVCDfYj169dXyET5FcDUtGlTee211xSArly5omMCNAGZGzdulHjx4mmZFj7DL8DUjh07ZODAgfLjjz+Gv3f27FkZMmSIZMmSReH3rbfeUigGZAFKAWBvvvmmrFu3Tv2Ff5hzZP3Cl3LlyilIAgAPHz6sc3306JFqgNczZ84syZIleywSGK9z587Sv39/LX8DBgHL0Ax6w7fz58+rzmPHjpWiRYuG6zlu3DjJmzevXn/06FHVt1ixYgrDZcuWlebNmxMKfVj3djUhFNqlJPsJBgUIhcEQRefmQCh0TmufRwIAIivVqVMnzYwBvn755RfNZCHjB9AAFFkGgPnqq680+zV79myZMGGCQhUAJmfOnOHtADhogywjDFlH9IPMX0RQOGvWLAUsGMYFpCKblz9/ftm6datkzJhRkB3EmEuWLJFjx45JmzZtZNu2bXoNwLR48eLhEIjXMB7aVKhQQf+NjKK1x3HevHmaYQN0WVAI35ImTar9IasIMATURdYv+sN/ADKUixMlShQ+f2Tkvv322wjLx4BvQCyyl55Ws2ZN6dOnT/jhHGgLkEZGEHoCdBcuXKiXID5Lly6VDRs26M/Lli3TDCNetyyi0jr0qDJgkaw5fN7nNcKGkSsAKBxdJ68g+xuMhvWHLDf+eKNRgegUuHXrllY2uF6iU4rvQwGsFyReUKWz2zy/j6PqO+wR0ji0cAWQaUN2EBm0f/3rX5rdKlWqlMIbsnfLly/X7ODkyZMVymDIzKHsCrAC4E2bNk2mTJki1atX1ywXysqAGJSOkQ2DIUuHkueJEycihELPQycAI2TOkL3Df8jCVaxYUcvXyCIC8LyhEPNAZhL+W4YsGn5BAapwTYsWLQSZUdjKlSvl66+/Vt8x9ocffhgOWHgf8FSmTBnJkCFDlP0im4gMJsrHyN4hS4kxo4LCatWqaVYUc7LMglpkQKEtDFCNrCjmBD3xV1Xfvn31PZTBAbVjxozRnwGHeA3Q7Dl/76X+6aefEgpt/PzXLphJhr2eUzPkwWjI3Fuf+WCcH+dkrwJYL/gjAl/0NCoQnQL4vYnvS3+sF+t7NDofCIVeCgHcUJ4E0GB/ICAOAFWpUiVB9m7Xrl0KHwCqb775RlKnTq0wCKDC/y1DP6NGjZLffvtNs1neB02ig0LAFfY1wjyhEGBkZeKQPSxYsKAuIm8oRJkY2Tq8jn2JMPiM8nCNGjV0Tu+++274HkNvKGzbtq2CsGXImqI8nT179ij7tdpv375dOnTooPsiAdWAQuiFTKO3wRfsAWzZsmX4W8g0AYSRBcUcYTNnzpTTp09rOd9bTwDgoUOHtBwPiwgKI/owcE9hdL8iYvY+y8cx04utg1sBlo+DO752z47lY7sVtak/7Nv7/fffw4EGMIjMIDJ/yIIBoJClQ7kS4PjOO+/oPjlAIQ57YI8eSB9gNHToUN2TZxcUosQKsEKGECWJZ555RmcNP1DixaGSp556StPQKBOj9GyVqd9++23do5cqVapooRAZSWQWoQXKrujHOjwTWb9IeWNfITKjDx8+FIyHE9ENGjQQZANRqrYOqyDjivI69gNCW/SN/YHQ7uLFi5qRxJjQFVAMyAZkYq8mxicU2rTYbe6GUGizoOzOaAUIhUaHz3HnCYWOS+7bgChBYi8aDi4AdLCnEHsLAS3Ist24cUMPYfz000/aITJcgK25c+cq4AAOkZ0D0ODULvYG2gGFgDuUWb/77js9EWzdxgYnfgF6H3zwge5vRJkXfhw5ckRBDKeFYXgf5VxYdJlClGVxchflWxjKySinwyLrFwdrAIAwpMFx4AOZO+wXBEAjwwdgRdkdJ6wB2di7ifs04pQyTijDoDG0xn5NZGytfZI4hY0sKWCYUOjbWna6FaHQacU5npsVIBS6OTru841Q6L6YxMgjfOBxEAPlW0/DNs3r16/rgRU7DaVUHJ74+OOPdR8jrHXr1loCbtSokf4MYMV7nhubsdAAqN5+RuYb9hQC5nAoBv1hg2pEexwi6hdzx35AQKr3Nbj1Dv6DLwA+/N+zDfZjIsMIiPQ0ZD0xJ6sMbqemLB/bqaYIodBePdmb2QoQCs2On9PeEwqdVtzw8VavXq3350MWDff7Q8bu/fff16wmTgTbZZ5QaFefbu2HUGhvZAiF9urJ3sxWgFBodvyc9p5Q6LTiho+Hwxc4HYz9d8iw4UAMSsX4z07DQRqApuftXOzs3019EQrtjQah0F492ZvZChAKzY6f094TCp1WnONRAS8FCIX2LglCob16sjezFSAUmh0/p70nFDqtOMejAoRCv64BQqFf5WXnhilAKDQsYAF2l1AY4ABweCrATKG9a4BQaK+e7M1sBQiFZsfPae8JhU4rzvGoADOFfl0DhEK/ysvODVOAUGhYwALsLqEwwAHg8FQAmcIPPt9EIWxUoHGJrDb25q6ucKspPLbMeia4u7yjN25TgFDotoi42x9CobvjQ+9CQAFAIZ4/TaMCvihAKPRFJbaxFCAUci3ERAFCYUzUYlsq4AcFCIV+EDWIuyQUBnFw/TA1QqEfRA3iLgmFQRxcTs0MBQiFZsTJLV4SCt0SCTP8IBSaESe3eEkodEsk6EfIKkAoDNnQx2rihMJYyRayFxEKQzb0sZo4oTBWsvEiKmCfAoRC+7QMhZ4IhaEQZfvmSCi0T8tQ6IlQGApR5hxdrQCgcN2OH1zto2nO5UiXzDSXffaXUOizVGwoIoRCLoOYKEAojIlabEsF/KCAdfPqHb/+7YfeQ6/L8rnSyfgGBYN24oTCoA2tXyZGKPSLrEHbKaEwaEPLiZmiAJ9oYm+kePNqe/Vkb2YrQCg0O35Oe08odFpxjkcFvBQgFNq7JAiF9urJ3sxWgFBodvyc9p5Q6LTiHI8KEAr9ugYIhX6Vl50bpgCh0LCABdhdQmGAA8DhqQAzhfauAUKhvXqyN7MVIBSaHT+nvScUOq04x6MCzBT6dQ0QCv0qLzs3TAFCoWEBC7C7hMIAB4DDUwFmCu1dA4RCe/Vkb2YrQCg0O35Oe08odFpxjkcFmCn06xogFPpVXnZumAKEQsMCFmB3CYUBDgCH912BjRs3ytixY+XkyZOSI0cOWbZsmSxevFhu3LghBw4ckK1bt0qlSpWkY8eOkjt3brl7967UqlVLmjRpIlOnTpX48eNLvXr1pF27dv8Y9MGDBzJ9+nRZsGCBXLhwQWrXri2jR4+Wa9euybBhw2T9+vWSPHlyady4sbRq1UrixIkjc+bM0RvD7tmzR3bu3Cnly5eXnj17anv4U7lyZenWrZukT58+ykkyU+j7GvClJaHQF5XYJlQUIBSGSqTtmSeh0B4d2YufFQD4FSxYUHr16iXVqlVTcCtUqJBMmjRJJk6cKMOHD5eSJUvKjBkz5Pbt2zJy5Ei5c+eO5MuXT0qXLq1wdv/+falfv75s2rRJsmbN+pjHgLrOnTtL//79tV/AIMAS/e/du1d69Ogh58+fl0GDBimYFi1aNHzscePGSd68efX6o0ePqi/FihWTAQMGSNmyZaV58+aEQj+vD8/uCYUOis2hXK8AodD1IXKVg4RCV4WDzkSmwJYtWxT4Fi5c+FgTQNvmzZtlxYoV+vrx48elYcOGcvDgwXAonDVrlpQrV07fb9++vbz88svSoEGDx/oZMWKEJE6cWLOMnlazZk3p06ePAidswoQJCp3ICGLsHTt2hPuETOPSpUtlw4YN2haZTGQY8bplhw4d+scUkb2sMmCRrDl8ngvABgUAhWPq5pOHDx/a0Jv7urh165aEhYVJokSJ3OccPXKdAjdv3pS4ceNKwoQJXecbHXKfAlgv8eLFkwQJEtjunK99hj169OiR7aOzw6BSACVZfBH27t37H1B49epVzfDBzp49q2XcEydOhEMhsoBp06bV9wF4yACipOxpyD4im1ixYsXwly9fvizFixeXffv2ScqUKfV1AOj48eNl1apVCoX4q6pv37763vz587VsPGbMGP0ZcIjXZs+eHd4nxvC2lStXEgptXK21C2aSITVyyL1792zs1T1dYasDDF/0NCoQnQJcL9EpxPc9FUBFDd+1/vj9kjp1ap/EJhT6JFNoN0KG7siRIzJz5sx/QCEyd927d48UCvfv3y8pUqSIEgqRXcQewJYtW4b3j1+mAMglS5Zo6RqG8U+fPi2DBw9WKPQcGwCITCBK15FBYURR5J5Ce9c2y8f26snezFaA5WOz4+e09ywfO604x4uVArt375Z//etfMnfuXClRooTu73vmmWdk8uTJj4FZRJnCyKBw+fLlkjNnTt0PiH6w1xD7A7NkySIXL16UDBkyaLk5WbJkmmFERrJDhw7SpUsXqVChAqEwVpH0/0WEQv9rzBHMUYBQaE6s3OApodANUaAPPimAE8SANhiADaVc7NeLbaawSpUqUr16denUqZNgHwVK02vXrtX+a9SooWPhwAkOkGzbtk1fx/4/HCDB/hxmCn0Km+ONCIWOS84BXawAodDFwXGha4RCFwaFLkWuAEq6OIlslYOfRCsAH7KAnnsncGIZBxRw6MTTsLkfm29xWxu7jeVjexUlFNqrJ3szWwFCodnxc9p7QqHTinM8KuClAKHQ3iVBKLRXT/ZmtgKEQrPj57T3hEKnFed4VIBQ6Nc1QCj0q7zs3DAFCIWGBSzA7hIKAxwADk8FmCm0dw0QCu3Vk72ZrQCh0Oz4Oe09odBpxTkeFWCm0K9rgFDoV3nZuWEKEAoNC1iA3SUUBjgAHJ4KMFNo7xogFNqrJ3szWwFCodnxc9p7QqHTinM8KsBMoV/XAKHQr/Kyc8MUIBQaFrAAu0soDHAAODwVQKaw1aRVEvb/pbCe+ej5c0zfi6gPdI9+PN/z/ndE70d3jdUv/h9Z3768F5M5RrdqelbNHV0TY9+/fv26PoYqadKkxs6BjjunAKHQOa2DYSRCYTBEkXMwWgFAIZ7VTKMCvihAKPRFJbaxFCAUci3ERAFCYUzUYlsq4AcFCIV+EDWIuyQUBnFw/TA1QqEfRA3iLgmFQRxcTs0MBQiFZsTJLV4SCt0SCTP8IBSaESe3eEkodEsk6EfIKkAoDNnQx2rihMJYyRayFxEKQzb0sZo4oTBWsvEiKmCfAoRC+7QMhZ4IhaEQZfvmSCi0T8tQ6IlQGApR5hxdrQCgcNPuQ6720TTnsj6VxDSXffaXUOizVGwoIoRCLoOYKEAojIlabEsF/KCAdfPqI+f+44feQ6/Ll7KkkvENCgbtxAmFQRtav0yMUOgXWYO2U0Jh0IaWEzNFAT7RxN5I8ebV9urJ3sxWgFBodvyc9p5Q6LTiHI8KeClAKLR3SRAK7dWTvZmtAKHQ7Pg57T2h0GnFOR4VIBT6dQ0QCv0qLzs3TAFCoWEBC7C7hMIAB4DDUwFmCu1dA4RCe/Vkb2YrQCg0O35Oe08odFpxjkcFmCn06xogFPpVXnZumAKEQsMCFmB3CYUBDgCH968CDx48kFmzZkmLFi0kfvz4/h0slr0zUxhL4SK5jFBor57szWwFCIVmx89p7wmFTivO8RxV4M6dO5IvXz45ePCgJE2a1NGxfR2MUOirUr61IxT6phNbhYYChMLQiLNdsyQU2qUk+3GlAoRCV4bFr04RCv0qLzs3TAFCoWEBC7C7hMIAB8CNw3fs2FFKlCgh8+fPlzNnzsjrr78uXbt2lZQpUwrKsdOmTZN58+ap602bNpW2bdtqebZVq1ZSqlQpuXnzptSoUUN69OghVatW1WvwM677+++/5eOPP5Z9+/YJMmTvvPOO/PzzzxIvXjx59913tc/3339fMmXKJD179tSf+/Tpo/1Wq1YtwrHRBgt5wIABsmXLFkmXLp307dtXypUrJ95QOH78eDl9+rR89NFHEhYWFi4/fJw+fbosWLBALly4ILVr15bRo0fLtWvXZNiwYbJ+/XpJnjy5NG7cWOcZJ04cmTNnjj4tYM+ePbJz504pX768+oz2Bw4ckMqVK0u3bt0kffr0UYaZmUJ7PwWEQnv1ZG9mK0AoNDt+TntPKHRacQPGa9iwoZw9e1aGDBkiWbJkUbh76623pE6dOgo/AK6xY8fK/fv3FZCWLl0qX3zxhZZnAY8AszZt2igIjhs3To4dOyZvv/227N+/X0Gpffv2UqlSJYXBjBkzyuHDh3XfH/q5cuWKFCtWTPsCWD169EgKFy4sCxcu1PciGjt79uwyadIkHQe+YpwxY8bIjh071EerfIz+AbOLFy+WVKlSPRYJzKtz587Sv39/KVSokMJg7ty5td+9e/dqv+fPn5dBgwbp3IsWLarvTZw4UeeYN29evf7o0aMyfPhwnQMgtWzZstK8efPwsf78889/rIAKFSpIlQGLZM3h8wasDve7CCgcWz+/rp1gtBs3bugfNEmSBO+j/IIxboGaE9YL/ohNnDhxoFzguAYpgCcmIUmTKFEi272OGzeuT32GPQrW394+Td99jQCFALHu3burcwApABpgaOTIkYLAAvJggwcPVojKmjWrzJw5U5YsWaJgBej6/PPPNSMIoAOoAZ7QNzJjyEamTZtW+7h48aJmArHv75tvvpGNGzcqKE6YMEEPh+AajI/MXURjt27dWmrWrKkZRsAZrHr16jJ79mx54YUXFApHjRqlvgMMkYX0thEjRugvTfjlaegXmcqSJUvqy/Dp9u3bmhEEFAI8MT8YMo3of8OGDfrzsmXLNMOI1y3zBETrte3btxMKbfwY1C6YSQZVf17u3r1rY6/u6cr6demZ6XaPd/TEbQo8fPhQ/4jgenFbZNzpjz/Xi/WdH93MCYXRKeTw+4AwlIOrVKmiI69cuVK+/vprLd2ihIuMXerUqcO9euWVV6Rly5ZSvHhxhTdkx1asWKFl5YEDB8rcuXO1lFu/fn3NtiGTtm7dOi3FdunSRZIlS6b9AiYBlWXKlNEsIsrV+A+wiMxfZGMjW4nMXLZs2RQaYSgHI2uJki6gEFawYEEFuIj+WkHfKPVWrFgxfF6XL1/WOQFs4Qds8+bNghL0qlWrFAqRakf2EoZyO+YPX2GAQ7wGOI3KWD62d4GzfGyvnuzNbAVYPjY7fk57z/Kx04obMB6gEPv7AFTeUIj3AIHYC+htyKqhZGxly5BVA5wBCgGWyCZa9uuvv0qvXr0UIJHhQ6YO6WoAFDKFJ06c0NIs9gfCD5SuIxsbmbsXX3xRFi1apFlLT7P2FFoZzFdffVU6dOjwD9/RN0rbgFvL4DtKyLgWQAlDNhR7EpEhBRRibCujCgA8dOiQZiQJhYFb6ITCwGnPkd2nAKHQfTFxs0eEQjdHJ0C+RQWF2PuHPXkAtly5culBFMAc4A3lXewtRIkUZVhk+Jo1a6YHNLZt26az+eWXXyRnzpz6b+vQB8rS3377rXTq1EkhDNk8wByydLDVq1dL5syZdd9hZGMjW4g9Vv369ZM0adIoVD733HNaMrH2FCJLiYwgDpMUKVJEli9frr6g5Dx58mTZtGmTlrixjxIl7QwZMuj+R2QyUUK+evWqAiWym9gHSCgM0AKNZlhCoTvjQq8CowChMDC6mzoqodDUyPnR76igELA2dOhQBSvLPvvsMy35bt26NfzgSf78+TVLiL2JOL2MAxow9H38+HEFSZR7cZgFB0WwENEW2UMrWwewxN5CHFyBRTX2uXPn9FocGIEBDFHiTZEixWP3KQRwTpkyRdauXSt169bVvYeAUZyY7t27t74Osw7J4MAJDpBYUFuvXj09QJIwYUJCoR/X4JN0TSh8EvV4bbApQCgMtoj6dz6EQv/qG7S9A/jwywZZQF9PFFliPOmii2rsW7du6QEDwGB0G6sBfMgCevoP8MRGW++TeugXJ7L88VQU7im092NCKLRXT/ZmtgKEQrPj57T3T/r9bIe/PGhih4rsw1gFCIX2ho5QaK+e7M1sBQiFZsfPae8JhU4rzvGogJcChEJ7lwSh0F492ZvZChAKzY6f094TCp1WnONRAUKhX9cAodCv8rJzwxQgFBoWsAC7SygMcAA4PBVgptDeNUAotFdP9ma2AoRCs+PntPeEQqcV53hUgJlCv64BQqFf5WXnhilAKDQsYAF2l1AY4ABweCqATGG1wYsphE0KxAkLk/EN/nuz8WA0PJsUJ+vxfHAaFYhOAUJhdArxfU8FCIVcD1QgwAoACnGzbRoV8EUBQqEvKrGNpQChkGshJgoQCmOiFttSAT8oQCj0g6hB3CWhMIiD64epEQr9IGoQd0koDOLgcmpmKEAoNCNObvGSUOiWSJjhB6HQjDi5xUtCoVsiQT9CVgFCYciGPlYTJxTGSraQvYhQGLKhj9XECYWxko0XUQH7FCAU2qdlKPREKAyFKNs3R0KhfVqGQk+EwlCIMufoagUAhdv3H3a1j6Y5lz5FItNc9tlfQqHPUrGhiD6jHs93T5IkCfWgAtEqQCiMViI2oAL+VcC6efWZKzf9O1CI9P7808l4S5oQiTWnGb0ChMLoNWKL/1OAUMjVQAUCrACfaGJvAHjzanv1ZG9mK0AoNDt+TntPKHRacY5HBbwUIBTauyQIhfbqyd7MVoBQaHb8nPaeUOi04hyPChAK/boGCIV+lZedG6YAodCwgAXYXUJhgAPA4akAM4X2rgFCob16sjezFSAUmh0/p70nFDqtOMejAswU+nUNEAr9Ki87N0wBQqFhAQuwu4RChwJwkXnhJAAAIABJREFU9uxZ2bVrl9StWzfCET/55BN58803JXny5A55FPUwX3/9tWTLlk1y5coVZcMzZ87Is88+Kw8ePJBZs2ZJs2bNJGHChK6YgylOMFNob6QIhfbqyd7MVoBQaHb8nPaeUOiQ4jt37pSRI0fKihUrIhwRYPDtt99KpkyZHPIo6mHatm0rVatWlVq1akXa8ObNm1KgQAHB3ACz+fLlk/3790uKFClcMQdvJ44fPy5Zs2aVxIkTu8o/QqG94SAU2qsnezNbAUKh2fFz2ntCoUOKByMUQrq//vpL0qVLJ3fu3HE9FCJLO3HiRNeAt7X0CIX2fggJhfbqyd7MVoBQaHb8nPaeUOil+OTJkyVevHjy7rvv6jvvv/++QkTPnj315z59+kipUqWkWrVqMn36dFmwYIHeMR4/4z1kzA4cOCCrV69WWPr444+lY8eOkjt37scyhQsXLpQpU6bIvXv3pGHDhvpvZAqffvppzc41adJEpk6dKvHjx5d69epJu3btdHyUaadNmybz5s3Tn5s2bSrI6rVo0UJatWqlviGDV6NGDenRo4dm+3ANfsZ1e/bskUWLFsmvv/4qRYoUkd69e0v27NnV5w8//FBQDn755Zfl8uXLUr9+ffVl7969MmrUKDl48KDkzZtXtShZsqTcvXtX+1+1apVqhkwh2rZs2VL69u0rhQoVUh+RoevcubO269q1q7zxxhuqC7KKeG/Lli0yevRoOXXqlNSuXVsGDBggSZMmlTlz5siNGze07A6oLly4sAwfPlzL2rCTJ09q2927d0uOHDnUr/Lly+t70NxzHMRn3bp1kiZNGr2z/+bNmyUsLCw8+tDIiueFCxfUD/h07do1GTZsmKxfv15j27hxY9U5Tpw46h9iD03hH8aGD2gPPStXrizdunWT9OnTR/m5JhTa+2uPUGivnuzNbAUIhWbHz2nvCYVeigMcsDdu6dKlcuXKFSlWrJgCCr7kHz16pGACoMN7gK5BgwYpaACaAGSANwACoA6QABjCnrsjR46EQ+GlS5ekRIkSMmLECC2/Av4ATIDCtGnTKlyVLl1ageL+/fsKZ5s2bdLSJ/oGcI0dO1bfA6DA1y+++EL9BHQBstq0aaMgOG7cODl27Ji8/fbbCqoVKlTQseDz4cOHFe5QTgU0AQbRbu3atdr/mDFjFAoBkPjvpZde0rG2b9+uUOqZHcQ+Qqt8DMC9deuWagMbP368nD9/XucPAAYI9urVS8qVK6el5oIFCwpgHGCHuQHmGjRoIJMmTdLMHrTNnz+//hsgCriFoa88efIoqO3YsUMGDhwoP/74o87He5yUKVOq1ph75syZJVmyZI9FHroiVv3791eYBQwC5OEDQBexxhwwJ2hTtGjRcP+gMWAZ1x89elTBFesGwFq2bFlp3rx5+FjQxdswtyoDFsmaw+ed/vwH5XiAwnFvFgjKuWFSfMxd0IbWLxMjFPpF1qDtFOsFSR5/bLPyTMREJWDYI9CWS+zixYsKd8iKffPNN7Jx40aFpwkTJmjWDrABQATgACzee+899fz7779XGAB0WFD43XffyTPPPKPve5aPAZ6AOCvbZ43pCYUAU0ATrH379gpsACWMi+dYAt5ggwcPVogBMM6cOVOWLFmiYJMqVSr5/PPPZd++fQqxyMoBmgC1gBWUUhMl+u/zYVECBoRintZrVapU0XE99xTiywjZOUAqwA5QaoGgJxSeO3dOdUKGD69XrFhRhgwZorri9Zw5c4YDIzSeMWOGfPTRR+oLwBXXffrppwpd0BBzgiGTCL9++uknwV8zxYsXD4dACxIBwwBf73HwflT7NgHo+BAgw+hpNWvW1Aww4BmGdXD79m3NCMI/wCj0hSHTCGjesGGD/rxs2TLNMOJ1y15//fV/rHTMh1Bo3y+A2gUzycBq2fSPFhoVoAJUgAr4rgBwzFd4873X/7ZE9dQXcxUUwmFkzQBWgJEyZcrIzz//LMg04T/AIjJoaINMHoAHdvXqVc0eAcKQmUMp1oIDvO8JhQC5BAkShJekHz58qKd8PaEQ7ZE1hAFKkLVC9hHjIkuZOnXqcG1feeUVLdkCkgCsyE7hQAvKygDBuXPnKmAC5gCHKG8i84fMFrJsyEICcAC0lqEcDSDEf4BYlEpxghrwiXJtVFCI7B/Kr8iaZsyYUbOZgCfALGANfQPuYPBl8eLF4fCMMi6ymCjLwyfoiljAsFgBlCtXrlRfkDn09BlQjrIugM17HFwfFRR6xxPtUUKHpogpYg9D2RmZT4wL/wCnyG7C5s+fr/pjfcAQf7w2e/bsKD8HLB/78mvC9zYsH/uuFVsGvwLMFAZ/jO2cIcvHEaiJrBEyZvgyR6bwxIkTCiCgXJSE69SpI61bt9YSIf4PAywia7ht27bHANDq3hMKARUATasMin18ADtPKPQ8xesJhYAdtH3nnXf+4TmyWigZW9kqZLUAWYBCgBSAzjKUgDt06KClaxj2JgL0AG4wlLex3xBjATKRhQT0og3GiQ4KkT3DXjuUauFD9+7dtV/4j/2a1t4/gNUPP/ygmUFvw3t//PFHOGShfIuMKcAMsIhsJwAcGVwYYBOxgQbe4+B9wBcyk/DJ29AeewAB15bBb8A4/jhAiRsGHU6fPq0ZWviHrKE1NwDgoUOHNJsLIxTa+avK974Ihb5rxZbBrwChMPhjbOcMCYURqAk469SpkwIB4AZlKGSMYChvAipQmgV8AbxQqkXG66mnntIsVUQnjT1fs4AMEIFDHiifAjp9gUKUlZFZQ3tkFwGUAFgAKw5GoCyNPWwogwJUcd9AHJAArOIACrKMODiD7CRK0Ni/h6wdABd791DehH/I7iHjhXIzyrHIDqK8inlCk+igEHvykJ3E2AApaBkRFMJHZDAxL2RlAXtYlDhMAujC/RuRpcT1mPNXX32lOmFvIfxCiRtAh34wH+z/QzwigkJkAwFwAF3Y8uXLNfOI/YDY04iMKfYHZsmSRVDSz5Ahg/aPbQIAc/gGkO7SpYuOTSi081eRfX0RCu3Tkj2ZrwCh0PwYOjkDQmEEakMUwBAOQ1iZI0AW9tzhEAcMUDV06FAFQ5yQRXscQEC5NDooRBkUpc7PPvtM+0Jmy9r7Zx00iSxTCEDFuCivWoZ+AFT/r70zgbqp+v/wNhf6kUpFg6EBmZVkylDJFCrKCkWTokQhhYTSIMkQEskUWWTMkFVkaCA0ozlWmRqUWeq/nv1f+13nPe597/W673vPvfez13qX4pyzv/vZ+77nOd+997krV65M23jC5gUyXcSF6LFBgrV+rEuksOsZESSrhewhu3379rVtQcAQIjKC7lzWx1HatWtn10ISX7g1he49hUyvs/GC6WdXQskaIovQUjcFIUfGkC7qYaqbHcFMKyNv7JqmsHkHyWOdI6V///52OjyUfPJ39BUZPuR90aJFdmq8SZMmtj6Emcwom2xcnyCIyC3T7Eg1hZ3grMlkraSkMDt/VUVfl6QwelY6MvkJSAqTv49j2UJJ4UnSRLwQNV5zcqKFbBfnZ2aXD+fxYScT56Z8o6kfIWWtHNk0/3mILptJQr18ml2z7EhyU7XR1IXYsQnGOyUb7jziQsDgyHpLile6+De3rs9/DQYx2TzWE0YqMOeH47kmf3o50Jdw8PdJZtofKRb371pTGC2p6I6TFEbHSUelBgFJYWr0c6xaKSmMFUldJ43Anj17bGaNLCTr/3hVTmaKPxOXmWskwjmSwtj2kqQwtjx1tcQmIClM7P7L7uglhdlNPAXqY+cxL2xm97PboJGZZrPRh8wdr5lJ5iIpjG3vSgpjy1NXS2wCksLE7r/sjl5SmN3EVZ8I+AhICmM7JCSFseWpqyU2AUlhYvdfdkcvKcxu4qpPBCSFWToGJIVZilcXTzACksIE67A4hyspjHMHqHoRUKYwtmNAUhhbnrpaYhOQFCZ2/2V39JLC7Cau+kQgTKbwr0P/iE0MCJxRMK8Zfsv/v2w8GYu++zgZezXr2iQpzDq2yXhlSWEy9qralFAEyBRu/OLrhIo56MEWzJc76CFmOj5JYabRpeSJksKU7PZMN1pSmGl0OlEEYkMAKeSrFFVEIBoCksJoKOkYR0BSqLFwIgQkhSdCS8eKQBYQkBRmAdQkvqSkMIk7NwuaJinMAqhJfElJYRJ3rpqWGASQQhUREAEREAERSGYC0c6I5fiP7zhTEYEUJTB58mTb8g4dOqQoATX7RAhMmDDBfksQ3yOuIgKRCIwePdoUL17c8KUCKiIQicDw4cMNiYqmTZtGOjTL/l1SmGVodeFEICApTIReCk6MksLg9EUiRCIpTIReCk6MksLg9IUiSVECksIU7fhMNltSmElwKXqapDBFOz6TzZYUZhKcThOBWBGQFMaKZGpcR1KYGv0cq1ZKCmNFMjWuIylMjX5WKwNMQFIY4M4JYGiSwgB2SoBDkhQGuHMCGJqkMICdopBEQAREQAREQAREIBUJaKNJKva62iwCIiACIiACIiACPgKSQg0JERABERABERABERABIynUIBABERABERABERABEZAUagykNoGDBw+a3Llzmzx58qQ2CLVeBEQgSwnwPRF8jVmhQoWytB5dXAROhoAyhSdDT+cmLAFksGfPnmb16tW2De3btzc9evQwOXLkSNg2KfCsI8A46dixY7oKVq5caYoVK5Z1lerKCUdg4cKFpnv37mbmzJmmatWqafEzVrp162b/v2jRombs2LGmVKlSCdc+BRxbAuHGS+vWrc2mTZvSKmvbtq0ZOHBgbCsPczVJYbZgViVBIzBx4kSzYsUKwytGDhw4YFq1amU/dLVr1w5aqIonAAT45f3uu++aIUOGpEWTL1++AESmEIJCYNCgQebjjz82u3fvNryKplq1aja0Q4cOmRo1apiXX37Z1KxZ00yfPt3Mnj3b/qikLoFw4wUiDRo0MGPGjDElSpSwgJjNypUrV7bAkhRmC2ZVEjQCfHctmZ9GjRrZ0Hhy3759uxk8eHDQQlU8ASAwdepUs23bNtOnT58ARKMQgkjgvffes/JHVqdfv35pUrh27VozYMAAs2zZsjRJrFChgn0o5XuRVVKTQLjxAg2+/3jdunWmcOHC2Q5HUpjtyFVhEAjUqVPHjBs3zpQrV86Gs3jxYjNr1ixDBlFFBPwERo4cadasWWMqVapkypYta+rXr6+1YRomIQk0b97cSqDLFM6bN88sWbLEZn5cIRM0dOjQdFPMwpmaBPzj5fDhw6Z8+fKmc+fOdq17vXr1DA8R2bW0SVKYmuMw5VvNk9jSpUvT1vXw1M6NX1M6KT80QgLYsGGDnRosUKCAIfOzfPlyozWFGiuhCPhv8mSZGT/Dhg1LO7xly5Z2DXPdunUFMcUJ+MfLsWPHzPjx403+/PnNzp07zfz5803Dhg3tg0Z2FElhdlBWHYEjQKaQJ3eeyCisGZszZ44yhYHrqWAG1LVrV5sx7NKlSzADVFRxI+C/yfO7ZcGCBXZmwpspRBIrV64ctzhVcTAI+MeLP6rNmzcbjtm4caMpWLBglgctKcxyxKogiAQ6dOhg2rRpY5o1a2bDGzVqlNmxY4fWFAaxswIYE99RyhpUpgBVRMBLwH+TX79+venVq5fdqEThzQcVK1bUmkING0sgkhTu27fPVKlSxS5BKF26dJZTkxRmOWJVEEQCM2bMMHPnzjWTJk2yu49btGhh2A3G+g0VEfATYPqPrHLevHnN1q1bDQ8VI0aMMNWrVxcsEUhHINR0YK1atezOddaism6ZKUF+/6iIgH+87Nq1y+zfv9+ULFnS/sl4mTZtmlm1alW2vE9XUqgxmZIEjh49avr27WvXFfLB69Spk+ndu7fJmTNnSvJQozMmwOuKpkyZYtcU8rROhtn/3kIxFAEIsF6wf//+6TaRkC1kyQGvpylSpIh9PU2ZMmUETASOGy9btmyx9yJmrhgvjRs3tu/RdZsisxqZpDCrCev6gSagbzQJdPcEKjjGypEjR7TrOFC9kljB7N27V+MnsbosbtEihLybMLu/bUtSGLcuV8UiIAIiIAIiIAIiEBwCksLg9IUiEQEREAEREAEREIG4EZAUxg29KhYBERABERABERCB4BCQFAanLxSJCIiACIiACIiACMSNgKQwbuhVsQiIgAiIgAiIgAgEh4CkMDh9oUhEQAREQAREQAREIG4EJIVxQ6+KRUAEREAEREAERCA4BCSFwekLRSICIiACIiACIiACcSMgKYwbelUsAiIgAiIgAiIgAsEhICkMTl8oEhEQAREQAREQARGIGwFJYdzQq2IREAEREAEREAERCA4BSWFw+kKRiIAIiIAIiIAIiEDcCEgK44ZeFYuACIiACIiACIhAcAhICoPTF4pEBERABERABERABOJGQFIYN/SqWAREQAREQAREQASCQ0BSGJy+UCQiIAIiIAIiIAIiEDcCksK4oVfFIiACIiACIiACIhAcApLC4PSFIhGBlCZw9OhR88svv5iiRYuaU089NR2Lv/76yxw6dMj+W1aVtWvXmtdee82MHz8+q6qI+roHDx40s2fPNvPmzTOnnXaaefHFF02hQoWiPj/aA3/77Tfz+eefm3r16mV4Csd17tzZjBgxwpx77rnRXj5bjosmNvr08OHDpmvXrubYsWNm2bJlpmHDhiZv3rwZxvjggw+aVq1amfr168esLevXr7ccJ0+eHLNrZvZCjLPdu3ebCy644LhL7Nixw34O3bjbvn27ZUc55ZRT7GcxR44caef9/fffhp9ixYplNhydFwACksIAdIJCEAERMGbz5s2mefPmpnHjxvam6S0TJkwwK1euzNIb6cKFC83gwYPNhx9+GPfueOutt8yzzz5rnnjiCRsLTGJRNm3aZAWgSJEi9nJz5swxvXv3Nlu2bDE5c+YMWwWCUKdOHStTJUuWjEUoMbtGNLH179/fIEDPP/+8+emnn8w111xjhbtcuXIZxtGgQQNz//33m5tvvjlm8S5fvtzcd9995ptvvsnUNTmf+GNR3n//fXPnnXfaz16uXLnSXbJly5amSZMm5p577rF/f/HFF6f79/PPP9907NjRtG/f3v791KlTzcSJE827774bi9B0jTgRkBTGCbyqFQERSE/ASSF/O3r0aHPdddelHZBqUkhGi4zc448/HtNhguQMHTrUVK1a1V6X7OzOnTvNeeedl2E90YhXTAM9gYtFE5tXCrn0jz/+aC688MJ0ma5QVQZNCumr2rVrZ1oo/W08USkkY83nErFes2aNeeqpp2x2nZgkhScwaAN8qKQwwJ2j0EQglQg4KSQzwdTp0qVL06au/FJIFqNXr16mZs2aaYi6dOliMyhM961YscKQ+atUqZK9aR04cMBcf/31pnv37uaZZ54x7733nilRooS56aabTOvWre01OJ7s3L333mumTZtm/vjjD3PVVVeZfv36pWXWkKjhw4eb+fPnW6FCGh599FHzv//9z16jU6dONrNEBu7tt982d999tyEufyFLRVzISenSpe3U7LXXXmun38gOLliwwBQoUMBO0T3yyCPpBJlrMc3+0ksvGaa8OYc4HnjggbQsnj+O22+/3Xz00Ufmk08+MWeccYaNFxZMD44dO9bMmDEjLcS5c+eaSZMmmS+//NKcc845Np7y5csflymkjbRh27ZtpnLlygbxKlWqlL3Ohg0brCQQ3+mnn26qVKli+6tw4cLpUNBPixYtsv3EdOquXbtM3bp17bXOPPNMe2ykvnZS+PTTT9txwzgi3j59+pjLLrvMXsMrhUyX3nbbbTb24sWLZxgrXBkjX331lZUgZJpsNmPMFa5HhplMNhnYW2+91WbfXOaNNjJm6OuKFStagSJjGS5TSBumT59uvvvuO9v/ZOL4oT/oY3i7bC2ZOb/Q08djxowxX3zxhQ2xRYsWplu3biZ//vzHjcMTlUIy+N6sdY0aNeyY5zMrKUyO39aSwuToR7VCBBKegJPCTz/91DRr1sxcccUVVtIofilkKsufTUQeuFkjQAge0sNN+K677jL79u0zjz32mBWtq6++2oogkoQQzZo1y0qNO+eiiy6yMvfPP//Yfz/77LPNG2+8YeMYNGiQnUJ96KGHTL58+cywYcOs0JBBoSARCCg3bW6WZcqUMUyzeQsSxPlt27a169qQRydY3GS3bt1qHn74YSukTFuyRssvU4gIdTKly5qvF154wYrQk08+GTIOeP3+++/mlltusVJctmxZe93Vq1enmzJ3sSESN954o80iIkK01Tt9jLCTzYQx9SInSMw777xjs29XXnmlPZ/+QGARIOTYuwaNQB1zOMGLdaPILsLuRDVSXzsppG8RevqPeL7++msravDxSqE3swiDjGKlP5EwpIwHjnXr1plRo0ZZbowL1tgxVqkDMSKDhpwyTpBD+rJp06Z2DCL9cCM2SjgpRK72799vLr/8civxCOSqVauswMNrwIABduqbQlv96yIRceJDPnmwIdtMRo84/OVkpJD4mV5+/fXX7cOZpDDhfwXbBkgKk6Mf1QoRSHgCTgrJypBpateunZVBMkeZlUKyNGSDKEgHN1cyKEgON/Rq1apZWWzTpk2aoHjXzbE+CtFYsmSJOeuss+zxQ4YMSVtjhriQSdy4caMpWLCglUIyiNxs/QLkOgh5JSak1pUOHTrY/3SbDxAKNjdQdzQFqRw4cKBhzaCTU38crKlDkmfOnJk2fexfR0lsyM64cePSVeufoiV7RlYQYXGCgyDQT8g89Xg5hWuDk0IyY5xHWbx4sWGDB8zJokYrhd769u7da6WKDB4iHE4KyYRmFCv96X04+e+//6ysI/X0EfLFujrvmCErx6YMMn4I4ptvvmnHhxsPCCP9HM2aQlcfDwk8yCB8PPREc65jzppRxjrLBk5WChH9ChUq2Mwpnw0eiEaOHGnFVFIYzSc1+MdICoPfR4pQBFKCgFcK8+TJY2WLzBML6xEZ70aTSKLgZMN78+RmTDaLqVFXmAokG+fNLnrPISNHFoTdq0gh0oQYsiOYQvbts88+s9k+YkIibrjhBisNocq///5rLr30UispboE+x5GR5MdJXSQpRPjIOiEbZOJ+/fVXO73oYg8VRyQpREAuueQSm1m64447wkohWTyOIxvKujwK59I/LkP2yiuvWGFEzJBx4vFvZOA810/sgGZHK4Up5Fq1alnm7IqO1NdOWJEwBM8V1r6RnevZs2dYKaQNGcVK3IwNflyhPcgQ8keWDPH07t5mjDEu6EsyzgiT9wGATURMpYcTux9++MGOJ/78888/DbuVkWTqjUYKEWKWN5ApZfzyuSITG2pX/YlmCslMstYVKUSoaYuTXUlhcvyalhQmRz+qFSKQ8AT8UsjNrVGjRnYtIFkp5NBl0kKJAhLAWjEneP6dxAjLnj177PRktFLoMk4IG2vjyDoxZep/hYebxo20MYGMDTdol8FycSAXTAdHK4UIAjdmMpyI0LfffmunkL1S6N81G0kKXWxML5MJ9BZvppC20wYEmal4b2ENn1vv9v3331sBZ+qdKVr6zr/DOZS8I0Jk52DO9Hqkvnax+XcTEx/1srYwXKYwUqyh+tMrhU4oYe9tGwLM2jvkmsyrWwYBK5cJDSWFCCDLChjLiDGZUuInax6NFPJ6HqaJETYyt+yuZnkESxpCSSFLKLj2Bx98kLaG00k+GVGklvWRFPrBrSlkhz4PNYggjCmSwoT/FWwbIClMjn5UK0Qg4Qn4pZAGudd3cJNkQ4WTQtYAsgGDGxqFtWhMa/Xt2/ekpZANBe59iG56EOEgU0jWkI0Xrl4/9EhSyPHc9Jk+9k7n8YoSMmRkuygZZQrJCjKljkSyno2CdLz66qsZSqFjxCaa6tWr2/P808fETybUTQu79vmnj+kPsoWsr4tUXL96p63dOU4KvczZBMT6PCd5kfraxebdBMGaPM4j28zUfCQpdPH4Y40khW5tJRuDEGV/oX6WMLBswRVk1yvw3nOIkzFHhhyxZE0gfYUYeqWQLGDu3LmPq8/x9C6bIBuOJIaSQrLMiL3/IYWHE6arXbbWL4X8P2tEEX/qJFZJYaRPQmL8u6QwMfpJUYpA0hMIJYU0mqkzsitkLpwUImXuvXNHjhyxO0lZVxcLKUQEuOGxq5P1WKwPYwMGmSBiYcq2R48eNpPz888/2x/WWlGikUL3bkDkks0LrJ1jIwBi566TkRQydUwmjQyO21XMFCkilFGmkPgQBCSDHdMUpMabUUUCnnvuOTuFTKaLTRbsAmZq17vRhDWAxE+9ZKR4uThTwGSpEATW2CGubP5A+NyOcu/0rpNSMq+OOVOT/D8ZL8c8Ul87KSTrR3/RPjKvZISRMYQoozWFGcUaSQoZg6z9ZFqVHeRk05ywsdHDTffSJrKvbFSBN+0LlSmcMmWKFUbazrimP8j0OSl0ksgDgdsF7J2WJ3vMJiHWdpK1ddLP9Ha4l7KzbpXz+JOYWXPL54mHMMTcvUjemymk79z7Ht1DElLIQ4LbSON+YbHcINTO56T/hZagDZQUJmjHKWwRSDYCTgr9WRDWRbE2jMyPWw/I+jluni4Dw1QhN1pufmSGQr2IOtT0MechYu4chA0ZdLuNudmTgXIv7mU6meu43Z/0AVPcLmPm5MY//ervK7J6/BAzBclEnNwNHinkWu7Fwf7zEQXaz/m8YobNMmxG8EohYuuPw3HhPMQP4fNKISJCBhMpoCB17LBmGhIpJIPFTZ6pZjajuF3XHIuUkQ1kDR3x05/u75l2d9OQ3ra4eMg8hmMeqa+dFCInxI4cEzdy6951GUoKaQvZ34xiDdWf3ulj2sIOY1i6qX/+jv5gAwrFiTb/TV+xE5kHgFBSiPQh2qzPpLDelXWoZCHd9cjiMm1NYU0fu7+9hd3JZIMpfGZgwLS0f/OQO4fpejbpMPZdod08YHl3zvulkGNhzAMC8ZLFUy+fAAABfUlEQVQtdbvfvfF4M9PJ9jsrGdsjKUzGXlWbRCBFCJChYicxP7EsyBFZoHBfLYcUsZmADSdug0Rm6kcCqCOjbxMJd11kgfb7X1cTKQ5ip17eqReuXo5BgN03n4S7JhtMEEz4u8037ljOp2T09XxeeY/EPJq+hgmSw/rPcLu/Q7UlmlgjcWW8IKT0h39qF57ET1zRFF6hhFyH+xo+vrKP+sL1PSzJKCPH0RY3Logx1KagaK+j4xKbgKQwsftP0YuACIhAwhII0lcLJixEBS4CMSQgKYwhTF1KBERABEQgegKSwuhZ6UgRyA4CksLsoKw6REAEREAEjiPA7tctW7bYzRoqIiAC8ScgKYx/HygCERABERABERABEYg7AUlh3LtAAYiACIiACIiACIhA/AlICuPfB4pABERABERABERABOJOQFIY9y5QACIgAiIgAiIgAiIQfwKSwvj3gSIQAREQAREQAREQgbgTkBTGvQsUgAiIgAiIgAiIgAjEn8D/Af+6jC7gmDAeAAAAAElFTkSuQmCC", "image/svg+xml": [ "051015worldnewsdailyreport.comnewsweek.comcnn.comwashingtonpost.comtrendolizer.comobserveronline.newsthehill.comdailyusaupdate.comthegatewaypundit.comyournewswire.comNumber of articles published at a URLBase URL" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "top_fake_publishers = (\n", " X_train.assign(label=y_train)\n", " .query(\"label == 1\")\n", " [\"baseurl\"]\n", " .value_counts()\n", " .iloc[:10]\n", " .sort_values()\n", ")\n", "\n", "fig = px.bar(\n", " top_fake_publishers,\n", " orientation=\"h\", width=550, height=250,\n", " labels={\"value\": \"Number of articles published at a URL\", \n", " \"index\": \"Base URL\"},\n", ")\n", "fig.update_layout(showlegend=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we list the websites that published the greatest number of real articles:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "hovertemplate": "variable=baseurl
Number of articles published at a URL=%{x}
Base URL=%{y}", "legendgroup": "baseurl", "marker": { "color": "#1F77B4", "pattern": { "shape": "" } }, "name": "baseurl", "offsetgroup": "baseurl", "orientation": "h", "showlegend": true, "textposition": "auto", "type": "bar", "x": [ 5, 8, 9, 10, 11, 11, 15, 16, 20, 21 ], "xaxis": "x", "y": [ "medium.com", "cnn.com", "msnbc.msn.com", "foxnews.com", "cq.com", "washingtonpost.com", "politifact.com", "nytimes.com", "abcnews.go.com", "whitehouse.gov" ], "yaxis": "y" } ], "layout": { "barmode": "relative", "height": 250, "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autosize": true, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "height": 250, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "margin": { "b": 10, "l": 10, "r": 10, "t": 10 }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.5, "xanchor": "center" }, "width": 350, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "width": 550, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 22.105263157894736 ], "title": { "text": "Number of articles published at a URL" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ -0.5, 9.5 ], "title": { "text": "Base URL" }, "type": "category" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAFoCAYAAAAhG4EVAAAAAXNSR0IArs4c6QAAIABJREFUeF7snQeYTdf6/98ZndFl1BDhih8uQvTeQ4geJUjUaIlydSGCKCF6iRJBRI0WLToX0TuJBJGQXC6JEL2N//N9899zjzHMmXH2nL3O/q7n8STO7L32uz7vnvGZd621d9DDhw8fChsJkAAJkAAJkAAJkICrCQRRCl2dfw6eBEiABEiABEiABJQApZA3AgmQAAmQAAmQAAmQAKWQ9wAJkAAJkAAJkAAJkAArhbwHSIAESIAESIAESIAEOH3Me4AESIAESIAESIAESAAEuKaQ9wEJkAAJkAAJkAAJkAClkPcACZAACZAACZAACZAAK4W8B0iABEiABEiABEiABDh9zHuABEiABEiABEiABEgABLimkPeB3wj84x//kJMnT/rt+ryw9wTw4qNLly5JaGio9yfxSL8R+OuvvyRevHiSKFEiv8XAC3tH4P79+3L16lVJnTq1dyfwKL8S+PPPPyVJkiQSP358v8Zh18UphXaRZb9REqAURonIMQdQCh2TCq8CoRR6hckRB1EKHZEGr4OgFHqNigeSQPQIQAoPHvs+eifxaL8QgBTeuHFDQkJC/HJ9XjR6BG7fvi1x4sTRaiGbswk8eBAmd27fksRJkjg7UEanBG7evKVVwrhx4/icSEiCuD7vM7odslIYXWI83mcEIIWVByyQv27f91mf7IgESIAESIAETCMwtM4/JVNK/y/3oBSaducEULyWFK46ej6ARsWhkAAJkAAJkID3BP6RNql8/nYhSqH3yHhkIBKgFAZiVjkmEiABEiCB6BCgFEaHFo8NWAKUwoBNLQdGAiRAAiTgJQFKoZegeFhgE6AUBnZ+OToSIAESIIGoCVAKo2bEI1xAgFLogiRziCRAAiRAAk8lQCk07AZ58OCBTJ8+Xd5++21JkCDBY9FfvHhRUqZMGe3HPyxfvlzy588vWbJkMYyIb8KlFPqGI3shARIgARIwlwCl0LDc3blzR/LkySP79++XZMmSPRZ93bp15Z133pHKlSsLjj116pTkzp07ylE2bNhQ2rZtK2XLlo3y2EA8gFIYiFnlmEiABEiABKJDgFIYHVoOODYqKfzjjz8kRYoU+rDYrVu3ytq1a2XIkCFRRk4p/Ps5hXwkTZS3Cg8gARIgARIIUAKUQock9sqVK1KnTh1ZtmyZVgD37dsnPXr0kC+++EIyZswoJ06ckF69esmCBQu0Uti9e3eZP3++xI0bV6zqIIbSqVMnadSokU4ft2zZUt/88Pzzz0vr1q318/Xr18uIESPkzJkzUqtWLRkwYIC+OxFSWLBgQdmxY4f8/PPPUrNmTenataskT55cCW3YsEE++eQTrTwWK1ZMPvzwQ8maNavgNTu4PvqFiKJ98MEHUqJECa1WLly4UGM+ffq0vPLKK9K7d2/Jli2b9vP+++9rxROfDx06VF544YXHsoFp7Tlz5uh7iVOlSqVfHzx4sBQpUkSmTJki8+bNk2vXrknVqlWlT58+snHjRtm+fbuMHDkyvK+ePXvq8eD7pMZKoUO+ERgGCZAACZCA3whQCv2G/vELQ6IgSqVLl5Zhw4bJZ599JoMGDVJhgxzu3btXhQ5SCOnq1q2b4F2V9evXV2nDekCr4leyZEk9H/LVv39/XX947949XTc4YcIEyZ49u/Tt21dq164tDRo00PN+++03vR76gZBCIiFSN2/elHz58qkIFi1aVGbOnCk//fSTytqlS5ekePHiKq2WFHbo0EEqVqyoIlamTBlZsWKFvmD96NGjKpSJEiXS6+H/IZQzZswQSPGoUaMegXL9+nV5+eWXZd26dSqEb731lp6HPzt37tQYBw4cqH1//PHHGgfiLVWqlOzevVvPQb+FChWSLVu2qFxTCh10wzMUEiABEiABRxGgFDooHRCypEmTSufOnaV8+fLy2muvyY8//qgVMYgWZAcSBynEZhMIFxq+BpG05M5aGzh79myVNWv6ePPmzTJ16lSt+KGtXLlSdu3apVJmVQpRgUSD8B04cEBFDdW3adOmaWUSzZJESCpE80lSWKFCBa0+ohoJ+UuYMKGeb4kaRBYVzbNnz0rTpk1VGq1jcBxiQzzbtm3T81CBTJs2rbRv314ri3j37bvvvqtf+/bbb/UzCCg24VSrVk3eeOMNWbx4sSxdulTHY7XXX3/9sax///33nD520PcCQyEBEiABEoh9ApDCyQ3/Kcni3LPt4qGhoV717frX3GEKFtU9TI82adJEBQfCdejQIa0MQm4yZMigUohKWZo0aRQspk1z5swpzZo1C68UYsNIRCmEHGI6N3369HoedjKjyoYpWEhh8+bNpUqVKvo1TNt+8803Mnny5HCpxHWsVqNGDZ1eRiwRpbBdu3Y6dQyBxfQwrovp4y5duqj8bdq0SXAMqpWeDeKZKVOm8I/++usvld1WrVppzKiSYioalUxMF6NSCvH0FE1Mu0N+v/rqKxVBCCIk0HPq+NatW4/dkHnz5qUUevVtyoNIgARIgAQClcDflcJXJGMK+959HBQU5BU+10uhVUGDPGHDSL9+/VTWMBWLyiAqZ5FtNPFWCsePHy8HDx7UymDEFnGjiacU4nis07POQ3UwV65cupEFlT1MEx85ckSnhdEwxYx1fJBCq+H8jh07yqRJkwQ3BAQ2YmUwsrsEQom+IX/ggHWMaFgjWbhwYf0vGsQZVUNUFbHGsECBAiq2WBv5pJ3antfjmkKvvkd5EAmQAAmQQAAT4PSxw5KLzR/Y6AF5QgUOMog1gJgOhSBFRwpReZw4caJOoWK9H8QJ6w/RJ9YcQkJRjYNoPU0Kjx07poI3d+5cXZOIaWRUHFHJRENVECKLKiPW7uGROFjjh79jIwrW8oWFhUnjxo21H4wFU+E4DusEIYnY+ALRvHDhgk5rozqIhuthWhhfwxpBTK+jYY0lxjV27FjdbQ02+DpkFA1VzF9++UUyZ84so0ePjjLLlMIoEfEAEiABEiCBACdAKXRYgrFrFmsIjx8/LvHjx9c1hVhbCLGpXr16tKQQO48xfXru3DmVLPz58ssvdRoWX0PD+kWsSXyaFOK4JUuWqOihgpkuXTrd3YsKIdrXX38tY8aMkcuXL+sO4ueee05jRiUP6xzRUF3E34cPH64VRaxHhMAhNjRsOsF0NzaVIB4I7N27d7WiiM0s2JENccS08bhx41QyP/roIxVDjAVrF7H+EdPraKhiYryYkvbm2YuUQod9IzAcEiABEiCBWCdAKYx15LF/watXr+qmDGt38MOHDwWfJU6cWMUzOg3nWY+piXgepm2tSp71NVwLsmg9OzHiOahU4rE6iAUNx6OCibeyYM0g1h1i4wwaJBFiiXWFL730kn6GdZGonlrnR2csnsdSCmNKjueRAAmQAAkECgFKYaBkMgDHgUfpYHcydhvfvn1bN5DgsTioMkIyfdkohb6kyb5IgARIgARMJEApNDFrLokZ08Z4JiI22KA6ic0j2GyCnda+bpRCXxNlfyRAAiRAAqYRoBSaljHGawsBSqEtWNkpCZAACZCAQQQohQYli6HaR4BSaB9b9kwCJEACJGAGAUqhGXlilDYToBTaDJjdkwAJkAAJOJ4ApdDxKWKAsUHAksJzf96MjcvxGiRAAiRAAiTgSAKT3iwomVLa90YTbwft+jeaeAuKx/meAKRw+/6jvu+YPfqcwMOHInhVYeLE/v+h5fPBBWCHeJRUcHCwPnqKzdkE8PxX5MvzHfTOjtjd0d2+fUef0BEnTrDPQaRNltDnfUa3Q0phdInxeJ8RgBSePHnSZ/2xI/sI4FmW2Jnu7UvV7YuEPXtDAM8ixT9c1mswvTmHx/iHwP379/UZtqlTp/ZPALxqtAjgjWFJkiSJ9vOGo3URPx5MKfQjfLdfmlJozh1AKTQnV4iUUmhOviiF5uQKkVIKzcoXozWIAKXQnGRRCs3JFaXQrFxRCs3KF6XQrHwxWoMIUArNSRal0JxcUQrNyhWl0Kx8UQrNyhejNYgApdCcZEEKMSX5pHdwmzMSd0SKTUF473p037PuDjrOGiXeJX/z5s3H3mHvrCgZjUXgxo0b+n2FNbuB2LimMBCzasiYIIVVBy00JFqGKQ9FJIgcjCCAXKExX0aki99bZqQJURbLmkrqFchAKTQnZYzUFAJ8eLUpmWKcJEACJEACIDC0dh5KIW8FErCDAKXQDqrskwRIgARIwC4ClEK7yLJf1xOgFLr+FiAAEiABEjCKAKXQqHQxWJMIUApNyhZjJQESIAESoBTyHiABmwhQCm0Cy25JgARIgARsIUAptAWr8zpdvny55M+fX7JkyeK84AI0IkphgCaWwyIBEiCBACVAKQzQxEYcVsOGDaVt27ZStmxZl4zY/8OkFPo/B4yABEiABEjAewKUQu9ZGX0kpTD200cpjH3mvCIJkAAJkEDMCVAKY87OcWdeuHBBPvjgA9m9e7c+Pf6dd96RJk2aaJyQwpdfflm2b98u586dk0qVKsmAAQMkSZIkgifOT5kyRebNmyfoo1atWjJixAjp1KmTFC1aVObOnavnvP766/Kvf/0r/K0P69ev1+POnDmj56C/zz//XOLGjatVSbT33ntPMmbMKD179tS/9+nTR4oXLy7p0qWTTz/9VPbt2yeQpzZt2mhMnu2///2vTJgwQXAdtMSJE+uxiPXUqVN6PYw1e/bs2n9kVdAnje3q1asyZMgQWbt2rbJq2rSptGrVSoKDg2XWrFly7do12bNnj+zcuVP7Rf84/sCBAxpnt27dJG3atE+9ByiFjvsWYUAkQAIkQAJPIUApDKDbA69+WrVqlRQrVkzOnj0rzZo1kyNHjkiiRIlUCi9evKgihVd5DRw4UEUOMgTx6dKli/Tr108KFCggEKacOXPqOb/99psMHjxYMmfOLD169JBGjRpJnTp1BK/CwRpFSBukrG/fvlK7dm1JliyZTJ8+XRYvXix4h2LhwoVVPCFTeJVYwYIFZf78+dK+fXvp0KGDVKxYUX744QfJkCGDZMqU6ZFsDB8+XK/z/vvvy5o1a1R40Q/EDbHlypVL49+xY4d8+OGH4WP17ORJYxs/frzs3btXx3T+/HnlMWrUKClUqJDga+PGjZPRo0dL7ty5lc3x48dl6NChOh4wLFWqlDRv3pxSGEDfPxwKCZAACbidAKUwAO+Au3fvyu+//y4NGjSQMWPGqIhBoqpXrx5eOcTGk5UrV8q0adNk2LBhKo6oDHo2nINzu3fvrh/PmTNHpQzytHnzZpk6dap88skn+jX0tWvXLoHIoRJ46NAhPQZVvqNHj8rYsWP1tTnoE300btxYq364Zpo0aSLNAo7FcahQompYsmRJ7ffOnTtSpEiRRyQQx6IyWq5cuUf6etLYatSooVVLCDQa4rt9+7ZWBCGFEE3IKxoqk5DcdevW6d+XLFmiFUZ8brXIBBFV2coDFsiqo+cD8C7jkEiABEiABAKNAKTw1RzJdAbRpPYkj4g4Ble9+/i7775ToTl48KDkyJFDK4CY+kX1C9LUokULqVy5sjLCsTVr1pSTJ09K1apVdTq0QoUKj0mh5zkQyW+++UYmT56sU6kLFy6U9OnT6zm4gVKnTq1T0OgPVcdFixapyKESiOok/kDqRo4cqdU5VN5QAUS1r2vXrhISEvLI9SdNmqQihmndrVu3CmQX8gbRRCVvxYoV4cejL1QQrWlq6wuRje3y5csqlZi6RkxoGzduVIFGn2D4119/afUTDQwhsogbDTHhs5kzZ4Zf/9dff33s+weCSik06ccKYyUBEiABdxOAFNbJn06XgZnU4sSJ41W4rpJCTBej8oWKmTVVi0qgJYV169aV+vXrKzjIHaZBUd2DMGKdXMuWLR+TQs8dy55SaMnnjBkzHksEqnMJEyZUaYLAQTwhcaGhobo+D9PPVjt9+rT06tVLp2Ox/tCzoTpYpUoVeeONN1TiSpQoof1iShxjgdii+ogGeUW/qIZ6tsjGBoHF9DikFVPgaOCEKfdBgwapFKJqaFVIIYCHDx/WKuiTpDCyu5FrCr36HuVBJEACJEACDiHA6WOHJOJZw4AEli5dWtfWlSlTRqc4MT3qWSmEDKEahjV+qKilSJFCRQfrAjds2KBr6LB28NKlS7oRJOKOZU8pRMUPgon1g6gGXrlyRatrWbNmlS1btkjnzp1VvDAFa033YoyYZsbawR9//FGrmWiICUKGaemlS5fq51jLh3NXr16tawkhf9iwgt8GsHYSVTisSUSMiAXTzFgjiDF59vGkseFcVCbBCLF37NhRq5Xol1L4rHcjzycBEiABEjCRAKXQxKw9IWaI4Mcff6xVLlQHIYHY0PHKK6+oPGF9INYBoqFCNnHiRK3e3bx5U3r37q0ChoZqGwTxaVKI47788kvdfYzNIGgQQcgW5BDXQgXQqj5i7SDWFm7atEmPRd8nTpzQyh9EEptZsmXLptPb1apV075Qafzoo4/06+gT40L82Oxx7NgxreRhFzJa//79dRoazbOPJ40Nm2mwgWTbtm16Tr169bRymiBBAkphAH1PcCgkQAIkQALeE6AUes/KiCMhgqjM4fEtkTV8HRKHXcIRG84LCwvTTSfeNlQoIVi4Xvz48b09TY+D6KEC6Hk99IUKHiqH2M2MtYTWur/PPvtMp3ExFW019IHjsZ7QalYfnmsMnjQ2VB2xdsKaho7WAKI4mNPHvqTJvkiABEiABOwmQCm0mzD7jxEBPArntdde0x3PmNL+6aefdL0fpncx1WtCoxSakCXGSAIkQAIkYBGgFPJecCwBrD/EDmesccSDtzENjh3T3u4y8vfAKIX+zgCvTwIkQAIkEB0ClMLo0OKxJBANApTCaMDioSRAAiRAAn4nQCn0ewoYQKASoBQGamY5LhIgARIITAKUwsDMK0flAAKUQgckgSGQAAmQAAl4TYBS6DUqHkgC0SNgSeGx//wVvRN5NAmQAAmQAAn4gUDb0lmlXoEMtjyRww/DeeySrnqjiROAM4b/EYAUbth9mEhMIPBQ5M6d25IgYUITonV9jPfu3ZPgoGCJE9e7V1u5HpgfATwMCxPkK36CBH6Mgpf2lsC9u3clS+oklEJvgfE4EvCWAKQQr/hjcz4BPG8Tu9zxMHc25xOI7Bmnzo/anRHev39fn2WbOnVqdwIwbNR//vmnvvUsus8dNmWYrBSakqkAjJNSaE5SKYXm5AqRUgrNyRel0JxcIVJKoVn5YrQGEaAUmpMsSqE5uaIUmpUrSqFZ+aIUmpUvRmsQAUqhOcmiFJqTK0qhWbmiFJqVL0qhWflitAYRoBSakyzrHd4pUqQwJ2gXR3rz5k19s1ECbl5w/F3w4MEDuXHjhiRLlszxsTJATh/zHiAB2whACluNX2Fb/+zYtwQehj2UoOAg33bK3uwh8FBEmCp72NrQK37pCgrybcKeS5pAWpTIakO07u6SlUJ355+jt5EAH15tI1x2TQIk4GoC/WvkohTacAdQCm2Ayi5JAAQohbwPSIAESMAeApRCe7hSCu3hyl5JgFLIe4AESIAEbCJAKbQHLKXQHq7slQQohbwHSIAESMAmApRCe8BSCu3hyl5JgFLIe4AESIAEbCJAKbQHLKXQHq7sNQIBvIEAO9CSJ0/uGjZcU+iaVHOgJEACsUyAUmgPcEqhPVxd3+udO3fk1KlTkjt3bmUxatQofVZVv379XMOGUuiaVHOgJEACsUyAUmgPcEqhPVxd3+vWrVtl7dq1MmTIEGWBh82GhYVJSEiIa9hQCl2Tag6UBEgglglQCu0BTim0h2vA9Hr37l2pWbOmNGvWTCZNmiTx4sWTevXqSfv27WXQoEGSOXNmeeutt3S8eJ1R7dq1pUWLFvLhhx9qZfD555+X1q1bC/pB9bBNmzZy4MABWbBggfa1cuVKeeGFF2TgwIHy1Vdfyddffy358+eX9957TwoUKKD9rl+/XkaMGCFnzpyRWrVqyYABAyRJkiSyb98++fTTT/W/EDD0XalSpUfY42n6U6ZMkXnz5smFCxf0fPR19epVFVaIa9KkSaVp06bSqlUrCQ4OllmzZsm1a9dkz549snPnTilbtqz07NlTj0fsuEa3bt0kbdq0T80zpTBgvg04EBIgAYcRoBTakxBKoT1cA6ZXiFyePHmkRIkSKkIQv/r168uGDRt0evijjz6SjRs36tPqv/32W5Un/P3zzz/Xr/fv319fRQUxu337tnTv3l1FC5LZrl07FcypU6eqJOIzCObChQvl5MmTeg7EEpI4YcIEyZ49u/Tt21fFs0GDBlK+fHnp0KGDVKxYUX744QfJkCGDZMqU6RH2uFaXLl102hqSCRnMmTOnjB8/Xvbu3Ss9evSQ8+fPq5RiirtQoUL6tXHjxsno0aN1+hvnHz9+XIYOHSqFCxdWKS1VqpQ0b96cUhgwdzoHQgIkYBIBSqE92aIU2sM1YHq1pHD69OlSpkwZHRdErHTp0lKnTh2VqNmzZ0vevHnl/fffl+eee046deqkn504cSJ8+hiiFVEKDx8+LIkTJ9bqGyQPUonzf/nlFxW9H3/8UbZs2aLS+Mknn+i1UVnctWuXzJgxQxo2bKgVQlwvTZo0kTIfNmyYJEqUSI/xbDVq1JA+ffpIsWLF9OOxY8dqfJBaxLpjxw6ZP3++fg1yunjxYlm3bp3+fcmSJVphxOdWgzBHbMuXL5fKAxbIqqPnA+Z+4EBIgARIwAkE+r2WU+rne04wG8TmOwL37t3T94pj1sykljJlSq/CDXqILa9sMSZgSSEqbpZ4QaZQbUNlD1OxmBpGxQ2CiClgVPSikkJU5tasWaNxocoHKTx06JD+/ffff1dZw+eQOlQO06dPr1/DD4DUqVPrdDAqfKjeoR9M/3bt2vWxNYtVq1bVCmeFChXCGVy+fFmKFCmi087WbmhUN8eMGSMrVqxQKcRuaVQl0ebOnaviOnLkSP075BCfzZw5M7xPCG7EhioopTDGtx5PJAESIIEnEuhfPZc0LZJJn2rB5jsC169fl4QJE0rcuHF912ks9BQ/fnyvrkIp9ArTkw+ypHD//v2SLFkyPdBTCjHNCyEbPny4TrcuW7ZMj4lKCnG8dSzkD9PGqABGlMKJEyfKwYMHtTL4pHb69Gnp1auXTuliLaJnQzURawBbtmwZ/jHEElK7aNEinZpGmzZtmpw9e1bXSXpWNfE1CCCkDzGjRSaFkcXGNYXPePPxdBIgARJ4AgFOH9tza3D62B6uAdNrVFKIgdatW1erhaj2NWnSRMeOzSEQOky7ohQdcfrYWyk8cuSIrmHE9HXJkiXlypUrWsXLmjWrTi/nyJFDr4cqH6QO6wKXLl2qn2M9INYiYv0jhBWbYi5duiTp0qXTKXDshIbgos+OHTtqpbFcuXKUwoC5ezkQEiCBQCVAKbQns5RCe7gGTK/eSCEqbpAra00gBo8NIm+//bacO3dOd/XeunXrkTWFT5PCP/74Q4oWLarTx1jX8OWXX+o0NfpE69y5s0odqoBYt4hSNyRx8ODBki1bNqlcubJUq1ZNj8OjcHr37i2rV6/Wc6tXr66CiA0n2ECybds2/RxTvdhAgk0xrBQGzO3LgZAACQQoAUqhPYmlFNrD1VW9zpkzR/BcQkzBRmyQL1TkUC18loZ1I+gLG1M81w6gaohH22AzidUiuybkFs9J9DwOx0NWsXYCffi6cfrY10TZHwmQAAn8TYBSaM+dQCm0h6sreoV84dmBqAhCDPHoGrb/EaAU8m4gARIgAXsIUArt4UoptIerK3rFMwqPHj2q07h4KDTbowQohbwjSIAESMAeApRCe7hSCu3hyl5JQJ+hyEfS8EYgARIgAd8ToBT6nil6pBTaw5W9kgClkPcACZAACdhEgFJoD1hKoT1c2SsJUAp5D5AACZCATQQohfaApRTaw5W9kkC4FO44/TtpkAAJkAAJ+JDAexX+IS1KZPVhj+yK08e8B0jARgJYU7hmx0Ebr8CufUkA7/y049FEvoyRff1NAG8lCgoKMu79rG7MHx4n9uDBfYkb1/eP/coeGuJGpLaOmZVCW/GyczcTgBTiNYBszieAf7jwtpvQ0FDnB8sI9a1GEZ9PSizOJHD//n19xizeWc/mfAKUQufniBEaSoBSaE7iKIXm5AqRUgrNyRel0JxcIVJKoVn5YrQGEaAUmpMsSqE5uaIUmpUrSqFZ+aIUmpUvRmsQAUqhOcmiFJqTK0qhWbmiFJqVL0qhWflitAYRoBSakyxIIX4YpkqVypygXRzpjRs39J3lCRIkcDEFM4aOTUHXr1+X5MmTmxGwy6OkFLr8BuDw7SMAKez/xQb7LsCefUfgoUhY2AMJjhPHd32yJ9sIhIWF6e5j/GFzNgH8wlXkheTyUvqUzg6U0SkBSiFvBBKwiQBfc2cTWHZLAiRgDIGMKRLJjLdephQakjFKoSGJYpjmEaAUmpczRkwCJOBbApRC3/K0uzdKod2E2b9rCVAKXZt6DpwESOD/E6AUmnUrUArNyhejNYgApdCgZDFUEiABWwhQCm3BalunlELb0LJjtxOgFLr9DuD4SYAEKIVm3QOUQrPy5eholy9fLvnz55csWbLIxYsXJWXKlJG+SxZvI8CONOsRBX/88YesW7dObt++LQ0bNpREiRI5epzeBkcp9JYUjyMBEghUApRCszJLKTQrX46OFkLXtm1bKVu2rNStW1feeecdqVy5svz3v//VF9hnyJBB4x81apTgOWP9+vXTv5cvX15ef/11SZcunTRo0CDaj5k4ceKEiqjTZJJS6OjblcGRAAnEAgFKYSxA9uElKIU+hOn2rjylENW/FClSSJw4cWTkyJECQapZs6YiunnzpuA5YyEhIXLmzBmpXbu2HDx4MNoyaPGGgI4bN04yZszoqBRQCh2VDgZDAiTgBwKUQj9Af4ZLUgqfAV4gnnrgwAFZsGCBxI8fX1asWCGhoaHSq1dsWewoAAAgAElEQVQvreahnTp1SgYMGCC7d++W7NmzS8+ePbUyiOYphZ06dZJGjRrJyZMnZeDAgZIkSRJ9WwTkbf/+/XLnzh0pXLiw9O7dW/t8/vnnpU2bNvLGG29o/5hORkMFEdeAXF69elUGDx4s69ev16/16NFD41i9erWkTp1aEidOLBs3bnxELlGhnDJlisybN08uXLggtWrVkhEjRmhfQ4YMkbVr10rSpEmladOm0qpVKwkODpZZs2bJtWvXZM+ePbJz504dH2LA8eBTqVIl6datm6RNm/aptwClMBC/QzgmEiCB6BCgFEaHlv+PpRT6PweOigAS1KxZMxUkCNqaNWtk6tSpKnIQM4hfrly5VKJ27NghH374oRw5ckSnbj2l0Pr/okWLSseOHaVixYry2muvqbhNmjRJ1w926dJFdu3aJf379xesR0yYMKGuQcT/v/TSS/oKq5YtW8rw4cOlUKFCMn78eL0mhAwSCHHFusV8+fKpwGbKlEmrj54N48F1MFVdoEABlcGcOXNqX3v37lWxPH/+vIorprWt60BeR48eLblz59bzjx8/LkOHDlWRhbSWKlVKmjdvTil01N3LYEiABJxGgFLotIw8PR5KoVn5sj1aSwoPHTqk1T00iB3EENJVpEiRcAm0qoNYO1iuXLlIpRBVtnbt2smrr74aPn0MIYMUdu/eXStvqERalUHPAWKzyrBhwyRHjhy6VrFGjRpaWSxevPgjHFCR27JlS6TTxzgfworKpWdDX3369JFixYrpx2PHjtWYUBG05HP+/Pn6NVQaFy9eHB7jkiVLtMKIz60GYYzYZsyYIZUHLJBVR8/bnjdegARIgAScSEClsGl+SRfCV0g6MT8RY7p7966+VxyzZiY1b9+tHfQQ21zZvCYAKfzggw8ekTRIX8mSJXUjCCpoqMp5yhBuHshUZJXC6EohXpw+aNAgreKhGogpX0xDo28IKT7HWkXP9jQprFq1qlYWK1SoEH7K5cuXta99+/aF74DGtPOYMWN0bJBC7JDu27evnjN37lyVV6yNRIPA4rOZM2eG97lp06bHGOtGG0qh1/ceDyQBEgg8AiqFzV6WLKkC46kSgZehR0eETaCYpYMYmtQw0+hNoxR6Q8njGEghKnuoFFoN6wnfffddyZYtm+4q/u6778IfNdOiRQupU6eOVK9e3SdSiIokxG/ixIk6PdyhQwedwsVUbd68ebVih/9GlMLNmzdrJTNig0xiDSCmoa2GdYaYQl60aJE+Qgdt2rRpcvbsWRVSz0qmJYWHDx/WaewnSWFkmLmmMJo3Hw8nARIIOAKcPjYrpZw+NitftkdrTR9jOhSbMlABg5ht2LBBN51gmhh/h2xBHBs3bhxevXtSpRAbNFBNxDQx2tOmjzGlmyxZMj0W8okdy1jT1759e60YQvxQwcNvMtjFjGoiqoGYirY2wyxdulSnnCGTEyZM0NixPjBz5sxy6dIlrXhiDFh/iOtduXJF1z127dpVx0cptP024wVIgARcQoBSaFaiKYVm5cv2aCGFkC7srMX0Khqmk5s0aaL/f+zYMRUw7BhGwyYRbDpBe5IUHj16VNf03bt3Tz755BPdMWytKYRYYrOHtaYQ/UPOsJ4Qu5VLly6tMgop/Pnnn6Vz58666cMzLlQPUeHD8atWrVKRrFatmh4LccQ6ROxQRkNFE4KIDSeQzW3btunn9erV0w0kkE1Koe23GS9AAiTgEgKUQrMSTSk0K1+2RwspxDTpsmXL9AHTmKfHruOIDWvuUGnzdjEqlnZCxCKuB3zSgNA/KoaRtcjWPGBxLP4gJlwH//WMG4/AwbMRIz7g+tatW7p2Aruefd04fexrouyPBEjANAKUQrMyRik0K1+2R+sphbZfLMAvQCkM8ARzeCRAAlESoBRGichRB1AKHZUO/weDXbZ41Irn41b8H5WZEVAKzcwboyYBEvAdAUqh71jGRk+UwtigzGu4kgCl0JVp56BJgAQ8CFAKzbodKIVm5YvRGkSAUmhQshgqCZCALQQohbZgta1TSqFtaNmx2wlQCt1+B3D8JEAClEKz7gFKoVn5YrQGEbCkcM2xCwZFzVBJgARIwHcE0idPKDPeelleSp/Sd52yJ9sIUAptQ8uO3U4AUrh6+wG3YzBi/HgX5oP7DyRuXL6f1YSEPQgLk6CgIAkOCjIhXFfHiO+th2H3KYWG3AWUQkMSxTDNIwApPHnypHmBuzBiPEcTb7vBg9LZnE8AzzHFs0UjPnfU+ZG7L8L79+/rs2Px9ik25xOgFEaSI/zj8Oabb+p7dpMmTer8LDJCRxKgFDoyLZEGRSk0J1eIlFJoTr4ohebkCpFSCiPJ13/+8x8pU6aMvuYtefLkZmWU0TqGAKXQMamIMhBKYZSIHHUApdBR6XhqMJRCc3JFKXxCriiFZt3ETo2WUujUzDweF6XQnFyxUmhWriiFZuWLlUJWCs26Yw2KllJoTrIghZcvX+a6J0NSdv36dX1nOd7NzuZsApRCZ+cnYnSuk8J79+7JokWLnpolQBkzZgynj826lx0XLaRwwrJtjouLAUVO4D53Hxtza4SFhYlIkAQH+3b3cfbQEMn2XIgxHEwIlFJoQpb+F6PrpBC/Yb7++uteZWn58uXcaOIVKR4UGQE+vJr3BQmYQyB1SHxZ+E4xSqGPU0Yp9DFQm7tznRTazJPdk0A4AUohbwYSMIcApdCeXFEK7eFqV6+ulkLsYEuSJInEifPoA2tv3LghkyZNkvbt2+vX2UggJgQohTGhxnNIwD8EKIX2cKcU2sPVrl5dKYW//PKLdOrUSY4fP67S16pVK+nYsaMyXrNmjXz44Ydy+/Zt2bFjB6XQrjvPBf1SCl2QZA4xYAhQCu1JJaXQHq529epKKWzXrp388MMP0rp1a7ly5YpMmTJFunTpIps3b1YRbNSokUojn8Bu123njn4phe7IM0cZGAQohfbkkVJoD1e7enWlFOIf69GjR0v16tWV67hx42T8+PFSsGBB6d+/v+TKlcsu3rb0u3fvXsE3XrFixSLt/9y5c/L888/bcm12+mQClELeHSRgDgFKoT25ohTaw9WuXl0nhdh9/PLLL8v69evlhRdeUK47d+4UVA8PHjyoL1k3rUFoMd3dvXv3x0K/efOm5MuXT8eYJk2aGA/twIEDUqBAgRifb+eJJ06ckCxZsjjuPaiUQjuzzr5JwLcEKIW+5Wn1Rim0h6tdvbpOCvFi7ldeeUW+/fZbee6555TrkSNHpFmzZnLo0CG7ONva79OkEBe+ePGihIaGxjgGMKtdu7Zs2rQpxn3YeWLdunW12psxY0Y7LxPtvimF0UbGE0jAbwQohfagpxTaw9WuXl0rhQBq7SzGbmPPv1uw//3vf0uyZMl8wh5rF+vUqSPLli3TPvFe5R49esgXX3yhMoNqV69evfTr8+bNk88//1xlrnz58vKvf/1Lj/njjz9k6NChsmHDBpW8mjVrSocOHXTqG5tncA30W6JECXn33XclZ86ccvfuXXn11VdlxYoVEi9ePD0HAozd1fh7vXr1dJc1GqQY6ytRVUyaNGn48atWrZIzZ87oFDSm2EeMGCGnTp2SAQMGyO7duyV79uzSs2dPKVu2rPaD9ZhFixaVuXPnCqau8VxIjAHvkUbFccGCBRI/fnyNCePAuDFOtKf1u3DhQj339OnTKva9e/dWGVy9erWu/0ycOLFs3LjxkWrvgwcPdExgeuHCBalVq5bGD9EdMmSIrF27VsfatGlT3XAUHBwss2bNkmvXrsmePXuUBcaF8eF4xF+pUiXp1q2bpE2b9qn3BqXQJ9867IQEYoUApdAezJRCe7ja1avrpBA36DfffOMVzypVqqgY+apVrlxZ3n//fSldurQMGzZMPvvsMxk0aJA0bNhQ5RBrAyE5qGLiMTlZs2aVgQMH6hpHiBvesoJXcXXt2lXwfma8nQVTw5BCnAdhxLrCqVOn6nTy8OHD5c6dO5InTx7Zv3+/JEiQQP8f0gipAYv69eurZGL6FcL01ltvyWuvvaYC5PlmF0gmptzxaqlEiRJpzIgLMoXNOdixjYqr9bXffvtNBg8eLJkzZ1b5xeYdSDEkC1IKAXvjjTd0tzfiRXwY85P6RSxlypRRkYQAHj16VMeK15OBAT7PlCmThIQ8+jYCXA+biPr166fT35BByDKYgTdiO3/+vHIeNWqUFCpUKJwn1p3mzp1bz8dOdfAtXLiwynCpUqWkefPmlEJffXOwHxLwMwFKoT0JoBTaw9WuXl0nhXaB9KZfCCCqUp07d9bKGOTrxx9/1EoWKn4QDUiR1SAwX3/9tVa/Zs6cKWPHjlWpgsDkyJEj/DgIDo5BlRENVUf0g8pfZFI4ffp0FSw0XBeSimpe3rx5ZevWrZIhQwZBdRDXxCsBv/vuO3nnnXdk27a/X9kGMS1SpEi4BOIzXA/HlCtXTv8fFUVrjeOcOXO0wgbpsqQQsVmVWlQVIYaQuif1i/7wB0KG6WLPd56iIrdly5ZIp48h3xBVVC89W40aNaRPnz7hm3PAFiKNiiB4QnTnz5+vpyA/ixcvlnXr1unflyxZohVGfG41z/+3Phs5cqRUHrBAVh09783twWNIgAT8SABSOK9lYUkfEuzHKALv0vjFHf8O8T3VZuQWuUIxDLNmJjW4lTct6CHuyAgNshVZAwRvO/bm4hGPQaUN1UFU0Jo0aaLVreLFi6u8oXq3dOlSrQ5OmDBBpQwNlTlMu0KskKzJkyfLxIkTpVq1alrlwrQyJAZTx6iGoaFKhynPkydPRiqFnptOIEaonKF6hz+owlWoUEGnr1FFhOBFlEKMA5VJxG81VNHAD1KFc1q0aCGojKLhdYGoziJ2XPuDDz4IFyx8HTJZsmRJSZcu3VP7RTURFUxMH6N6hyolrvk0KaxatapWRTEmq1lSi6l2sEWDVKMSizGBJx5s3rdvX/0apsEhtZA8NMghPoM0W+2rr7567JbA9DalMCbfKTyHBGKfAKRwfqsikjFZ3Ni/eABfEUt48As3XwRhRpKxORXLu+AeJjUsH/OmPSaF1kaTJ52MGxfTgtiNDDC+bBA3TE9CaLA+EBIHgapYsaKgerdr1y6VDwgVnpmYMmVKlUEIFf5rNfTz8ccfy08//aTVrIgbTaKSQsiVtVbSUwohRlYlDtXD/Pnzq3RFlEJME6Nah8+t6XXEjOlhPOYHY2rbtm34GsOIUgi2npt6UDXF9HS2bNme2q81/u3bt+vDxrEuElINKQQvVBojNsSCNYAtW7YM/xJ+SEGEUQXFGNGmTZsmZ8+e1en8iDwhgIcPH9bp+CdJYWT3CdcU+vK7h32RgL0EOH1sD19OH9vD1a5eXTd9DCE4duxYpDyx4QRVIEzDvvnmm5E+4uVZE4F1ez///HO40EAGURlE5Q9VMAgUqnSYroQ4tmnTRtfJQQqx2QNr9LD2DmL00Ucf6Zo8X0khplghVqgQYv1h+vTpdbiIA1O82FSSKlUquXXrlk4TY+rZmqZu3LixrtFLkSJFlFKIiiQqi2CBHc3ox9o886R+Iei4WVEZDQsLE1wPO6IbNGggqAZiqtrarIKKK6bXsR4QbNE31geC3aVLl7QiiWuCK6QYkg3JxFpNXJ9S+Kx3Oc8nAfMIUArtyRml0B6udvXqOin0BiSqb6jiYXOBr6uFmILE+jOrb6wpxNpC62HaEFNswvj+++81VFS4IFuzZ89WwYEcojoHocGuXawN9IUUQu4wzYod19gRbD3GBjt+IXp4qDfWN2KaF3FArCFi2C2Mhq9jOhctqkohpmWxcxfTt2iYTsZ0OtqT+sXGGgggGjbYYMMHKndYLwiBRoUPwoppd+ywhmRj7SZK4ZjGxQ5lNFQywRoVY1RsrXWS2IWNKilkmFLozXcJjyGBwCJAKbQnn5RCe7ja1SulMBKyqCZhWhJVQ6zx80fDI1EwlR1xsSeWSOIB3L5e+4ipVGye+PTTT8PXEuA1gFibiKopGoQV6wwgTlbD2jsIqreLUrGmEDKHaiz6w+JjVD4jtsj6xdixHhCSGvEcPHoHfxALhA//9TwG6zFRYYREejZUPTEmX+4yt/rn9LE/vnN4TRKIGQFKYcy4RXUWpTAqQs76OqUwknygWoWpSWsnrrNSZk80K1eu1OfzoYqGBZtg8N5772lVEzuCfdU8pdBXfTq1H0qhUzPDuEjgcQKUQnvuCkqhPVzt6pVSGIEsqk1Yq4e1fdj04W0FzK4ExVa/WGuJ3cFYf4cKGzbEYKoYf3zZwBSiGdkjXHx5HSf0RSl0QhYYAwl4R4BS6B2n6B5FKYwuMf8e7zopxNZ4PC8vsoYpW2zcwLQm1pXhTSBsJBBTApTCmJLjeSQQ+wQohfYwpxTaw9WuXl0nhVhDhg0IkTWsLXvhhRd04wfe1sFGAs9CgFL4LPR4LgnELgFKoT28KYX2cLWrV9dJoV0g2S8JRCRAKeQ9QQLmEKAU2pMrSqE9XO3qlVJoF1n263oClELX3wIEYBABSqE9yaIU2sPVrl4phXaRZb+uJwApnLdhj+s5GAHg4UPBZqs4hr3ayQi2NgQZ9uCBBAUFSZCP38+aMnE8yfZciA0Ru7dLSqFZuacUmpUvRmsQAUgh3j/N5nwCeAbm77//Ls8995zzg2WEgk2BeLYonnPK5mwClEJn5ydidJRCs/LFaA0iQCk0J1mQQjy0Hm/zYXM+ATzcHlIY8WH0zo/cfRFSCs3Kueul8Ny5c/LFF1/o69rwajS87gzVnR9++EFficZGAjElQCmMKbnYP49SGPvMn+WKlMJnoRe751IKY5f3s17N1VKI18Xh4cyYgsBbPGrVqqVv8cC7hhs3biyHDx/Wz9lIICYEKIUxoeafcyiF/uEe06tSCmNKLvbPoxTGPvNnuaKrpXDGjBn6fuN58+bJuHHjdOEypBCy+PLLL+u7gF988cVn4ctzXUyAUmhO8rmm0JxcIVKuKTQnX5RCc3KFSF0thV27dpVMmTIJ/jt27NhwKfzll1+kYsWK+sq3LFmymJVRRusYAtx97JhURB0Idx9HzchBR3D3sYOSEUUolEJzcuV6KUSl8PPPP5dly5bJnDlzVArbtGkjH3/8sSxZskT279+v7wFmI4GYEOBzCmNCjeeQgH8I8DmF9nCnFNrD1a5eXV0pxCvvGjVqJMePH5ckSZLo2sI//vhDWfPdx3bdcu7pl1LonlxzpOYToBTak0NKoT1c7erV1VIIqLhhV65cKUeOHJErV65I5syZdddx9uzZ7WLOfl1CgFLokkRzmAFBgFJoTxophfZwtatX10uhXWDZLwlQCnkPkIA5BCiF9uSKUmgPV7t6dbUUojq4Z88eadWqlfLdtWuXfPLJJ5IqVSrp1KmT5MqVyy7u7NcFBCiFLkgyhxgwBCiF9qSSUmgPV7t6dbUUfvbZZ/osQjyOBusLixUrJmXKlJHkyZPrdDI2oLCRQEwJUApjSo7nkUDsE6AU2sOcUmgPV7t6dbUUdu/eXV566SWtFC5evFgGDRokO3fu1B3HuXPn1odYp0iRwi727DfACVAKAzzBHF5AEaAU2pNOSqE9XO3q1dVSOHnyZH1QY8+ePXVzSZ06daR169bKOn/+/LJixQp5/vnn7WLPfgOcAKUwwBPM4QUUAUqhPemkFNrD1a5eXS2FR48eVRGE+F2+fFm2bt2qU8d4eHXNmjXl4MGD+uxCNv8RuHr1qgwePFjWr1+vQfTo0UNfQXjo0CHp16+f4N3VmPLPmDGjFChQQB867tkePHggU6ZM0bfWXLhwQV9lOGLECEG/Q4YM0bfWJE2aVJo2baoV4+DgYJk1a5a+MQHrTVE5Llu2rP7igOMPHDgglSpVkm7duknatGmfCoZS6L/7hlcmgegSoBRGl5h3x1MKvePklKNcLYVIwq+//iqbNm1SsbDeXnLixAn5/vvvpXbt2k7Jk2vjwPMid+zYoRKWOnVqiR8/vgpg1apVpXTp0iqIX3/9ta4LHTlypMq8Z4PUdenSRQUS0ggZzJkzpz6HEssDIJnnz5+XgQMHyqhRo6RQoUL6NfQ3evRoXUaA8/Esy6FDh0rhwoVlwIABUqpUKWnevDml0LV3JgceaAQohfZklFJoD1e7enW9FNoFlv36hkCNGjWkd+/eUrx48fAOL168KCVKlBBUevHAcVQDIXqRSeGwYcMkUaJEupvcs6HfPn366OYiNLzm8Pbt21oRtER0/vz5+jVUGrHmFO/JRsPbblBhxOdW++qrrx4bMOKuPGCBrDp63jcw2AsJkIBtBCCF81sVkYzJ4tp2DTd2jJ/P+NmKF0SwOZ/AzZs3tfgSN65Z3weJEyf2Cm7QQ7zp/gkNv8HgH/c1a9ZotShiwzRiSEiIVxfiQb4ngCn9IkWKPLbhB++khsRhzafV8Gaahg0bPlYpREURVcYKFSqEH2v1u2/fPl0ugLZx40YZM2aM9gkp/Ouvv6Rv3776tblz5+q0MaQTDXKIz2bOnBnep6cgWh/ieEqh7+8L9kgCdhCAFM5rWVjShwTb0b1r+8Q/wXfu3NFf4NmcTwC5ihcvni6lMqlhGZg37alSuH37dp0CbNCggZw9e1aSJUumICCJnTt3lrZt2/Ldx95QtukYPCYob968WqXDf6125swZqVy5smCa33o3ddGiRbWiGHH6GKKINYAtW7YMP9+qLC5atEg3FKFNmzZN7wHsQIcU4jdb7E63pBCPLho+fPgTpTAyBFxTaNONwW5JwAYCnD62Aer/f2sYlu1g+Q+b8wm4evoYGwfQMI0IEYBpvv3227Jlyxbp1auXrmWzpMP5qQzMCFEBzJQpk1btEiRIICht44cLJBDrASGB27Zt013j1vTx0qVLJUeOHLoecMKECYLKItYH4hWGly5dknTp0kmHDh20Cozc4/WGHTt2lK5du0q5cuUohYF5K3FUJPBUApRCe24Qrim0h6tdvbpaCvv3768iiIoQ1o/t379fd6beu3dP32YCmbA2n9iVAPb7dAI///yzVm2x0QPtgw8+kCZNmmg197333tPPIH+Q92bNmqkkoopYrVo1PQ8SiQri6tWr9Vg8egiCiN9csYEEQolWr1493UAC8WSlkHclCbiPAKXQnpxTCu3halevrpZCiCDWDUIwsGasRYsWMn36dJ06xLQyPvN2ntquBLHfvwncuHFDhc1z8SumgSF9yFG7du3k1VdfVSmE8KEK6FnlxTqJsLAw3XTi2TBFjT6xhsLXjdPHvibK/kjAPgKUQnvYUgrt4WpXr66WQsjD7t27tbKExbAQQUwZo2EtGtaXsZlBwFMKnRIxpdApmWAcJBA1AUph1IxicgSlMCbU/HeOq6UwIva7d+/qu5DTpEkjWbNm9V9WeOVoE8BzCPGsyYgPr452Rz48gVLoQ5jsigRsJkAptAcwpdAernb16lopRGUQjx2xHkmCqUW8JQNvMylYsKBuSmAjgWchQCl8Fno8lwRilwCl0B7elEJ7uNrVqyul8NixY/pKsz/++EMfdYJ3IH/00UfhmxEAG8+hw9st2EggpgQohTElx/NIIPYJUArtYU4ptIerXb26UgqxSxWPJnnnnXcEzyr8/fff9Rl1eM1ZypQp9R23eOyJ9cgau+Cz38AmQCkM7PxydIFFgFJoTz4phfZwtatXV0oh/rH+9NNP9S0X2Gn8z3/+U59zh+feoX377bfSvn17fUQNn1No160X+P1SCgM/xxxh4BCgFNqTS0qhPVzt6tV1UohHmOTLl082b96sD0VGw3twUTXEM+zQAKVw4cLi+Ro0uxLAfgOXAKRwwrK/n4PI5nwC9+8/kLhx4zg/UEaoj5cSCZLg4CCf0sgeGiLZnuOrTX0JlVLoS5r29+U6KcRjaF555RXZs2ePThWj4fEzeEYhHk2Dhg0o2GxCKbT/BgzkK0AKT548GchDDJixYeMZ3onNV3GZkdLr16/r80X5Pl3n54tS6PwceUboWiksX768PgwZ7d///rdky5ZNMmbMqH/Hg443bdpEKTTrXnZctJRCx6XkiQFBCrHOODQ01JygXRwpfnHHA+cjPozexUgcO3RKoWNTE2lgrpNCvMFi6NChXmUJr0fjDx2vUPGgSAhQCs25LSiF5uTKms2hFJqRM0qhGXmyonSdFJqVHkZrMgFKoTnZoxSakytKoVm5ohSalS9KoVn5YrQGEaAUmpMsSqE5uaIUmpUrSqFZ+aIUmpUvRmsQAUjh6u0HDIrYvaE+FJEH3H1szA3wICxMsqZKGL4u3JjAXRgopdCspFMKzcoXozWIgPWcwjXHLhgUNUMlAecTaFf2RXmvbFZKofNTJZRCA5LkESKl0Kx8MVqDCPDh1QYli6EaRaBDuWyUQkMyRik0JFH/P0xKoVn5YrQGEaAUGpQshmoUAUqhOemiFJqTK0RKKTQrX4zWIAKUQoOSxVCNIkApNCddlEJzckUpNCtXjNYwApRCwxLGcI0hQCk0JlVcU2hOqjRSVgoNS1hshov3ix44cEB2794tRYoU0dcDsnlPgFLoPSseSQLRIUApjA4t/x7LSqF/+Uf36pTC6BJz0fErV66UiRMnSqtWrSR79uySL18+F43+2YdKKXx2huyBBCIjQCk0576gFJqTK1YKzcpVrEfbvXt3KVCggDRq1CjWrx0IF6QUBkIWOQYnEqAUOjErkcdEKTQnV5RCs3IVq9F+8MEHMnfuXEmSJImkSpVKNm3aJKdOnZIBAwbodDIqhz179pSyZcvKl19+KTt37pTx48dLUFCQzJkzR/bu3Stjx46VTp06SdGiRbWvc+fOyeuvvy7/+te/JHny5Dqe9evXy4gRI+TMmTNSq1Yt7f/zzz+XuHHjStu2bfWY9957TzJmzKjXQ+vTp48UL15c0qVLJ59++qns27dPIGBt2rSRSpUqPcLpwYMHMmXKFJk3b55cuHBBr4HrXT6X8FIAACAASURBVL16VYYMGSJr166VpEmTStOmTbUiGhwcLLNmzZJr167Jnj17dFwYI66N4zGdjmt069ZN0qZN+9ScUApj9ZblxVxEgFJoTrIphebkilJoVq5iNdqbN2+qZNWpU0cqV64sISEh0rBhQ8mVK5cK1I4dO+TDDz+UI0eOqAhC9nB8oUKFpGbNmrJo0SIVNZzz22+/yeDBgyVz5szSo0cPrTyi3xs3bkj+/PllwoQJKpl9+/aV2rVrS7JkyWT69OmyePFiXfRauHBhlVMIGV5HVrBgQZk/f760b99eOnToIBUrVpQffvhBMmTIIJkyZXqEE6SuS5cu0q9fP616QgZz5sypAgtxRTznz5+XgQMHyqhRozR+fG3cuHEyevRoyZ07t55//PhxGTp0qMYCcS1VqpQ0b96cUhirdyUvRgJ/E6AUmnMnUArNyRWl0KxcxXq0LVq0kDfeeENeffVVuXz5sm42gQQmSpRIY4HwvfPOO1KuXDn9vFmzZpItWzY9vnXr1uHHQOIwFY2GKiLkDgK2efNmmTp1qnzyySf6Naxh3LVrlwwfPlwrgYcOHdJjUE08evSoVh7jxYun10UfjRs3VvFENTJNmjSR8hk2bJjGi2M8W40aNbTiWKxYMf0Yfd++fVsrgpBCSC/EEw2VRgjqunXr9O9LlizRCiM+txoqqREb2FQesEBWHT0f67njBUkgkAlACjuUyqyVfTZnE8Bsza1bt7SwwOZ8AijWJEiQQGfrTGoJEyb0KtyghygtscWIgKcUQsxQPVuxYkV4X6ic4YeyNa3brl072bBhgxw7diz89VMQOPSDaiPa8uXL5ZtvvpHJkyfrdOzChQslffr0+jX88EidOrVO9VatWlWre6g4lixZUiuBmHLGH8jiyJEjtcKHGNasWaPVy65duz72gwf9YKq3QoUK4XFbgotpZ2sae+PGjTJmzBgdH6Twr7/+0solGqa+IaG4JhrkEJ/NnDnzERYRIc+YMYNSGKM7jyeRwNMJQArbFs8oeEICm7MJ4J/gu3fv8pWEzk5TeHTIFYTQtF+4rH/Lo8JMKYyK0FO+7imFqATWrVtXvvvuO63WoeHrmAauXr16eKXwhRdekNdee+2RSiHWBmJdXkQphHwdPHhQIE8RGyp8MH+IF4T05MmTKqWhoaHaF65rtdOnT0uvXr10ShfrDz0bpBRrAFu2bBn+MeQTU8gQTkxfo02bNk3Onj0rgwYNUilE1dCqbkIADx8+rBXMJ0lhZBi5pvAZbj6eSgJPIcDpY3NuD04fm5MrRMpH0piVr1iN1lMKUf7HNDHW8EG0UK3D9C3W5aHUjHWEkD9MFeP/MfUK8cKxT5JC9FG/fn1dP4hq4JUrV7RClzVrVtmyZYt07txZ+0Bfd+7c0elrNEwzY+3gjz/+KDly5NDPUOWD1GFaeunSpfo51gNivSKql1gfiDWNly5d0g0qGAemMzCFjOt27NhRK40YI6UwVm8zXowEok2AUhhtZH47gVLoN/QxujClMEbY3HESpLBBgwZSpUoVHTCmhVE9wy5ktP79++u0Lap6qNZhfaC1+3jBggWybNkyefPNN58ohegDO5exGxjrGNAgghA2yCEEExVAq8qHdYFYW2it34NwnjhxQiuKEElsZsGaRkxVV6tWTfvChpnevXvL6tWrtX9UNSGI2HCCDSTbtm3Tz+vVq6cbSCC4lEJ33N8cpbkEKIXm5I5SaE6uECml0Kx8OSJaCBuqbL5ac4A1J5C0xIkTS/z48aM1RsSC6Wxr8wtORl+IL06cOOF9odKI9Ueex+GLqIBi/YQ1JR6ti0dxMKePfUmTfZHA/whQCs25GyiF5uSKUmhWrhitYQQohYYljOEaQ4BSaEyq+O5jc1KlkbJSaFjCGK45BCiF5uSKkZpFgFJoTr5YKTQnV5RCs3LFaA0jQCk0LGEM1xgClEJjUsVKoTmpYqXQsFwxXMMIUAoNSxjDNYYApdCYVFEKzUkVpdCwXDFcwwhQCg1LGMM1hgCl0JhUUQrNSRWl0LBcMVzDCFAKDUsYwzWGAKXQmFRRCs1JFaXQsFwxXMMIQAr7f7HBsKhdGu5DkbCwBxLs8Rgjl5IwYth4vFTDghn46jQDssWNJgYkySNE7j42K1+M1iACkEK8no/N+QTwrEz8MEyVKpXzg2WE+rB7PF8UD5tnczYBSqGz8xMxOkqhWflitAYRoBSakyxIIV6BiHdrszmfQGQPrXd+1O6MkFJoVt4phWbli9EaRIBSaE6yKIXm5AqRUgrNyRel0JxcIVJKoVn5YrQGEaAUmpMsSqE5uaIUmpUrSqFZ+aIUmpUvRmsQAUqhOcmiFJqTK0qhWbmiFJqVL0qhWflitAYRgBSu2XHQoIjdHeq9e/ckXrx47oZg0+izh4b4tGdOH/sUp62dUQptxevzzimFPkfKDkngbwLWcwp3nP6dSEjAtQS+altcKIWuTT+fU2hY6imFhiWM4ZpDgA+vNidXjNQeAikSxxNKoT1sTemVlUJTMvV3nJRCs/LFaA0iQCk0KFkM1RYClEJbsBrVKaXQqHRRCs1KF6M1iQCl0KRsMVY7CFAK7aBqVp+UQrPyxUqhWflitAYRoBQalCyGagsBSqEtWI3qlFJoVLpYKTQrXf6P9rfffpNdu3ZJ3bp1/R+MwyOgFDo8QQzPdgKUQtsRO/4ClELHp+iRAFkpNCtffo92586dMnz4cFm2bJnfY3F6AJRCp2eI8dlNgFJoN2Hn908pdH6OPCOkFJqVL79HSyn0PgWUQu9Z8cjAJEApDMy8RmdUlMLo0PL/sZRC/+fApxHMmjVLrl27Jnv27BEIXNmyZaVnz54yZMgQOXDggFSqVEm6desmadOmlT/++EOGDh0qGzZskNDQUKlZs6Z06NBB0MeNGzf0+K1bt0rFihWlU6dOkjNnTu0TfeXPn19WrFih5/Xp00evg3by5En58MMPZffu3ZI6dWqZOnWq5M2bN3yMd+/e1es0bNhQJk+eLIkTJ9a+EfOUKVMkJCREWrduLXXq1NFzFi5cKAsWLJDTp0/LK6+8Ir1795bnn39e+2jWrJlMmjRJHzhcr149ad++/WMsHzx4oP3OmzdPLly4ILVq1ZIRI0bI1atXdRxr166VpEmTStOmTaVVq1YSHBys4/eW4dOSRyn06a3NzgwkQCk0MGk+DplS6GOgNndHKbQZcGx3P378eBk3bpyMHj1acufOLV26dJHjx4+r/BUuXFgGDBggpUqVkubNm8uYMWPk8uXL0rVrV/nPf/4jeKNDvnz5xOoD5xQrVkzF7vbt2zptDCmEjEGg3njjDdm8ebNeb//+/RInThyVvRdffFFatmypYpk9e3YVP6vduXNH8uTJI+XLl5fu3bvLvn37pF+/fnodyOXZs2elR48e+vnFixelTJkyKp8QzKNHj+pxEDf0UaJECRVc/NCpX7++ym2WLFkeQY54wQDXKFCggMog5BZj3Lt3r17r/PnzMnDgQBk1apQUKlQofPzeMKQUxvYdzuuZRIBSaFK27ImVUmgPV7t6pRTaRdZP/UJ2duzYIfPnz9cIUCVbvHixrFu3Tv++ZMkSrY7h87Fjx6rkQYhy5MgRHjH62LhxY/i6wRMnTqjsHTp0SI9v165duATiJEjmxIkTtYIH8Tx8+PAjIuiJwpJCVOOKFy+uIporVy6ZMGGCVKlSRQ8tWrSoTJ8+XTJnziwFCxZUkcXGloQJE+rXrT5wDKQRDRXO0qVLS4MGDR4hP2zYMEmUKJFWIz1bjRo1VEIhmWhgAfFFVTU6DK0+MeaIDdXLygMWyKqj5/10N/CyJOBfApDCRe8UkywpE/g0kJs3b0rcuHElfvz4Pu2XnfmeAGZrUCBIliyZ7ztnjz4ncP36df23Ft9fJjVvfxYEPcSb7l3UIDR4L2jfvn111HPnztVp4JEjR+rfIYf4bObMmSpXmMKF0FWrVk2rZhkzZlQpunLlilbX0LDjGNPDmBqGFH7wwQfhkomvQxIheOnSpdOqISp7T2qW0GEHM6p/aJiKXrp0qWTNmlX/XrlyZa1sQghRgcQ0L6aPUfHDNC9EEpVCxJImTRo9B4KHCiCqmJ6tatWqWk2sUKFC+MeojhYpUkSrkcmTJ9fPIcGonCL26DC0OsU1Irbly5dTCl30vcehPk4AUji/VWFJm8i3P4ZRfcKMAf6wOZsA/glGvvhecWfnyYoO/75i1s+0762UKVN6BdiVUoiKF6ZmLSlEFQtTvxGl0CIIAfz444/lp59+0gojpMizj4hSCAlE1dBqkDh8hnWKb731lnz//fdP/C3DkkLInvWbI6QQAmVN/XpKoXWN7du3S8eOHXUNIWQRUujZx5OkEBVOrKPEdLbV8JsrBHLRokUqpGjTpk3TqetBgwY9Nn5IdFQMI7sbuabQq+9RHhTABDh9HMDJ9XJonD72EpRDDuP0sUMS4aswIgrd04TmzJkzOkWL3wogXR999JGsWbMmSilENQ6VPGzawFQ11hdiPV+KFCl0OhcVvUaNGgmmeFDSReVy5cqVelx0pPD//u//9EGaqF6GhYVJ48aNpXbt2nrdp0khqo6YDseaSkxLIzasD8RYL126pBVNTDdjUwtkElIM4cTaynLlylEKfXUzsh/XE6AUuv4W0Coh1nJbM0Mk4mwClEJn5yfa0UVHCiFMc+bM0bI+BKlXr14qdVFVClFVu3Xrlk6/omE6uUmTJvr/W7Zs0X6wszlJkiQye/Zs3fULCUN1EesUIgpdxEohpnwhqJA3a40gStpYr4iKp7XR5EmVQlQaMR3euXNnFVPsWF69erXGV716dRVE/JCCvG7btk0/x/o/rF1MkCABpTDadx1PIIHICVAKeWdQCs26ByiFZuXL59FivQcWluKxLNFteGwLdhaj0hixQbowPRwUFCS4Bqpx3s75e/aFc7EGEFXIyK4TWcy4NiTX83hUKFFtxKYTzwa5hajasd6F08fRvaN4fKARoBQGWkajPx5KYfSZ+fMMSqE/6fPaAU2AUhjQ6eXgvCBAKfQCUoAfQik0K8GUQrPyxWgNIkApNChZDNUWApRCW7Aa1Sml0Kh06Tp+LP3y9hEvZo1OxHW7j01LUCDHSykM5OxybN4QoBR6Qymwj6EUmpVfSqFZ+WK0BhGgFBqULIZqCwFKoS1YjeqUUmhUulgpNCtdjNYkApRCk7LFWO0gQCm0g6pZfVIKzcoXK4Vm5YvRGkSAUmhQshiqLQQohbZgNapTSqFR6WKl0Kx0MVqTCEAKW41/8iv/TBqLG2J9GPZQgoKD3DDUWB1j3QKZJHtoiE+viQfi4zFSER8x5dOLsDOfEKAU+gRjrHXCSmGsoeaF3EYAUoj3RbM5nwCeh4nnW+J5mGzOJ0ApdH6OrAgphebkCpFSCs3KF6M1iACl0JxkQQrxCsTQ0FBzgnZxpJRCc5JPKTQnV5RCs3LFaA0jQCk0J2GUQnNyhUgphebki1JoTq4ohWblitEaRoBSaE7CKIXm5IpSaFauKIVm5YvTx2bli9EaRIBSaE6yKIXm5IpSaFauKIVm5YtSaFa+GK1BBCCFG3YfNihiF4f6UOTOnduSIGFCF0MQyZIqsRHj5/SxEWnSICmF5uSK08dm5YrRGkbAek7hsf/8ZVjkDNeNBKrmSSe9quY0YuiUQiPSRCk0J03hkbJSaGDSGLIZBPjwajPyxCj/JtC2TDZKIW8GnxNgpdDnSG3tkFJoK1527mYClEI3Z9+8sVMKzcuZCRFTCk3I0v9ipBSalS9GaxABSqFByWKorBTyHrCFAKXQFqy2dUoptA0tO3Y7AUqh2+8As8bPSqFZ+TIlWkqhKZn6O05KoVn5YrQGEaAUGpQshspKIe8BWwhQCm3BalunlELb0LJjtxOgFLr9DjBr/KwUmpUvU6KlFJqSKVYKzcoUozWOAKXQuJS5OmBKoavTb9vgKYW2obWlY1YKbcHKTklAhFLIu8AkApRCk7JlTqyUQnNyhUgphWblKyCjXb9+vYwaNUpOnTol2bNnlyVLlsjChQvlxo0bcuDAAdm6datUrFhROnXqJDlz5pS7d+9KzZo1pVmzZjJp0iSJFy+e1KtXT9q3b/8YnwcPHsiUKVNk3rx5cuHCBalVq5aMGDFCrl69KkOGDJG1a9dK0qRJpWnTptKqVSsJDg6WWbNmybVr12TPnj2yc+dOKVu2rPTs2VOPRzyVKlWSbt26Sdq0aZ+aD0phQN6uATsoSmHAptavA6MU+hV/tC9OKYw2Mp7gSwIQv/z580uvXr2katWqKm4FChSQ8ePHy7hx42To0KFSrFgxmTp1qty+fVuGDx8ud+7ckTx58kiJEiVUzvBDp379+rJhwwbJkiXLI+FB6rp06SL9+vXTfiGDEEv0v3fvXunRo4ecP39eBg4cqGJaqFCh8GuPHj1acufOrecfP35cYylcuLAMGDBASpUqJc2bNw+/1q+//voYlnLlyknlAQtk1dHzvkTGvkjAFgLvlHlRelZ5SfAeaKe369evS9y4cSWhy19L6PQ8IT78fMYv2SlTpjQhXNfHiH8jEyVKJPHjxzeKRZw4cbyKN+ihCT/hvBpKYB60adMmFb758+c/MkBI28aNG2XZsmX6+YkTJ6Rhw4Zy6NChcCmcPn26lClTRr/eoUMHKV26tDRo0OCRfoYNG6Y3OKqMnq1GjRrSp08fFU60sWPHqnSiIohr79ixIzwmVBoXL14s69at02NRyUSFEZ9bzVMQrc+2b99OKQzM2zYgR9Wm9IvSoUQGuXfvnuPHFxYWJkFBQfqHzfkEkC/MwrA5n4CpuUqTJo1XcCmFXmHy30GYksUP9t69ez8mhVeuXNEKH9pvv/2m07gnT54Ml0JUAa0bAYKHCiCmlD0bqo+oJlaoUCH848uXL0uRIkVk3759kjx5cv0cAjpmzBhZsWKFSiHerdq3b1/92ty5c3XaeOTIkfp3yCE+mzlz5lPBcfrYf/cVrxx9Apw+jj4znhE1AU4fR83ISUdw+thJ2XBhLKjQHTt2TKZNm/aYFKJy17179ydK4f79+yVZsmT69SdJIaqLWAPYsmXL8P6xzhACuWjRIp26RsP1z549K4MGDVIp9Lw2BPDw4cM6dU0pdOFN6pIhUwpdkuhYHialMJaBP+PlKIXPCJCnPxuB3bt3S5MmTWT27NlStGhRXd+XPn16mTBhwiNiFlml8ElSuHTpUsmRI4euB0Q/WGuI9YGZM2eWS5cuSbp06XS6OSQkRGUSFcmOHTtK165dBesAKYXPllOebSYBSqGZeXN61JRCp2fo0fgohWblKyCjxQ5iSBsahA1TuVivF9NKYeXKlaVatWrSuXNnuXnzpk5Nr169WvuvXr26XguLabGBZNu2bfo5di9jA0mCBAkohQF5l3FQURGgFEZFiF+PCQFKYUyo+e8cSqH/2PPKHgQwpYudyNZ08LPAgfChCui5Gwk7lrGAFptOPNutW7d0FyMea+PrxjWFvibK/uwkQCm0k657+6YUmpV7SqFZ+WK0BhGgFBqULIbKdx/zHrCFAKXQFqy2dUoptA0tO3Y7AUqh2+8As8bPSqFZ+TIlWkqhKZn6O05KoVn5YrQGEaAUGpQshspKIe8BWwhQCm3BalunlELb0LJjtxOgFLr9DjBr/KwUmpUvU6KlFJqSKVYKzcoUozWOAKXQuJS5OmBKoavTb9vgKYW2obWlY1YKbcHKTklABFJYddBCojCFAF756+K3pmVInkh6Vc1pRLbwxiE8MSDi0wSMCN5lQVIKzUo4pdCsfDFagwhACvFaPjbnE8Ar0iEa1msPnR+xuyOkFJqTf0qhOblCpJRCs/LFaA0iQCk0J1mQQrztJjQ01JygXRwppdCc5FMKzckVpdCsXDFawwhQCs1JGKXQnFwhUkqhOfmiFJqTK0qhWblitIYRoBSakzBKoTm5ohSalStKoVn54vSxWflitAYRoBSakyxKoTm5ohSalStKoVn5ohSalS9GaxABSOH2/UcNiti9oT58KIL3YGdNl9K9EAwaOaePzUkWpdCcXHH62KxcMVrDCFjPKTz3503DIndnuMNr55b/y0gpNCH7lEITsvR3jJRCc3JFKTQrV4zWMAJ8eLU5CUsUL44saVuEUmhIyiiFhiSKUmhOov5/pJw+Ni5lDNgUApRCUzIlQik0J1eIlFJoTr5YKTQnV6wUmpUrRmsYAUqhOQmjFJqTK0qhWbmiFJqVL1YKzcoXozWIAKXQnGRRCs3JFaXQrFxRCs3KF6XQrHwxWoMIUArNSRal0JxcUQrNyhWl0Kx8UQrNypfx0R45ckQuX74sZcuW1V1pv//+u6RLl874cUU2AEqhOWmlFJqTK0qhWbmiFJqVL0qhWfkyPtpZs2bJDz/8IEOGDJHt27fLwIEDZd26dcaPi1JodgophWbljxtNzMkXpdCcXCFSSqFZ+TI+Wk8pfPDggd6AadKkMX5clEKzU0gpNCt/lEJz8kUpNCdXlEKzchWr0ULerl27Jnv27JGdO3fqdG/Pnj21wnfgwAGpVKmSdOvWTdKmTSuQu8mTJ8ucOXM0xrfeekvatWun/3/x4kXp06ePbN26VfLnzy+YUkWz+pk2bZqei6+vXLlSRowYET7OqlWrymeffabSWLNmTWnYsKEemzhxYunUqZPGN2XKFAkJCZHWrVtLnTp1HmOE2HDMvHnz5MKFC1KrVi29xtWrVzWGtWvXStKkSaVp06bSqlUrCQ4OluiM/WlJ4fRxrN6yz3QxSuEz4Yv1kymFsY48xhekFMYYnV9OZKXQL9idf9Hx48fLuHHjZPTo0ZI7d27p0qWLHD9+XIYOHSqFCxeWAQMGSKlSpaR58+YqjX379pVRo0bpOkHI1eLFiyVbtmwqXqdOnZJevXrJjz/+KO+//75Uq1ZNP8d5w4cPl2XLlqmcffnllzJ79uxwOJCqjRs3qnjmyZNHypcvL927d5d9+/ZJv379pFixYiqcZ8+elR49eujncePGfQQuroHYcXyBAgVUBnPmzCkY3969e/W88+fP6zQ24i9UqJB+zduxWxfDK9Iitrx580rlAQtk1dHzzk+4yyO0pDBnhhQuJ2HG8PELIb7XEyVKZEbALo4S/yZA4lOlSuViCuYM/cqVK1p4iR8/vjlBi0hQUJBX8QY9xJvu2aJNAGK0Y8cOmT9/vp6LahtEz1r/t2TJEhU5fA6xixMnjjRu3FiPHTRokAoYqneVK1eWwYMHq0iiQb5u374dIylEBa948eJy7949yZUrl0yYMEGqVKmi/RYtWlSmT5+u8ujZhg0bpv9woLLo2WrUqKFCCbFEGzt2rMaFamh0xm71+frrrz/G+Pvvv6cURvvO888JkMLFbYtImnj3/BMArxotAvix7u0/AtHqmAfbQoD5sgWrLZ2amqvQ0FCveFAKvcL0+EEQI/x2hwog2ty5c3XaeOTIkfp3yCE+mzlzpmCaFyXnlCn/995YVPVQRYR0oYKXPHlyPQ/TxWfOnImRFO7atUtSp06t/WAqeunSpZI1a1b9O+QTVcyCBQs+MhjEhmnuChUqhH+O3c9FihR5JC5UJMeMGSMrVqxQKfR27E/Dy+njGN58fjiN08d+gP4Ml+T08TPAi+VTOX0cy8Cf8XKcPn5GgIF6OsQIlTNM11pSePjwYa0KRpRCrPWDBLZp0+YRHJhSxRQqpocxBY3Wu3dv/Q0/4vTx+vXrZerUqbJo0SI97pdffpGKFSs+Mn28f/9+SZYsWbgULl++XLJkyfJUKURsWP/YsmXL8NiwzhBTyLgW5NKSVUxDo8oZnbFTCgPjO4BSaFYeKYXm5ItSaE6uECml0Kx8xVq00REjTNsuXLhQ1+G99NJLcu7cOUmYMKGgnFu3bl3Jly+fyiU2ejRq1EgFMqIUYkNKiRIl5N///rekSJFCp6UnTpwYIylEBTFHjhwqophi3rBhg66NzJw5s1y6dEmfi9ihQwfdoIIpZKyh6Nixo3Tt2lXKlStHKYy1u8w5F6IUOicX3kRCKfSGkjOOoRQ6Iw/eRkEp9JaUy46LjhTeuXNHPvroI93ha7XPP/9cSpYsKSdOnJD27durKCZJkkSqV6+uh2CdoedGE3yGKqTVB8QRG0EwRQ25xFrBp1UKMU2MGLCWEVPJ2MzSuXNnuXnzplYnV69erdfF9SGI2HCCDSjbtm3Tz+vVq6ebZxIkSEApdNm9juFSCs1KOqXQnHxRCs3JFSuFZuXK8dFiWha7AvGIF2w88WyQMEz9RrU4HD9AsJHkWXYV4lqoAnrGAHENCwt7rF9McWMXY7x48XzOl2sKfY7Utg4phbahtaVjSqEtWG3plFJoC1bbOmWl0Da07NjtBCiF5twBlEJzcoVIKYXm5ItSaE6uWCk0K1eM1jAClEJzEkYpNCdXlEKzckUpNCtfrBSalS9GaxABSqE5yaIUmpMrSqFZuaIUmpUvSqFZ+WK0BhGgFJqTLEqhObmiFJqVK0qhWfmiFJqVL0ZrEAFKoTnJohSakytKoVm5ohSalS9KoVn5YrQGEbCk8K/b9w2K2r2h9nn1H/J/Gf/3Vh73knD+yLnRxPk5siKkFJqTK0RKKTQrX4zWIAKQwoPHvjcoYveGivd93rhxQ9KlTuFeCAaNnFJoTrIohebkilJoVq4YrWEEIIUnT540LGp3hgspxNtuvH2pujspOWfUlELn5CKqSCiFURFy1tdZKXRWPhhNABGgFJqTTEqhOblCpJRCc/JFKTQnV6wUmpUrRmsYAUghGwmQAAmQAAmQgL0EvJ2VC3qIEgAbCfiBwOzZs/WqzZo188PVecnoEMB6wjfffFOWLVsWndN4rJ8IjBw5Uv75z39KlSpV/BQBL+stgZ9++knfaz9lyhRvT+FxfiTQo0cPadSokbz88st+jMK+S1MK7WPLnqMgQCk05xahFJqTK0RKKTQn6RjgRgAAFoFJREFUX5RCc3KFSCmFZuWL0RpEgFJoTrIohebkilJoVq4ohWbli1JoVr4YrUEEKIXmJItSaE6uKIVm5YpSaFa+KIVm5YvRGkSAUmhOsiiF5uSKUmhWriiFZuWLUmhWvhgtCZAACZAACZAACZBADAhwo0kMoPEUEiABEiABEiABEgg0ApTCQMsox0MCJEACJEACJEACMSBAKYwBNJ5CAiRAAiRAAiRAAoFGgFIYaBk1aDy3bt2SuHHjSrx48QyKmqGSgFkE8H4CvPYuefLkZgXOaEnAAQQePHggd+/elUSJEj0WDb52+/ZtSZIkiQMi9U0IlELfcGQv0SAAGezevbts375dz2ratKl07dpVgoKCotELD40tAvXr15dDhw6FXw5P8x84cGBsXZ7X8YLAypUrpUuXLrJgwQIpUKBA+Blbt26VTp066d9DQ0Pl008/lRdffNGLHnmIXQQuX74s3bp10+5nzJgRfpkxY8bIxIkTw//+/PPPy6ZNm+wKg/1GQeDPP/+Ujz/+WNasWaNHvvLKK9K7d2/Jli2b/h25Qs4ghIUKFQr/f9PBUgpNz6CB8eMH4ZYtW+Szzz6TmzdvSu3atVUySpYsaeBoAj/k8uXLy+TJk+WFF17QwaK6GydOnMAfuCEjHDRokOzZs0cuXbqk/1AVLFhQI0cFo2jRojJp0iQpXry4zJ07VxYvXqx/2PxD4MSJE/L2229Lnjx55P79+zJz5szwQPr37y+5cuXSn4dowcHBnEXxT5r0qleuXNHvlcaNG0v8+PFVEPEZXkl45MgRadOmjSxfvlzSpEmjkg+JR3HD9EYpND2DBsbfsGFDad68efh7WVG9+PXXX2Xw4MEGjibwQ/7HP/4he/fulRQpUgT+YA0c4ebNm1X+UMHt169fuBR+++23MmDAAFm3bl24JOJ9yPiFLGPGjAaO1PyQUX36/vvvdToSQugphR06dJA6depIhQoVzB9oAI4A30/4BQyVw7Fjx+qSDHy/oe3fv186d+4s27ZtM37klELjU2jeAEqVKqUvf8dvxWj4Jlu0aNEjUynmjSowI75z545WNdq2batVi7JlywrEglP9zst3jRo1VAKtSiGqGN98841Wea2Gqi/ei+w5xey8kQR+RBD5WbNmPSKF+GU5Q4YMki5dOilSpIgUK1ZMK1RsziCASiGqu3369NE/OXPmlGbNmmlwFy9elBIlSggqwabPolAKnXG/uSoKVJ7Wrl0bvrYJlYvx48dzWsuBdwEWUk+bNk0SJ04s//3vf+Xrr7/WSgbkg81ZBCJK4Zw5c+TAgQMyatSo8EBr1aqlU1ylS5d2VvAuiyYyKYTEo5KIX8Q2bNggV69e1Z+T/AXM/zcHZkreffddWbZsmUp7x44d9XvojTfe0OBQNcQvY1h7bfqmE0qh/+8310WASiGqF6hAoWGR/JIlS1gpNOBOwG/CkI+DBw9KSEiIARG7J8SIUojvqxUrVmhV3rNSCEnMnz+/e8A4cKSRSaFnmPfu3dPNC1OnTpXChQs7cATuCen06dNSt25dmT59um42QcO0MTacYH0o2oULFwT/rv3www+6FtTkRik0OXuGxo6SO37Dql69uo5gwoQJ+k3FNYXOT+j169fl5Zdf1mlJaxee86N2R4QRpXDfvn2C97RaO1ix6z9v3rxcU+iA2yEqKUSI2PWPn5P4L5t/CPz2228qhJgufv3118ODQFHj/Pnz4U9h2LVrlz5Rg2sK/ZMnXtVwAvPnz9cyPBZZY/dxzZo1dQEv1quxOYsA1srcuHFDsmbNqv/FzvEvv/xSf/jx+ZLOylVEKcTUP9Y5DR06VMqVK6e5w/Q/vvfY/EsgohQiV6i+YwoyLCxMv79at26t0/9Jkyb1b7AuvTp+9mGdZ4sWLaRevXrhFLDO86efftLPVq1apdPJ7733nj6dAWJoemOl0PQMGhg/pkbef/99XS8D0cA3Xc+ePY0vuxuYiihDxnQIcoNKLh5xUrVqVX2upLVJKMoOeECsEcB6QTzWxHMTCaqFWP+E3KVKlUofT4MF8mz+JYB11J67j7GBAZJx/Pjx8Ofe4VEokHk2/xDAL1H4hSpi++KLL3S3/+zZs8PX6+J7bvTo0QHxgHhKoX/uN15VRPhGE3NuA0gFdtWxOmhOzjwjxaYFvtHE+bm7du2afp9hYxeb8wnwjSbOzxEjJAESIAESIAESIAESiAEBVgpjAI2nkAAJkAAJkAAJkECgEaAUBlpGOR4SIAESIAESIAESiAEBSmEMoPEUEiABEiABEiABEgg0ApTCQMsox0MCJEACJEACJEACMSBAKYwBNJ5CAiRAAiRAAiRAAoFGgFIYaBnleEiABEiABEiABEggBgQohTGAxlNIgARIgARIgARIINAIUAoDLaMcDwmQAAmQAAmQwP9r7zxgrCraMPxZURFFNEZEEJRmjbGBUhSkixSx944KiEQRkaIUQamiIAhSBeygsYAllijFQlGjgiVERbGCqCAoyP8/k8xm7uHce8/eXXT37jsJAXbPmfOdd+buPOf95jsrBXJQQFCYg2g6RQpIASkgBaSAFJAC+aaAoDDfRlT3IwWkgBSQAlJACkiBHBQQFOYgmk6RAlJACkgBKSAFpEC+KSAozLcR1f1IASkgBaSAFJACUiAHBQSFOYimU6SAFJACUkAKSAEpkG8KCArzbUR1P1JACkgBKSAFpIAUyEEBQWEOoukUKSAFpIAUkAJSQArkmwKCwnwbUd2PFJACUkAKSAEpIAVyUEBQmINoOkUKSIHtFfjpp59s69atdtBBB233zW+++cYOPPBAK1eu3A6T7qabbrKOHTtakyZNdtg1knb84Ycf2mOPPWaffPKJXXjhhXb++ecnPbVQx7399ttWu3Ztp22mNmnSJNu8ebN17dq1UP3/Gwdni+2XX36x66+/3u6//36rXLmyrVixws2zo446KmN4CxcutKlTpxr9F2fr2bOnnXHGGdaqVavi7Danvn744QfbY489bN999005/88//zQ+j9WqVXNf//33323t2rXu37vuuqvtv//+7rywrV692n19zz33zCkWnZQfCggK82McdRdS4D9XoEuXLvbyyy/bc889Z3Xr1k2Jp1atWvboo4/aiSeeuMPibNq0qd144412zjnn7LBrJOl427Ztdsopp1izZs2sefPmDmQAt6I2Fvply5bZqaeeWtBV/fr13T1fdtllGbvv37+/cf7w4cOLGkaxn58ttu+//94aNWrk5laNGjWsV69e9ttvv9n48eMzxvL888/b4MGDbfHixcUac+vWre3iiy+2Sy65pND98nDEOBTHfODinTp1cvPshhtuSInljTfesGuvvdY+//xz9/WZM2fagAEDUo5hjg4aNMgOPfRQ93U+o4A396dWdhUQFJbdsdedS4FiVcBDIQ7OU0895RwJ38oSFOJknXXWWQ5GcF6Kq82bN8+efPJJmzJlSkGX3377rR1wwAFZHdhs4FVcMebST7bYolC4fv16++eff2y//fYrdVB411132cEHH2zXXXddLlJtd05hoJB5A1jjGn766acOAP/++297+umnBYXFMhr50YmgMD/GUXchBf5zBYDCqlWrurQp7lW48IVQ+Oyzz9qLL75oDz30UEHM77zzjnN1cBlpV111lXNB5s6da++//75zMbxDNG7cOAOG2rRpY5dffnmB04FTyDmkbumPWHBL2rVrV3Advjd06FC3KFavXt1uvvlmO/300933cVcArzPPPNNGjRplH3/8sesrmk4jLUcfpCdpXJfYSOFx/ujRo23VqlXO1QIKcUijjYV49uzZ9uWXX7rU76WXXur+pIvj7rvvtiFDhtiGDRtcv5UqVXI6oxOp6ZYtW7pzw9g2bdpkxx57rE2fPt3uvPPOFKeQ49D7zTffdH1dcMEFdvXVV9suu+ziUrMPPvig04P4cHc7dOhgbdu23e4+/PWBVcYJV5RxJ41PSzLWQCGgAuS98sortttuu7lrsR2AB4soFD7wwAPGvZHGzRSrdwoZ41mzZjltGNsrrrjCzQ3f5syZ49LMuHjHHXecEc9hhx3mvv3HH38Y2r/++uu21157OReaMUbzOKfwu+++szFjxri5wT0xN7p16+bGbODAgfbII49Y+fLl3ZiTgmbehA1I43zgjTlUr149lzpv2LBh7Oe7sFD42muvpdw31+chhnGXU/if/wgtEQEICkvEMCgIKVD6FQAKgRAg44477rCXXnqpYHENoZBUFos0i6tv0XQXiymLNIDRoEEDt2hzDPsVAT0WdcCMPVMPP/xwAZxxDnB12mmnOfBkwed6LK5r1qyxxo0b29lnn23t27e3V1991S3SL7zwgkvnARF9+/Z1e61ID55wwgkpqVouAoT49BqL9V9//WUTJ0508PfEE0+4awAQOELPPPOMA5y4VCExAXgA15IlS1xa96233nL3FxcHUAEMrVy50qX8WMTr1KnjoMOnzH1sW7ZscbB4+OGH248//ujuNXTjOA7oAmLR96uvvnLASb/AIZqMHDnSOUn77LOPLV++3O3fO+mkk7abpH6crrzySjdO3DPxz5gxw6XQk4w1sQHOwDnXZx/m5MmT7ZprrnF7IKNQGN5LpliJo0ePHlazZk2nB/Pyvvvuc+PK+NCYo1yD444++mjnwgLCwCnzoHv37rZ06VK799573Z485hoPC0B2HBQCnjwUkO5GX3SkX1K3X3zxhQNEdAEu+X6VKlW20xR4ZM7wB12YHyHMhScUBQq5t48++qigb0Fh6f8ZXBx3ICgsDhXVhxSQAgYUHnHEEQV73IAT4M+7EH5PYRJQADbYO4ebRQNMzj33XLvlllucc0LDAWMB5ns0zmHBD/fNkcZlscP54w/gtmDBAhcTKcjjjz/eQST9eogYMWKEA6m45uEVB+zII490h+CQUUzi7w+XCAfzs88+s5122inrzPB7EImBe0wXBw7SBx98kJI+DqEQ1w+Qwl0FRMIWghTFKUCc36PHcQAChQY4mGPHjnWg/PjjjzsozNS4PulQxtS3Fi1auOujd5KxJjZi8eNCP/fcc49zQhnbTFCYKVavI/Dv983xkAB0AXo777yzc5ZxBf2cYQ8eDjRQyj3wMMHxjC8N6GNepoPCqFb+en6OAr1oljR9DLCzZzAcq1yhkHl922232a+//uoeQJi37Mukf5qgMOtHtUwcICgsE8Osm5QCO14BD4U4L34xY8EHunJxCknz+QIKvxgDCoAfDUeOxdVvpmexxb3BFfIN9wunBQeLzfiLFi1Kcbzee+895yoCXB4iOD4dDOFYcizHAJY0qnoBCACWtGISKCQ1iJPJ3yzSLNCkS4k9XRzZoBBIJgafDkwHhf44nzbnONwxnDAPYRdddJH7P3ryb8AvrqE5rhdupW+4cPSD5kmhEIc1rBL2Dh46b9y4MaXQJARcgDFdrF5HPz+IDxhkjNgWgBOIG4cL66ERQAeumTdAP9AYLZyiuIc5HucUkv4ldgqCSCVzXziLPoYkUMic5OEDSGf/JLAMrOPCR1thnELcShxMCl2Yb2wRoBDKN0Hhjv8ZWRquICgsDaOkGKVAKVAghELCxW3B8SH1BTxkcgrnz5/vUmsh4IWVxB4KASkWr3RQGIIkxwwbNsy5IizsABegg5sWNlK2pHGTVKtOmzbNpSBZ9L0LSDoWUMWFAVCyQaF3FnHUSLmS5u3du3cB0KaLIxsUskcTaI2rtg1BinQ3zhipTdwy34BcnxoHdBkT9m8CrowlqfdoY1yjmvv9lmgeB4XRsSY2xjesJvaOLIDE/sGw+jhamJIu1jgdQyjcfffdXZU8+yV5MAgb6fJ169Y5gAydRo7hnplLcVDI10l/n3feeQ7iSBmjc1IoBIyZszxIsb+RhxO2S6SDQhxM4LVfv34p8eNQsl8wrD4mNc5nEfBlnjLepN/9PBYUloIfsv9CiILCf0FkXUIKlAUFolAILOFksLDhzLAfC/giLQk4hG7bhAkTUhbP6OtlkkIh4OL3i6E56ViqcwEO3B8W1/C64bgkgUIKWICBMJ2HEwRYcH/ARTYoBGpI4bJvjYUZ+Dj55JMdGHqnMO5VKuzxe/fdd1NStaFOpHwpqqBfimjCFoKUd+HiXh0UnaeM4a233upiBIjjoDCqOSn7Qw45xGmeZKyJDZBFU98Ab4AUqMmUPg7jicaaDQopIALMcQtJQ0cbTh/jyRYFX2TjXeG49LHfsxoez15E5kUIhQAun5W4xnjyoMBcpXk3PB0UAoOMd5h65zwefH7++Wfn1tKAcw+F/B9wZYtE+AoaQWFZ+Cmd/R4Fhdk10hFSQAokUCAKhZziX8/Cv71TCNhQyMFeLapmASQKHXhJcVGdQgpNWFB5sTApTFwWFnyu42PB/cEpoQqUjfYUbLAgJoFCUm8sphS4sA+PdCEL69dff+2cNdynbFDoiyOAOApVcIeo3s0Ghbg8nTt3ds4VVb5cK4RCKmWpUmWfJOlNil9w+UgTh1DIPfCCbwow2J/JvVONTaUv55NipwiCrwODt99+u4PXuJdA+0ITrznnkgb3micZa19owlgxL4iPPY8AG9CTCQozxZoECqkAB/CoZGYvIe8/ZE5Qpbz33nu7whecyj59+rjqaMCKsYqDQuYCxThUcbOnlAcI+qWgyM9rnHPcT/oBShnDsPEZAjzZ/0dKn+OZx+mgkIctHrwonuLBhHFjHgLkAClfj4NCvkYxGHMK8CQWxpsHAKDVNyquow8YCX4U6JBSrICgsBQPnkKXAiVJAUCEQpOoC+JdH78fkPQVqVD+DwgCLzgbLGIhFNIPCx4N14OqzTB9HFexzGKMMwNI0OgDSPFpUoCKvVX++4Ah6VScuiRQSJ+8DofUHIs+jTQhKT/SwLRsUAhoAQvsXaOxJ4+iF1KZwFC6OIAl7oX7pqEVUBbqBECQxgYGaRRK4BJFU64UwQA6vgDCQwLXZ1yAEWCGRiECYOj33YVzjusDkoBFnOZJxprYgBIAh9Q6DSDkQQHI8VDoHdDwXjLFGqejL1jyrxrCXSTtjrvnG3sMcTiBQGCfymSOp/FAwBYEv381+vkDGEkX+3kNeFFA5Oc1DyZoibtMH+FrmeiL+HC6+T4N+AQg+bwcc8wxsR935jRa8UBE4/OEY8zDj08NMweoCA/dWCrTcSV5uOGz67dlhBfx8yf2wvpiXiogKMzLYdVNSYGSrwALMs5MtpcQ53InFG9UqFChoBgk2gcb+AEWUtvhvrrCXAtIow/clFwazh5OUdQtytYX77/D1cv068joG3cv268s4x6Av4oVK6a8bJyxAWx4jUv4EvJobKFTmUnzpGNNLIxHtrjDOJLGmklXxpH75dcwMm+iDc15vVD0V8PF9QngM6/RNF0DLLkOfcY15idOpS9myjYn+D5jzrWzVYwn6UvHlF0FBIVld+x151JACkiBIilQUn61YJFuQidLASlQoICgUJNBCkgBKSAFclJAUJiTbDpJCpRYBQSFJXZoFJgUkAJSoGQrwL5IXv4c/tq4kh2xopMCUiCTAoJCzQ8pIAWkgBSQAlJACkgBExRqEkgBKSAFpIAUkAJSQAoICjUHpIAUkAJSQApIASkgBUxQqEkgBaSAFJACUkAKSAEpICjUHJACUkAKSAEpIAWkgBQwQaEmgRSQAlJACkgBKSAFpMD/FfgfR2Dkth5EPRkAAAAASUVORK5CYII=", "image/svg+xml": [ "05101520medium.comcnn.commsnbc.msn.comfoxnews.comcq.comwashingtonpost.compolitifact.comnytimes.comabcnews.go.comwhitehouse.govNumber of articles published at a URLBase URL" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "top_real_publishers = (\n", " X_train.assign(label=y_train)\n", " .query(\"label == 0\")\n", " [\"baseurl\"]\n", " .value_counts()\n", " .iloc[:10]\n", " .sort_values()\n", ")\n", "\n", "fig = px.bar(\n", " top_real_publishers,\n", " orientation=\"h\", width=550, height=250,\n", " labels={\"value\": \"Number of articles published at a URL\",\n", " \"index\": \"Base URL\"},\n", ")\n", "fig.update_layout(showlegend=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Only `cnn.com` appears on both lists. Even without knowing the total number of articles for these sites, we might expect that an article from `yournewswire.com` is more likely to be labeled as `fake`, while an article from `whitehouse.gov` is more likely to be labeled as `real`. That said, we don't expect that using the publishing website to predict article truthfulness would work very well; there are simply too few articles from most of the websites in the dataset." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, let's explore the `timestamp` column, which records the publication date of the news articles." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exploring Publication Date" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Plotting the timestamps on a histogram shows that most articles were published after 2000, although there seems to be at least one article published before 1940:" ] }, { "cell_type": "code", "execution_count": 331, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "bingroup": "x", "hovertemplate": "variable=timestamp
Publication year=%{x}
count=%{y}", "legendgroup": "timestamp", "marker": { "color": "#1F77B4", "pattern": { "shape": "" } }, "name": "timestamp", "offsetgroup": "timestamp", "orientation": "v", "showlegend": true, "type": "histogram", "x": [ "2019-01-04T19:25:46", "2016-01-12T21:02:28", "2017-05-28T07:00:00", "2018-04-18T07:00:00", null, null, "2014-02-25T08:00:00", null, "2008-02-02T08:00:00", "2014-04-06T07:00:00", null, null, "2017-10-17T07:00:00", null, "2017-12-23T11:38:49", "2017-06-29T10:11:23", null, "2011-11-17T08:00:00", "2017-08-11T05:30:55", null, null, "2013-07-24T07:00:00", "2017-08-06T07:00:00", "2008-06-15T07:00:00", "2012-05-05T07:00:00", null, "2013-04-18T07:00:00", "2017-06-23T07:00:00", null, null, null, "2017-05-11T13:20:53", "2018-01-18T13:11:21", "2017-07-13T07:00:00", null, "2017-05-05T07:00:00", null, null, null, "2017-04-10T23:33:37", null, null, null, null, null, "2018-01-15T00:45:10", "2017-12-06T03:56:22", null, null, null, null, "2007-01-30T23:00:00", "2018-04-27T07:00:00", null, null, "2017-08-26T23:55:58", null, "2016-08-24T16:31:21", "2017-08-12T07:00:00", "2017-12-08T16:27:57", null, null, null, null, "2018-01-20T19:55:11", "2017-07-06T23:08:01", "2011-06-10T07:00:00", "2014-08-06T07:00:00", null, null, "2016-12-23T19:20:30", null, "2012-06-17T07:00:00", "2016-03-15T07:00:00", null, "2007-07-20T16:03:00", "2008-05-05T07:00:00", "2018-04-30T07:00:00", null, "2016-11-15T13:49:28", "2017-12-15T08:00:00", "2018-05-14T07:00:00", null, "2008-03-17T07:00:00", null, null, null, null, "2017-05-10T07:00:00", null, "2017-03-02T21:08:00", "2011-08-15T07:00:00", "2022-01-21T20:11:33", "2017-06-21T08:29:37", null, null, null, null, null, null, null, null, null, null, null, null, "2017-04-28T22:43:30", null, null, "2017-10-02T07:00:00", null, "2015-12-22T08:00:00", null, "2022-01-21T20:11:33", null, "2018-05-12T10:31:03", null, "2017-05-13T12:16:07", null, "2015-07-12T07:00:00", null, "2012-08-15T07:00:00", null, null, "2018-05-02T21:43:38", null, "2017-06-14T10:54:18", "2017-03-21T17:03:42", "2018-06-26T07:00:00", null, null, null, null, null, null, "2018-05-10T10:27:59", "2012-11-12T08:00:00", "2016-08-15T21:35:17", "2012-06-23T07:00:00", "2017-04-22T16:49:00", "2012-02-17T08:00:00", "2015-11-04T19:03:03", "2018-04-02T07:00:00", "2012-02-08T08:00:00", "2016-09-26T07:00:00", "2022-01-21T20:11:33", null, null, "2017-01-30T08:00:00", null, null, "2017-10-30T03:51:53", "2014-07-28T06:25:34", null, "2016-12-15T17:58:10", null, "2017-05-25T23:45:14", null, "2011-07-11T07:00:00", "2018-01-15T12:47:13", null, "2021-04-05T16:39:51", "2015-12-19T08:00:00", "2009-07-12T07:00:00", null, null, "2017-11-06T14:31:59", null, "2017-09-10T07:00:00", "2017-11-10T15:06:39", "2012-06-02T00:00:00", null, null, "2012-11-06T08:00:00", "2017-10-17T10:00:14", null, "2011-08-26T07:00:00", null, "2012-08-23T07:00:00", "2012-10-22T07:00:00", null, "2015-07-24T07:00:00", null, "2008-06-03T07:00:00", null, "2022-01-21T20:11:33", null, "2017-02-05T00:19:34", null, null, null, "2017-02-14T08:00:00", "2018-01-04T08:00:00", null, "2018-01-17T08:00:00", "2022-01-21T20:11:33", null, null, null, "2017-11-06T16:38:11", null, "2010-12-13T08:00:00", "2009-02-03T08:00:00", null, "2017-09-05T07:00:00", "2017-05-20T13:17:59", null, null, "2013-03-31T07:00:00", "2022-01-21T20:11:33", "2017-07-15T07:00:00", null, null, "2017-12-08T22:25:03", null, null, null, "2012-10-03T07:00:00", null, null, null, "2013-03-08T08:00:00", "2018-04-28T23:36:00", null, null, "2015-10-22T17:38:15", null, null, "2017-05-09T07:00:00", null, "1996-07-13T05:00:00", "2013-05-07T07:00:00", null, null, "2016-01-01T16:30:16", null, null, "2016-11-25T08:00:00", null, "2017-03-01T13:48:02", null, null, "2022-01-21T20:11:33", "2017-11-02T17:25:12", "2017-01-31T14:33:42", "2017-03-10T15:40:16", null, null, null, null, null, "2017-11-15T00:52:37", "2017-02-04T20:49:12", "2012-08-09T07:00:00", "2018-05-16T15:34:00", null, null, null, null, "2018-03-04T22:45:53", "2008-09-19T07:00:00", null, null, null, null, "2017-06-01T01:33:02", "2016-11-22T19:46:39", "2017-11-10T14:21:36", "2018-03-13T07:00:00", "2017-02-09T00:43:39", "1935-07-24T05:00:00", null, null, "2018-06-25T07:00:00", null, null, "2007-08-01T07:00:00", "2017-11-09T08:00:00", "2018-02-12T09:00:00", "2016-07-31T16:41:09", "2009-10-21T07:00:00", null, null, null, "2011-08-15T07:00:00", "2011-02-06T08:00:00", "2018-07-02T07:00:00", "2015-01-07T08:00:00", "2018-06-09T21:52:02", null, "2017-04-25T07:00:00", null, "2016-02-23T08:00:00", null, "2006-11-07T08:00:00", "2016-06-13T07:00:00", "2009-09-07T07:00:00", "2017-11-13T14:53:49", null, null, "2017-08-14T02:18:16", null, "2015-07-10T07:00:00", "2016-02-11T08:00:00", null, null, "2017-10-02T14:13:42", "2022-01-21T20:11:33", null, "2017-11-06T07:00:44", "2020-03-25T05:17:00", null, null, null, "2022-01-21T20:11:33", "2016-09-05T07:00:00", "2022-01-21T20:11:33", "2017-06-21T20:42:21", "2008-03-03T08:00:00", null, "1994-06-10T05:00:00", null, "2013-04-17T07:00:00", null, "2017-12-30T08:00:00", null, "2011-02-11T08:00:00", null, "2012-04-03T07:00:00", "2013-10-27T07:00:00", "2013-08-06T07:00:00", null, null, "2017-07-01T11:58:59", null, null, null, null, "2022-01-21T20:11:33", null, "2017-02-16T20:48:25", null, "2016-05-10T23:21:17.233000", "2022-01-21T20:11:33", "2017-07-06T07:00:00", "2022-01-21T20:11:33", null, null, null, "2008-08-15T07:00:00", null, "2018-07-05T10:48:31", null, "2016-04-24T21:04:28", null, "2017-05-12T12:50:32", "2018-07-17T07:00:00", null, null, "2013-04-25T20:33:20", "2015-02-12T12:30:05", null, null, null, "2011-11-29T08:00:00", "2010-10-14T17:04:00", null, null, "2016-11-25T08:00:00", null, null, "2011-03-11T08:00:00", null, "2017-11-26T18:25:52", "1997-10-19T05:00:00", "2017-10-08T23:43:28", "2022-07-13T14:49:56", null, null, "2018-06-27T16:09:14", "2015-07-13T07:00:00", "2016-09-20T07:00:00", "2017-05-08T07:00:00", "2017-07-08T07:00:00", null, null, "2022-05-13T19:50:48", "2017-04-01T10:22:51", "2011-11-30T08:00:00", null, null, null, "2017-11-27T15:18:23", null, null, null, null, null, "2012-09-18T03:00:58", "2013-03-07T08:00:00", null, "2007-08-01T07:00:00", null, null, "2008-01-30T08:00:00", "2017-02-11T08:00:00", null, "2016-05-09T07:00:00", null, "2018-01-31T03:12:22", "2016-12-12T19:20:51", "2008-03-17T07:00:00", null, null, "2001-09-11T05:00:00", "2018-07-10T07:00:00", null, "2012-10-12T07:00:00", "2016-03-10T18:11:20.173000", "2017-07-17T13:06:07.680999", null, null, null, "2018-02-15T19:38:00", null, null, "2016-02-07T00:23:19.497999", "2017-06-28T02:30:25", "2016-03-14T07:00:00", null, null, "2009-12-18T08:00:00", null, null, "2013-10-02T07:00:00", "2011-05-24T07:00:00", null, "2018-05-21T07:00:00", "2017-09-07T15:58:27", "2018-06-09T13:46:04", "2013-05-02T07:00:00", "2017-03-16T21:05:45", null, "2017-04-12T23:27:02", "2013-07-24T07:00:00", null, "2008-01-30T08:00:00", "2016-11-07T08:00:00", "2018-03-20T17:56:46", "2018-04-09T07:00:00", null, null, null, null, "2017-08-08T07:00:00", "2009-03-05T08:00:00", "2017-01-05T08:00:00", null, null, "2015-11-25T08:00:00", null, "2016-01-05T08:00:00", null, null, "2017-12-30T08:00:00", null, null, "2014-07-30T13:14:31", null, null, "2017-12-11T05:56:25", null, "2017-03-01T23:25:53", null, "2017-09-13T07:00:00", null, null, "2017-09-14T20:00:00", null, null, "2009-02-17T08:00:00", null, "2016-12-06T00:12:45", null, null, "2016-05-23T11:29:00", "2017-09-30T23:15:05", null, "2008-06-03T07:00:00", null, "2018-05-04T14:02:09", "2018-03-16T07:00:00", "2017-01-02T08:00:00", null, "2016-10-10T04:00:36.789999", "2017-08-20T07:00:00", null, "2018-03-24T18:45:45", null, "2016-12-20T08:00:00", "2018-04-09T07:00:00", "2012-07-17T07:00:00", "2010-02-23T08:00:00", null, "2016-06-21T13:41:37", null, "2017-12-14T08:00:00", null, "2009-02-09T08:00:00", null, null, "2018-01-14T01:29:40", null, "2016-01-02T08:00:00", "2016-01-01T23:17:43", null, "2008-02-08T08:00:00", "2018-07-12T16:28:19", null, null, null, "2016-07-09T07:00:00", "2009-09-10T07:00:00", null, "2018-05-13T07:00:00", "2016-11-14T08:00:00", "2008-06-18T07:00:00", "2016-12-23T17:04:56", null, "2017-06-24T07:00:00", "2017-10-12T23:15:41", null, null, null, "2016-04-29T12:25:53", null, "2008-08-23T07:00:00", "2014-12-21T08:00:00", "2016-05-06T20:32:20", "2016-10-10T04:00:36.789999", null, "2012-07-12T07:00:00", null, null, null, null, null, null, null, "2022-01-21T20:11:33", "2016-03-10T08:00:00", null, "2011-12-09T08:00:00", "2017-05-20T07:00:00", "2017-09-01T03:14:21", "2018-04-15T07:00:00", null, "2018-06-23T17:18:57", null, "2017-06-01T07:00:00", null, "2015-04-13T07:00:00", "2012-04-17T07:00:00", null, "2022-01-21T20:11:33", null, "2017-03-14T18:19:08", null, "2017-09-26T07:00:00", null, "2020-07-01T05:10:00", "2011-03-15T07:00:00", "2018-05-13T13:33:50", "2017-10-10T07:00:00", "2010-06-07T13:30:42", "2014-02-28T05:49:15", "2014-01-24T08:00:00", null, "2011-07-06T07:00:00", "2016-01-10T20:56:04", "2017-07-28T22:24:04", null, null, "2017-11-23T08:00:00" ], "xaxis": "x", "yaxis": "y" } ], "layout": { "barmode": "relative", "height": 250, "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autosize": true, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "height": 250, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "margin": { "b": 10, "l": 10, "r": 10, "t": 10 }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.5, "xanchor": "center" }, "width": 350, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "width": 550, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ "1935-01-01", "2023-01-01" ], "title": { "text": "Publication year" }, "type": "date" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 100 ], "title": { "text": "count" } } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAFoCAYAAAAhG4EVAAAAAXNSR0IArs4c6QAAIABJREFUeF7tnQm4VVXZ+F+4zCggk6CiKA58ThlIosiQWn6apCmiViKmoiUhEERRKILzwGRozopWlqWiklMGigOmKBEaCGaGCjE4gAwy/p93ff9zn3s55172PWutu/da57efx0fg7vWud/3edc79nbX2PrvO9u3btwsHBCAAAQhAAAIQgEBJE6iDFJZ0/Rk8BCAAAQhAAAIQMASQQiYCBCAAAQhAAAIQgABSyByAAAQgAAEIQAACEGClkDkAAQhAAAIQgAAEIMD2MXMAAhCAAAQgAAEIQEAJcE0h8wACEIAABCAAAQhAAClkDkAAAhCAAAQgAAEIsFLIHIAABCAAAQhAAAIQYPuYOQABCEAAAhCAAAQgoAS4ppB5AAEIQAACEIAABCCAFDIHIAABCEAAAhCAAAQCXCncunWrbNy4UZo2bZpXv+p+RrEhAAEIQAACEIAABKomkMnt4yeffFKGDRsmv//976VLly7l2U+dOlUmTZpkhLBbt27lf9YTqvsZEwACEIAABCAAAQhAoHoCmZPC8ePHy9/+9jdZuXKlEb2uXbuaEcyfP18GDRok06dPl9atW8uIESOkQ4cOMnz48Gp/xgSAAAQgAAEIQAACENg5gcxJ4cyZM6V79+5yzjnnyJgxY8qlcPLkybJmzRrzb3rMnTtXhg4dKrNnz5bqfrZzBJwBAQhAAAIQgAAEIJA5KcyVpG/fvjJ27NhyKRw9erR07txZBgwYYE5ZsWKF9OjRQxYuXGhEsaqflZWVUWUIQAACEIAABCAAgZ0QCEYKBw8eLL169ZL+/fubIemqoW4tz5s3T0aNGlXlz3I3pEybNi0PRU4wmSUQgAAEIAABCECg1AkEI4W6GtipUycZOHCgqdny5culZ8+esmjRIrniiiuq/FndunXN+YWkUK9fXLx4cWpzYPv27ebaybZt26aWAx2nT+DLL7+UDRs2SIsWLdJPhgxSI/DFF19InTp1Cn6zQmpJ0XGtE/j000/NHGjQoEGt902H2SGgu6Ft2rQx7wm1eQQjhbfddpssW7ZMxo0bZ/jMmTNHRo4caa4prO5n1cE84IADkMLanG30VZAAUsjEUAJIIfNACSCFzAMlgBTuMA92vKZwyZIl0q9fP5kxY4a0a9dOhgwZIh07djRiWN3PkEJeYFkngBRmvUK1kx9SWDucs94LUpj1CtVOfkjhDpxPO+00ufzyyyt9T6FuAU+YMMGcqd9fOHHiRGnevLn5e3U/q6qErBTWzuSml+oJIIXMEFYKmQM5Akghc4GVwhrMAZdPNEEKawCeU70RQAq9oQ0qMCuFQZXLW7JIoTe0QQVmpTCFciGFKUCnyzwCSCGTgpVC5gArhcyBigSQwhTmA1KYAnS6RAqZAwUJsFLIxFACrBQyD9g+TmkOIIUpgafbSgRYKWRCsFLIHGClkDnASmHKcwApTLkAdG8IIIVMBKSQOYAUMgeQwpTnAFKYcgHoHilkDpQTYPuYycD2MXMgR4BrClOYC0hhCtDpMo8AK4VMClYKmQOsFDIHWClMeQ4ghSkXgO5ZKWQOsFLIHKhEgBtNmBBKgJXCFOYBUpgCdLpkpZA5UJAA28dMDLaPmQNsH6c4B5DCFOHTdTkBto+ZDGwfMwfYPmYOsH2c8hxAClMuAN2zfcwcYPuYOcD2cSRz4J6X3i84kp4HtpED2u5So1GyfVwjXG5ORgrdcCSKHQFWCu34xdKa7eNYKmk3Dq4ptOOXZusbn1kkU2cuyUvhueG9kcI0C5O0b6QwKSnO80kAKfRJN5zYSGE4tfKZKVLok67f2EihX77eoyOF3hHTQQICSGECSCVwClJYAkVOMESkMAGkjJ6CFGa0MEnTQgqTkuI8nwSQQp90w4mNFIZTK5+ZIoU+6fqNjRT65es9OlLoHTEdJCCAFCaAVAKnIIUlUOQEQ0QKE0DK6ClIYUYLkzQtpDApKc7zSQAp9Ek3nNhIYTi18pkpUuiTrt/YSKFfvt6jI4XeEdNBAgJIYQJIJXAKUlgCRU4wRKQwAaSMnoIUZrQwSdNCCpOS4jyfBJBCn3TDiY0UhlMrn5kihT7p+o2NFPrl6z06UugdMR0kIIAUJoBUAqcghSVQ5ARDRAoTQMroKUhhRguTNC2kMCkpzvNJACn0STec2EhhOLXymSlS6JOu39hIoV++3qMjhd4R00ECAkhhAkglcApSWAJFTjBEpDABpIyeghRmtDBJ00IKk5LiPJ8EkEKfdMOJjRSGUyufmSKFPun6jY0U+uXrPTpS6B0xHSQggBQmgFQCpyCFJVDkBENEChNAyugpSGFGC5M0LaQwKSnO80kAKfRJN5zYSGE4tfKZKVLok67f2EihX77eoyOF3hHTQQICSGECSCVwClJYAkVOMESkMAGkjJ6CFGa0MEnTQgqTkuI8nwSQQp90w4mNFIZTK5+ZIoU+6fqNjRT65es9OlLoHTEdJCCAFCaAVAKnIIUlUOQEQ0QKE0DK6ClIYUYLkzQtpDApKc7zSQAp9Ek3nNhIYTi18pkpUuiTrt/YSKFfvt6jI4XeEdNBAgJIYQJIJXAKUlgCRU4wRKQwAaSMnoIUZrQwSdNCCpOS4jyfBJBCn3TDiY0UhlMrn5kihT7p+o2NFPrl6z06UugdMR0kIIAUJoBUAqcghSVQ5ARDRAoTQMroKUhhRguTNC2kMCkpzvNJACn0STec2EhhOLXymSlS6JOu39hIoV++3qMjhd4R00ECAkhhAkglcApSWAJFTjBEpDABpIyeghRmtDBJ00IKk5LiPJ8EkEKfdMOJjRSGUyufmSKFPun6jY0U+uXrPTpS6B0xHSQggBQmgFQCpyCFJVDkBENEChNAyugpSGFGC5M0LaQwKSnO80kAKfRJN5zYSGE4tfKZKVLok67f2EihX77eoyOF3hHTQQICSGECSCVwClJYAkVOMESkMAGkjJ6CFGa0MEnTQgqTkuI8nwSQQp90w4mNFIZTK5+ZIoU+6fqNjRT65es9OlLoHTEdJCCAFCaAVAKnIIUlUOQEQ0QKE0DK6ClIYUYLkzQtpDApKc7zSQAp9Ek3nNhIYTi18pkpUuiTrt/YSKFfvt6jI4XeEdNBAgJIYQJIJXAKUlgCRU4wRKQwAaSMnoIUZrQwSdNCCpOS4jyfBJBCn3TDiY0UhlMrn5kihT7p+o2NFPrl6z06UugdMR0kIIAUJoBUAqcghSVQ5ARDRAoTQMroKUhhRguTNC2kMCkpzvNJACn0STec2EhhOLXymSlS6JOu39hIoV++3qMjhd4R00ECAkhhAkglcApSWAJFTjBEpDABpIyeghRmtDBJ00IKk5LiPJ8EkEKfdMOJjRSGUyufmSKFPun6jY0U+uVbMPq2bdtk06ZN0qhRo7yfb926VTZu3ChNmzZNlBlSmAgTJ3kmgBR6BhxIeKQwkEJ5ThMp9AzYY3ik0CPcQqGvv/56efLJJ2Xz5s1y8MEHy1VXXSV77LGHOXXq1KkyadIkI4TdunUr/3N1KSKFtVxAuitIAClkYigBpJB5oASQwnDnAVJYi7X7+9//LhdffLE8//zz0rhxY7n66qulrKxMRo8eLfPnz5dBgwbJ9OnTpXXr1jJixAjp0KGDDB8+vNoMkcJaLCBdVUkAKWRyIIXMgRwBpDDcuYAU1mLtXnnlFRk7dqw8/fTTUrduXbn11ltl2bJlMn78eJk8ebKsWbNGxowZYzKaO3euDB06VGbPno0U1mKN6Ko4Akhhcdxia8VKYWwVLW48SGFx3LLQCimsxSroL86LLrpI9JrCI488Uh5//HG5++67Zd999zWrhZ07d5YBAwaYjFasWCE9evSQhQsXmtXEqg5WCmuxgHTFSiFzoFoCSCETRAkgheHOA6Swlmv3yCOPyKhRo0yvp512mrmmsGHDhjJ48GDp1auX9O/f3/xMVw27du0q8+bNK7/p5Oyzz87LVlcUdQUyzUMlV1c+OUqbwPbt26VOnTqlDaHER69zQA/mQWlPBN4Lwqy/usivX/lYbp31Xt4Anr7sWGldf7PkXuNJRujaDdq0aZOkW6mzvSZZJgrp56SZM2eareJ7773XXFOoW8VNmjSRiRMnmj936tRJBg4caDpfvny59OzZUxYtWlQuXKtXr85LrHv37uactA5Fr3npdZAcpUtAV8H1rvnmzZuXLgRGLuvWrTNCqO9rHKVL4LPPPjNzoEGDBqULIcCR62v3pmfflakzl+Rl/9ywXtKpTbJvRck1XrVqlbRq1crZh8Ski0/BSOEvf/lLad++vVx66aWG2eLFi+Xkk082W8R33HGHub5w3Lhx5mdz5syRkSNHck1hgC+sUkyZawpLser5Y2b7mHmgBNg+DncesH1ci7XTO4sffvhhufPOO80nqPvvv19ee+01uf3222XJkiXSr18/mTFjhrRr106GDBkiHTt2NGJY3cE1hbVYQLqqkgBSyORQAkgh8wApDHsOIIW1WD/dXrvyyitFt5H1OOyww2TYsGHm+wr1mDZtmkyYMMH8uUuXLmZbeWfbcUhhLRaQrpBC5kC1BJBCJghSGPYcQApTqJ9efKkrK3pd4Y4HTzRJoSB0aU2AlUJrhFEEQAqjKKP1INg+tkaYWgCkMDX0bjpmpdANR6LYEUAK7fjF0hopjKWSduNACu34pdkaKUyTvoO+kUIHEAlhTQAptEYYRQCkMIoyWg8CKbRGmFoApDA19G46RgrdcCSKHQGk0I5fLK2RwlgqaTcOpNCOX5qtkcI06TvoGyl0AJEQ1gSQQmuEUQRACqMoo/UgkEJrhKkFQApTQ++mY6TQDUei2BFACu34xdIaKYylknbjQArt+KXZGilMk76DvpFCBxAJYU0AKbRGGEUApDCKMloPAim0RphaAKQwNfRuOkYK3XAkih0BpNCOXyytkcJYKmk3DqTQjl+arZHCNOk76BspdACRENYEkEJrhFEEQAqjKKP1IJBCa4SpBUAKU0PvpmOk0A1HotgRQArt+MXSGimMpZJ240AK7fil2RopTJO+g76RQgcQCWFNACm0RhhFAKQwijJaDwIptEaYWgCkMDX0bjpGCt1wJIodAaTQjl8srZHCWCppNw6k0I5fmq2RwjTpO+gbKXQAkRDWBJBCa4RRBEAKoyij9SCQQmuEqQVAClND76ZjpNANR6LYEUAK7fjF0hopjKWSduNACu34pdkaKUyTvoO+kUIHEAlhTQAptEYYRQCkMIoyWg8CKbRGmFoApDA19G46RgrdcCSKHQGk0I5fLK2RwlgqaTcOpNCOX5qtkcI06TvoGyl0AJEQ1gSQQmuEUQRACqMoo/UgkEJrhKkFQApTQ++mY6TQDUei2BFACu34xdIaKYylknbjQArt+KXZGilMk76DvpFCBxAJYU0AKbRGGEUApDCKMloPAim0RphaAKQwNfRuOkYK3XAkih0BpNCOXyytkcJYKmk3DqTQjl+arZHCNOk76BspdACRENYEkEJrhFEEQAqjKKP1IJBCa4SpBUAKU0PvpmOk0A1HotgRQArt+MXSGimMpZJ240AK7fil2RopTJO+g76RQgcQCWFNACm0RhhFAKQwijJaDwIptEaYWgCkMDX0bjpGCt1wJIodAaTQjl8srZHCWCppNw6k0I5fmq2RwjTpO+gbKXQAkRDWBJBCa4RRBEAKoyij9SCQQmuEqQVAClND76ZjpNANR6LYEUAK7fjF0hopjKWSduNACu34pdkaKUyTvoO+kUIHEAlhTQAptEYYRQCkMIoyWg8CKbRGmFoApDA19G46RgrdcCSKHQGk0I5fLK2RwlgqaTcOpNCOX5qtkcI06TvoGyl0AJEQ1gSQQmuEUQRACqMoo/UgkEJrhKkFQApTQ++mY6TQDUei2BFACu34xdIaKYylknbjQArt+KXZGilMk76DvpFCBxAJYU0AKbRGGEUApDCKMloPAim0RphaAKQwNfRuOkYK3XAkih0BpNCOXyytkcJYKmk3DqTQjl+arZHCNOk76BspdACRENYEkEJrhFEEQAqjKKP1IJBCa4SpBUAKU0PvpmOk0A1HotgRQArt+MXSGimMpZJ240AK7fil2RopTJO+g76RQgcQCWFNACm0RhhFAKQwijJaDwIptEaYWgCkMDX0bjpGCt1wJIodAaTQjl8srZHCWCppNw6k0I5fmq2RwjTpO+gbKXQAkRDWBJBCa4RRBEAKoyij9SCQQmuEqQVAClND76ZjpNANR6LYEUAK7fjF0hopjKWSduNACu34pdkaKUyTvoO+kUIHEAlhTQAptEYYRQCkMIoyWg8CKbRGmFoApDA19G46RgrdcCSKHQGk0I5fLK2RwlgqaTcOpNCOX5qtkcI06TvoGyl0AJEQ1gSQQmuEUQRACqMoo/UgkEJrhKkFQApTQ++mY6TQDUei2BFACu34xdIaKYylknbjQArt+KXZGilMk76DvpFCBxAJYU0AKbRGGEUApDCKMloPAim0RphaAKQwNfRuOkYK3XAkih0BpNCOXyytkcJYKmk3DqTQjl+arZHCNOk76BspdACRENYEkEJrhFEEQAqjKKP1IJBCa4SpBUAKU0PvpmOk0A1HotgRQArt+MXSGimMpZJ240AK7fil2RopTIn+tm3bZO3atbLLLrtIWVlZeRZbt26VjRs3StOmTRNlhhQmwsRJngkghZ4BBxIeKQykUJ7TRAo9A/YYHin0CLdQaH2xXHHFFfLiiy9Ky5YtZfDgwXL66aebU6dOnSqTJk0yQtitW7fyP1eXIlJYywWku4IEkEImhhJACpkHSgApDHceIIW1XLszzjhDjjnmGBk6dGilFcL58+fLoEGDZPr06dK6dWsZMWKEdOjQQYYPH15thkhhLReQ7pBC5kCVBJBCJgdSGPYcQAprsX6vv/66jBo1Sp577rlKQqgpTJ48WdasWSNjxowxGc2dO9eI4+zZs5HCWqwRXRVHgJXC4rjF1gopjK2ixY2HlcLiuGWhFVJYi1W4//775Z133hFd3dP/H3/88XLCCSdIw4YNZfTo0dK5c2cZMGCAyWjFihXSo0cPWbhwYZ5AVkyZlcJaLCBdVUkAKWRyKAGkkHnASmHYcwAprMX63XDDDXLnnXfKsGHDZP/995d7771XDjvsMCOEem1hr169pH///iYjXTXs2rWrzJs3r/ymkzlz5uRle+6558qCBQtqcRSVu9q+fbvJtXnz5qnlQMfpE9i8ebNs2rQp8Q1S6WdMBj4I6E1yejRq1MhHeGIGQkA/HOgcqFevXiAZk6YSqFu3rkz663sydeZ7eUCeHdZL9mnRoEagPv/8c2nWrJnUqVOnRu2qOlkX0JIcdbarmQRwXHPNNeaTtP5fD10FHDhwoLz88ssyduxY6dSpk/m7HsuXL5eePXvKokWLTKH0yG0tVxzqQw89JLotneahq0RJi5VmnvTtj4DeTa93ztevX99fJ0TOPIEtW7aYXwAVv1Eh80mToHMC+iFR50Dud5fzDgjohYC+f0+dvVRunZUvhc8M7SntGm+XmuiWazdo0aJFonEHI4W6Mrh48eJyKVy6dKn07dvXSN1dd90ly5Ytk3HjxplB66rgyJEjuaYw0RTgpLQJsH2cdgWy0T/bx9moQ9pZcE1h2hUovn+2j4tnV+OWKoHHHXecPPHEE7LffvvJLbfcIqtWrZJrr71WlixZIv369ZMZM2ZIu3btZMiQIdKxY0cjhtUdXFNY4zLQwAMBpNAD1ABDIoUBFs1DykihB6i1FBIprCXQuW4effRRufLKK81fe/fuLZdddpkRRD2mTZsmEyZMMH/u0qWLTJw4cafX6iGFtVxAuitIAClkYigBpJB5oASQwnDnAVKYQu30+iu9ILtJkyZ5vfNEkxQKQpfWBJBCa4RRBEAKoyij9SCQQmuEqQVAClND76ZjVgrdcCSKHQGk0I5fLK2RwlgqaTcOpNCOX5qtkcI06TvoGyl0AJEQ1gSQQmuEUQRACqMoo/UgkEJrhKkFQApTQ++mY6TQDUei2BFACu34xdIaKYylknbjQArt+KXZGilMk76DvpFCBxAJYU0AKbRGGEUApDCKMloPAim0RphagJKWwvXr1xe82SO1ahTRMVJYBDSaOCeAFDpHGmRApDDIsjlPGil0jrTWAkYvhTfeeKO0bdtWzjvvvDyoRxxxhPlewD333LPWgLvuCCl0TZR4xRBACouhFl8bpDC+mhYzIqSwGGrZaFOyUvjhhx/K17/+dXnxxRelffv22ahGEVkghUVAo4lzAkihc6RBBkQKgyyb86SRQudIay1gtFL45ptvyhVXXCH6FBF9MHebNm3KoerzOfUJIl27dhV9dnDIB1IYcvXiyR0pjKeWNiNBCm3oxdMWKQy3ltFKoX5B9Ntvvy3XX3+97LrrrnL00UeXV0kf2K4ydeSRR0q9evXCrZ6IGYc+TzmtQx+OvXLlSrNFz1G6BJDC0q19xZEjhcwDJYAUhjsPopXCXEneffdd8+glfWxcjAdSGGNVwxsTUhhezXxkjBT6oBpeTKQwvJrlMo5eCnMD1cfH6YrWjsfuu+8uunIY6oEUhlq5uPJGCuOqZ7GjQQqLJRdXO6Qw3HpGL4X6tTPXXXedPP7447Ju3bq8Sr3xxhvSvHnzYCuIFAZbuqgSRwqjKmfRg0EKi0YXVUOkMNxyRi+FTz/9tIwdO1Z+/vOfy2GHHZa3KrjPPvtI3bp1g60gUhhs6aJKHCmMqpxFDwYpLBpdVA2RwnDLGb0Ujh49WnbbbTcZOXJkuFWqJnOkMMqyBjcopDC4knlJGCn0gjW4oEhhcCUrTzh6KZw0aZL861//kilTpoRbJaQwytrFNCikMKZqFj8WpLB4djG1RArDrWb0UvjBBx/IWWedJddcc435CppmzZqFW60CmbNSGFU5gx0MUhhs6ZwmjhQ6xRlsMKQw2NJJ9FJ4zz33yLXXXltlhbjRxG7y8j2FdvxiaY0UxlJJu3EghXb8YmmNFIZbyeil8N///rd8/PHHVVboqKOOkrKysmAryEphsKWLKnGkMKpyFj0YpLBodFE1RArDLWf0UhhuaZJljhQm48RZfgkghX75hhIdKQylUn7zRAr98vUZPXopfOGFF+Stt96qkuEll1xino0c6oEUhlq5uPJGCuOqZ7GjQQqLJRdXO6Qw3HpGL4UPP/ywPPPMM+UV2rRpk7z//vuyfPly6dOnj7kruXHjxsFWECkMtnRRJY4URlXOogeDFBaNLqqGSGG45YxeCguVRm+OuPXWW2X27Nny0EMPhVs9EUEKgy5fNMkjhdGU0mogSKEVvmgaI4XhlrIkpVDLtXr1aunevbu8/PLL0rZt22AriBQGW7qoEkcKoypn0YNBCotGF1VDpDDccpasFOr2cc+ePeW1116Tli1bBltBpDDY0kWVOFIYVTmLHgxSWDS6qBoiheGWM3opnDdvnixatKhShXTCzpgxQ5o2bcr2seXc5XsKLQFG0hwpjKSQlsNACi0BRtIcKQy3kNFL4R133JEnfiqDxx9/vJx66qmy7777hls9rikMunYxJY8UxlTN4seCFBbPLqaWSGG41YxeCsMtTbLM2T5Oxomz/BJACv3yDSU6UhhKpfzmiRT65eszeslI4dq1a81X0eib1h577CH77LOP1KlTxyfbWomNFNYKZjrZCQGkkCmiBJBC5oESQArDnQclIYUPPvigXHnllZWq1LVrV7nppptkr732Crd6bB8HXbuYkkcKY6pm8WNBCotnF1NLpDDcakYvha+88oqcd955MmzYMHO3cbt27eTNN9+Ue++9V7Zu3Sr65dYhH6wUhly9eHJHCuOppc1IkEIbevG0RQrDrWX0Unj11VfL4sWL5b777qtUpfnz58sZZ5whr776qrRu3TrYCiKFwZYuqsSRwqjKWfRgkMKi0UXVECkMt5zRS+GoUaOkWbNm8otf/KJSlT755BM56qij5Pnnn5e999472AoihcGWLqrEkcKoyln0YJDCotFF1RApDLec0UvhtGnTZMKECeb5x7vvvruplG4bT548Wf7whz/InDlzwq0e1xQGXbuYkkcKY6pm8WNBCotnF1NLpDDcakYvhRs2bJD+/fvLwoULZf/99zc3lsyaNctU7K677pLevXuHWz2kMOjaxZQ8UhhTNYsfC1JYPLuYWiKF4VYzeinU0mzevFmmT58uCxYskHXr1skhhxwivXr1kv322y/cyv3/zNk+Dr6EUQwAKYyijNaDQAqtEUYRACkMt4zRS+HHH38sdevWNXcdVzw+//xz+eijj+Tggw8Ot3qsFAZdu5iSRwpjqmbxY0EKi2cXU0ukMNxqRi+FN954oyxdulSmTJlSqUrvvPOOecydbiuXlZUFW0FWCoMtXVSJI4VRlbPowSCFRaOLqiFSGG45o5dC/X7CTp06yeDBgytVSX+JHXroofLss88G/fxjpDDcF19MmSOFMVWz+LEghcWzi6klUhhuNaOXwhtuuEFmz54tTzzxRKUqvfTSS3L++efLG2+8Ic2bNw+2gkhhsKWLKnGkMKpyFj0YpLBodFE1RArDLWf0Ujhv3jw588wzzX99+vQxzz1+66235IEHHjB/Hz16dLjV45rCoGsXU/JIYUzVLH4sSGHx7GJqiRSGW83opVBLM2PGDBk/frysXr26vFInnHCCjBs3Ttq0aRNu9ZDCoGsXU/JIYUzVLH4sSGHx7GJqiRSGW82SkEItz7Zt22TVqlWyZs0aad++vTRt2jTcqlXInO3jKMoY/CCQwuBL6GQASKETjMEHQQrDLWHJSGG4Jao+c6Qw1sqGNS6kMKx6+coWKfRFNqy4SGFY9aqYbVVSOGvk16VjqyY1GtiKFSvMbmydOnVq1M725Drbt2/fbhsk1PZIYaiViytvpDCuehY7GqSwWHJxtUMKw61nVVL4/E96y8efbSg4sKP2bSUN6tXN+xlSmMI8QAp8QL/PAAAgAElEQVRTgE6XeQSQQiaFEkAKmQdKACkMdx5UJ4V9b3lJ1m/aWmlw3zq8vUzsfwRSmJWSI4VZqURp54EUlnb9c6NHCpkHSGHYcwApTLF++ou0QYMGlfbbt27dKhs3bkx8IwxSmGIB6bqcAFLIZGClkDmQI8BKYbbnwtJP1sszb/83L0m9ZvCtpZ/J1JlL8n6m28esFHqs61NPPSVDhgyp9ESVqVOnyqRJk4wQduvWrfzP1aWBFHosEqETE0AKE6OK+kRWCqMub+LBIYWJUaVyokrhyVNmy9qNWyr1/7OTOpt/QwpruSwrV66Us846Sz755BN59NFHzWP25s+fL4MGDZLp06dL69atZcSIEdKhQwcZPnx4tdkhhbVcPLorSAApZGKwUsgcYKUwjDmAFGasThdffLGcdNJJcvPNN8u0adOMFE6ePNl8h+KYMWNMtnPnzpWhQ4eaR/SxUpixApJOHgGkkEmBFDIHkMIw5gBSmKE6PfLII6Jbx3feead0795dfve73xkp1Mftde7cWQYMGGCy1Vu5e/ToIQsXLpSysrIqR8BKYYaKW8KpIIUlXPwKQ2f7mHmgBNg+zvY8QAozUp+PPvpIzjjjDLNFvPvuu1eSwsGDB0uvXr2kf//+JltdNezatavos5tzT1/JrSJWHM5DDz0kr7/+eqojVCFo2LBhqjnQeboE9IlBepNU/fr1002E3lMlsGXLFnPjXHUfZFNNkM5rhcDmzZvNHKhbN/+762olATqplsBnm8uk79RXCl5TuGbjZrl15nt57f8yvLd8+1eFv5Lm6r4HiWzdnNfGtRu0aNEiUWWD+PJq/aU5cOBAOeaYY6Rfv35mYKeccorozSUHH3ywXHPNNdKpUydzjh7Lly+Xnj17yqJFi8pfWHPmzMkDcu6558qCBQsSgfJxkn5vuAps8+bNfYQnZiAE9JfApk2bEt81H8iwSLOGBPSbE/Ro1KhRDVtyekwEdMVY50C9evViGlY0Y1n+xRY55ZaXaiSFzw/vLX2rkMIbTj9U6tXJf4bI559/Ls2aNXP2RJOki09BSKG+SL761a8WnFRXX321rF69WpYtWybjxo0z56gAjhw5kmsKo3kZxj0Qto/jrm/S0bF9nJRU3OexfZzt+rJ9nNH6VLymcMmSJWYFccaMGdKuXTvzdTUdO3Y0YljdwTWFGS1uiaWFFJZYwasYLlLIPFACSGG25wFSmNH6qBTqNYEqf3roncgTJkwwf+7SpYtMnDhxp9uySGFGi1tiaSGFJVZwpJCCV0MAKcz29EAKs12fStnxRJOAikWq5QSQQiaDEmClkHnASmH25wBSmP0aFZ0hK4VFo6OhQwJIoUOYAYdCCgMunsPUWSl0CNNDKKTQA9SshEQKs1KJ0s4DKSzt+udGjxQyD1gpzP4cQAqzX6OiM0QKi0ZHQ4cEkEKHMAMOhRQGXDyHqbNS6BCmh1BIoQeoWQmJFGalEqWdB1JY2vVnpZD6VySAFGZ7PiCF2a6PVXZIoRU+GjsigBQ6Ahl4GFYKAy+go/SRQkcgPYVBCj2BzUJYpDALVSAHpJA5oASQQuaBEkAKsz0PkMJs18cqO6TQCh+NHRFACh2BDDwMUhh4AR2ljxQ6AukpDFLoCWwWwiKFWagCOSCFzAFWCpkDOQJIYbbnAlKY7fpYZYcUWuGjsSMCSKEjkIGHYaUw8AI6Sh8pdATSUxik0BPYLIRFCrNQBXJACpkDrBQyB1gpDGMOIIVh1KmoLJHCorDRyDEBpNAx0EDDsVIYaOEcp81KoWOgjsMhhY6BZikcUpilapRuLkhh6da+4siRQuaBEkAKsz0PkMJs18cqO6TQCh+NHRFACh2BDDwMUhh4AR2ljxQ6AukpDFLoCWwWwiKFWagCOSCFzAElgBQyD1gpzP4cQAqzX6OiM0QKi0ZHQ4cEkEKHMAMOhRQGXDyHqbNS6BCmh1BIoQeoWQmJFGalEqWdB1JY2vXPjR4pZB6wUpj9OYAUZr9GRWeIFBaNjoYOCSCFDmEGHAopDLh4DlNnpdAhTA+hkEIPULMSEinMSiVKOw+ksLTrz0oh9a9IACnM9nxACrNdH6vskEIrfDR2RAApdAQy8DCsFAZeQEfpI4WOQHoKgxR6ApuFsEhhFqpADkghc0AJIIXMAyWAFGZ7HiCF2a6PVXZIoRU+GjsigBQ6Ahl4GKQw8AI6Sh8pdATSUxik0BPYLIRFCrNQBXJACpkDrBQyB3IEkMJszwWkMNv1scoOKbTCR2NHBJBCRyADD8NKYeAFdJQ+UugIpKcwSKEnsFkIixRmoQrkgBQyB1gpZA6wUhjGHEAKw6hTUVkihUVho5FjAkihY6CBhmOlMNDCOU6blULHQB2HQwodA81SOKQwS9Uo3VyQwtKtfcWRI4XMAyWAFGZ7HiCF2a6PVXZIoRU+GjsigBQ6Ahl4GKQw8AI6Sh8pdATSUxik0BPYLIRFCrNQBXJACpkDSgApZB6wUpj9OYAUZr9GRWeIFBaNjoYOCSCFDmEGHAopDLh4DlNnpdAhTA+hkEIPULMSEinMSiVKOw+ksLTrnxs9Usg8YKUw+3MAKcx+jYrOECksGh0NHRJACh3CDDgUUhhw8RymzkqhQ5geQiGFHqBmJSRSmJVKlHYeSGFp15+VQupfkQBSmO35gBRmuz5W2SGFVvho7IgAUugIZOBhWCkMvICO0kcKHYH0FAYp9AQ2C2GRwixUgRyQQuaAEkAKmQdKACnM9jxACrNdH6vskEIrfDR2RAApdAQy8DBIYeAFdJQ+UugIpKcwSKEnsFkIixRmoQrkgBQyB1gpZA7kCCCF2Z4LSGG262OVHVJohY/GjggghY5ABh6GlcLAC+gofaTQEUhPYZBCT2CzEBYpzEIVyAEpZA6wUsgcYKUwjDmAFIZRp6KyRAqLwkYjxwSQQsdAAw3HSmGghXOcNiuFjoE6DocUOgaapXBIYZaqUbq5IIWlW/uKI0cKmQdKACnM9jxACrNdH6vskEIrfDR2RAApdAQy8DBIYeAFdJQ+UugIpKcwSKEnsFkIixRmoQrkgBQyB5QAUsg8YKUw+3MAKcx+jYrOECksGh0NHRJACh3CDDgUUhhw8RymzkqhQ5geQiGFHqBmJSRSmJVKlHYeSGFp1z83eqSQecBKYfbnAFKY/RoVnSFSWDQ6GjokgBQ6hBlwKKQw4OI5TJ2VQocwPYRCCj1AzUpIpDArlSjtPJDC0q4/K4XUvyIBpDDb8wEpzFh99Bdo3bp1pX79+nmZbd26VTZu3ChNmzZNlDVSmAgTJ3kmgBR6BhxIeFYKAymU5zSRQs+ALcMjhZYAXTVfuHChXHXVVbJgwQIT8sQTT5SxY8dK48aNzd+nTp0qkyZNMkLYrVu38j9X1z9S6Ko6xLEhgBTa0IunLVIYTy1tRoIU2tDz3xYp9M84UQ/z58+XpUuXysknnyzr16+XCy64QPr37y+nn3666M8GDRok06dPl9atW8uIESOkQ4cOMnz48GpjI4WJ0HOSZwJIoWfAgYRHCgMplOc0kULPgC3DI4WWAH01nzJliqxdu1Z+8YtfyOTJk2XNmjUyZswY093cuXNl6NChMnv2bKTQVwGI64wAUugMZdCBkMKgy+cseaTQGUovgZBCL1jtgm7fvl2+853vyKWXXirf+MY3ZPTo0dK5c2cZMGCACbxixQrp0aOH6JZzWVmZ+bfVq1fnddq9e3dZtGiRXTIWrXUcmpeubnKULgGVQr0Wtnnz5qULgZHLunXrpE6dOtKkSRNolDCBzz77zMyBBg0alDCF7A79w882yremzJa1G7dUSvJnJ3U2/zZ15pK85J8f3lv6/uolWb9pa6Wffevw9nLzmYdLg7K6eW1WrVolrVq1Mu8JLg69FyPJUWe7mklgx+23325WAe+77z6pV6+eDB48WHr16mW2k/XQVcOuXbvKvHnzym86Ofvss/NGqSuKr7zySqqj37Ztm7lxhqO0CejL0NWLv7RJhjv63Fsx8yDcGrrInPcCFxT9xfhie0P59q2vFpTCNRs2y62z3svr/C/De8u3q5DC8SfvL1s3f5nXxrUbtGnTJhGU4KRwxowZct1118ljjz1mLFoP3Tbu1KmTDBw40Px9+fLl0rNnT7MKWJ1wcU1hojnCSZ4JsH3sGXAg4dk+DqRQntNk+9gzYMvwbB9bAnTZ/IUXXpBRo0bJ/fffLwcddFB56Ntuu02WLVsm48aNM/82Z84cGTlyJNcUuoRPLG8EkEJvaIMKjBQGVS5vySKF3tA6CYwUOsFoH+SNN96QCy+8UO6++2455JBDygM2atRIlixZIv369RNdRWzXrp0MGTJEOnbsaMSwuoOVQvu6EMGeAFJozzCGCEhhDFW0HwNSWBzDpZ+ul7c++Kxg4693biu7NqpXXOAdWiGFTjDaB7noootk1qxZeYHefvttc0HutGnTZMKECebnXbp0kYkTJ+70wn2k0L4uRLAngBTaM4whAlIYQxXtx4AUFsdQpfCMW1+RFWsrX593XOe2MvnsryKFCbEGd01hdePiiSYJq85pmSKAFGaqHKklgxSmhj5THSOFxZUDKSyO246topLCmiJhpbCmxDjfBwGk0AfV8GIiheHVzEfGSGFxVJHC4rghhRUIIIVuJhFR7AgghXb8YmmNFMZSSbtxIIXF8UMKi+OGFCKFbmYOUZwRQAqdoQw6EFIYdPmcJY8UFocSKZS8706sSDLpjTZsHy9eXNwMdNBKv6R05cqV0rZtWwfRCBEqAaQw1Mq5zRspdMsz1GhIYXGVQwpFlMEV09/OA9iyaQO56cyvJAKLFCKFiSYKJ/kjgBT6YxtSZKQwpGr5yxUpLI4tUvh/UtjnxlmydVvlB9X167oXUphkWnFNYRJKnOObAFLom3AY8ZHCMOrkO0uksDjCSCFSWNzMqdAKKbRGSAAHBJBCBxAjCIEURlBEB0NACouDiBQihcXNHKTQmhsB3BJACt3yDDUaUhhq5dzmjRQWxxMpRAqLmzlIoTU3ArglgBS65RlqNKQw1Mq5zTs2Kfzw0w2iN1UWOpo2rCd6E0RNDn3MXKFj05Ztcs6dc0r6iSZcU1iTmVTgXLaPLQHS3AkBpNAJxuCDIIXBl9DJAGKUwnPumCOrvqj8+Lkj9m4hU7/bpcZSeNfs9+XmZxflsX7s0h5y7t2vIYXcaFL86xApLJ4dLd0RQArdsQw5ElIYcvXc5R6rFOoqVsXj6E6tipbCq2a8kwf8maG9kELuPrZ7ISKFdvxo7YYAUuiGY+hRkMLQK+gmf6Sweo66UogUFmbE9rHlaxAptARIcycEkEInGIMPghQGX0InA0AKkUIlsGLFCmnTpo3UqVMn8bxCChOjKnwiUmgJkOZOCCCFTjAGHwQpDL6ETgaAFLqVwgt77ivDv3GQNGlQ5qQ+eqPLyVNm5z1S7mcndTb/NnXmkrx+nv9Jb+l7y0uyftPWSj/71uHtZWL/I6RBvbp5bZBCJ+WqWRCksGa8ONsPAaTQD9fQoiKFoVXMT75IoVspvOz4A6RDyyZSaMHtwLa7ymF7Na9RIZHCGuEK62SkMKx6xZotUhhrZWs2LqSwZrxiPRspdC+FDeuXyQ1PL8wL/MTgY5HCHajw7GOefRzre2sw40IKgymV10SRQq94gwmOFCKFSoDt4xResqwUpgCdLvMIIIVMCiWAFDIPlABSmA0pnPDcu7Jmw+a8ZL7XfR85/daXuaYwxpcrUhhjVcMbE1IYXs18ZIwU+qAaXkykMDtSOOX5xXnJPDe8N1IY3ssqWcZIYTJOnOWXAFLol28o0ZHCUCrlN0+kEClk+9jva6zK6EhhSuDpthIBpJAJwfYxcyBHAClECpHClN4PkMKUwNMtUsgcyCPASiGTQgkghUghUpjSewFSmBJ4ukUKmQNIIXOgIAGkEClEClN6c0AKUwJPt0ghcwApZA4ghd/tIi2bNqjRTKjps4/1y6uL+Z5CvfuYG01qVJrwT0YKw69hDCPgmsIYqmg/BraP7RnGEIGVQlYKWSlM6ZWMFKYEnm5ZKWQOsFLIHCjplcIfHLuvDDi6o5TVKTwR9NF0hQ5WCqt+4Sz9dL30uXGWbN22vdJJ/bruJTed+ZVErzieaMITTRJNFE7yR4CVQn9sQ4rMSmFI1fKXa6msFKoUdmzVVMY/+U4ezN9edJR069gSKWzTRuoUemhzFdMPKbR8XbJSaAmQ5k4IIIVOMAYfBCkMvoROBlBqUnj59AV53B6+5OhakcKnL+slndvvWrBuXFPoZDqHFQQpDKtesWaLFMZa2ZqNCymsGa9Yz0YKRWpLCp8d1ivvcXU6r1o0qS/T530kU55fkjfNeKJJrK88EUEKIy5uQENDCgMqlsdUkUKPcAMKjRTWrhSefccc+WTdpkozZOSJB8mXW7YihQG9bpykihQ6wUgQSwJIoSXASJojhZEU0nIYSCFSqFNoxYoV0oZrCi1fTTVsjhTWEBineyGAFHrBGlxQpDC4knlJGClECpFCLy+tnQdFCnfOiDP8E0AK/TMOoQekMIQq+c8RKUQKkUL/r7OCPSCFKYGn20oEkEImhBJACpkHSgApRAqRwpTeC5DClMDTLVLIHMgjgBQyKZDC/5sDtXn3MTeaVH7d8eXVfHk178QpE2ClMOUCZKR7pDAjhUg5DVYKkUJWClN6EbJSmBJ4umWlkDnASiFzoCABpBApRApTenNAClMCT7dIIXMAKWQOIIWtmkqaTzTRL69m+5jt43ICSCHvylkgwPZxFqqQfg5sH6dfgyxkwEohK4WsFKb0SkQKUwJPt6wUMgdYKWQORLVS+OGnGwqOR58MMvCe12Xpp+sr/fwHx+4rHatYKfzzZT2lWaP6efEa1a8rj771kVw94595P3tmaC859+7XZMXaLyv97LLjD5CG9cvkhqcX5rVhpTC/ZNxowo0mvDWnTICVwpQLkJHuWSnMSCFSTiPUlcLfvvYf+fUL7+XRu+37XeWSB+bWSAqfuqynXPzA3LxYJx/eXlo1bYAUVjFHVbz73DhLtm7bXumMfl33kpvO/EqimY0UIoWJJgon+SOAFPpjG1JkpDCkavnLNWQpHP3oP/LAzBjSsygp/MF9r8uyzzdWindJn05IYTVTDym0fF2yfWwJkOZOCCCFTjAGHwQpDL6ETgaAFIroSiFSyLOPnbygahIEKawJLc71RQAp9EU2rLhIYVj18pUtUogU6txasQIp9PUaqzIuUljryOmwAAGkkGmhBJBC5oESQAqRQp0Hq1evlpYtW0qdOnUSvzDYPt4B1datW2Xjxo3StGnTRBCRwkSYOMkzAaTQM+BAwiOFgRTKc5pIIVKoU+zfK9fKf7/YVHC2ddunpdStmy+LSGEFXFOnTpVJkyYZIezWrVv5n6t7/SKFnt/dCJ+IAFKYCFP0JyGF0Zc40QCRQqQwJ4UnTn5JvtyyrdK8+c5X95Sbz/wKUljdq2n+/PkyaNAgmT59urRu3VpGjBghHTp0kOHDh1f7IkQKE71HcZJnAkihZ8CBhEcKAymU5zSRwtKRwqEnHCCXfn1/qV9WN29WfbDqC/nmpNl5UjjimwfJj/p0Qgqrex1OnjxZ1qxZI2PGjDGnzZ07V4YOHSqzZ8/eqRRe8cBfCp7T+6A20mG3Jl5f/tu3b5eVK1dK27ZtvfZD8GwTQAqzXZ/ayg4prC3SIqvXbZKn/rGsYId9Dmore+3WOO9nK9d+Kc+8vTzv3/VLlndpVE8+/iz/y5sbNyiTM7rsVaOBVSeF2r/msePRZteGcuIh7WrUTzEnf/TZBpm5cEVe07a7NjRfGv3Lxxbk/YyvpBF5/ie9pe8tL8n6TVsr8RlzysHSoF5dKXTV4DGdWslJk/OlcPxphxY8XwP32L+1nDDhBb6ncPTo0dK5c2cZMGCAAa537fTo0UMWLlwoZWVlVc59XSk89Zo/yh/nfljpnLK6dWTWyD5IYTHvGrSpMQGksMbIomyAFNZeWVUKf/TgXHnt/U8qdbp3yyby24u6VymFP3xwrrzxwaeV2vQ6oI0M7NHRfIXKjsfN/b/iXAoLfanz7ed2rTUp/P5dr8n7q9ZVGup5x3SUA9rughRu3CJTZy7JmwfVSaF+mLj7pffz2vz1J72rlMJ3/7tWHnj1g7w2M0f0QQqVyuDBg6VXr17Sv39/A0lXDbt27Srz5s0rv+lk2rRpeQDHjx9vpLDQcdkJByCFtfceXdI9IYUlXf7ywSOFtTcPVAqv/XP+o9I0g6EnHFilFF5f4FFpukrXrWNL+XOBlcejO7VyLoXPvfPfPFDfOHj3WpPCic+9m9f/fq2bSrPG9WXe0s/yfnZ+j33l3pfzpWe/NrvILg3ryfwP89tccOy+BUXpwN13Fb0Zd9HytXn9XNRzP7lz9r/y/r1zu11l09bt8q+VX+T9bFCv/eSOF/PbHLJHM/l0/Sb5+LPKX56tAS7u3UluL/DklkP3bG5Wcf+7Jr/ND/t0kttm5T/t5SsdWsi/V62TzzdszstNt4hvLdDmq3vvJguXr5ENO6w6agDdii4kpfqzknqiiW4bd+rUSQYOHGjALl++XHr27CmLFi2SunX/b6++KimsvbcheoIABCAAAQhAAAK1T2Bxwqe3RfGYu9tuu02WLVsm48aNM6TnzJkjI0eO3Ok1hbVflso9rlu3Tr73ve/JY489lnYq9J8igb/97W/mJqmrr746xSzoOm0C9957rzRs2FC++93vpp0K/adI4Kc//amcc8458tWvfjXFLOg6bQLf+ta35NFHH5UGDRrUaipRSOGSJUukX79+MmPGDGnXrp0MGTJEOnbsaMQwywdSmOXq1F5uSGHtsc5yT0hhlqtTe7khhbXHOss9IYWW1dHt4QkTJpgoXbp0kYkTJ0rz5s0to/ptjhT65RtKdKQwlEr5zRMp9Ms3lOhIYSiV8psnUuiAb02faOKgS6sQSKEVvmgaI4XRlNJqIEihFb5oGiOF0ZTSaiBIoRW+MBsjhWHWzXXWSKFromHGQwrDrJvrrJFC10TDjIcUhlk3soYABCAAAQhAAAJREIjiRpMoKsEgIAABCEAAAhCAQIoEkMIU4dM1BCAAAQhAAAIQyAoBpDArlSAPCEAAAhCAAAQgkCIBpLCW4evNJY0bNy5/0sqO3W/btk22bNmS94WVn3/+uey6665VtqvlYdCdJYG1a9eaelZ16DzZvn277LLLLuWn6N/1EY5Z/6olSzQl03xn35awYcMG816x47GzdiUDMKCBas02bdpUsJ7Vva6rqzXzIKAJ8P9T1Uea6lPW6tevX6PXtf4+aNKkidTRZ/ztcOj7RL169QrGLIYQUlgMtWraqNDp9yXeeeedlR6zt3LlSvnxj38sc+fOlVatWsmFF15o/tvxGDt2rDz99NPmqSx6/Oc//5GLL77YPLFFjxtuuEG++c1vOs6acK4JfPLJJzJixAgT9p577ikPr8/j1nmgj2Ls0KGDeQrPscceW/5z/QL2m2++WTZv3myE8KmnnjI/e+GFF+Syyy4zf27btq38+te/lv3228912sRzTOCdd94xz2Y/66yzzOs4d/z+97+XX/7yl+av+px2/V7V9u3bm7/r022mTp1qPgDol/Hr3ajHHHOM+Zn++6RJk8wz3bt161b+Z8dpE84RgU8//dS8Z+dex0ceeaT8/Oc/N49l3dnrurpaMw8cFaiWwixcuFCuuuoqWbBggenxxBNPFP1dn/vQV1U9n3vuObnxxhtlxYoVZhFBn3b0wx/+0MRQGdQHdLz00kvm7+eee64MHz68oDjWZJhIYU1o7eRcXf256KKLzErOX//610pSeMcdd4g+e1Anwvr1680vCZ0kuTd7Df3KK6+YXxT685wUarzDDjvMPKVFf8Gceuqp8sYbb7Ba5LBurkPpG4A+h/vQQw81q7733XdfeRc/+MEP5Otf/7p5cf/973+XH/3oR/Lkk09K69atjfhp/e+++2458MADy9ts3LhRunfvLrfeequZL7/97W/lT3/6k/mPI7sEtK76GtenK/Xp00cuueSS8jfzo48+2jyPXefIAw88YObAww8/bN7o9Wda44MPPtjIxJQpU+TPf/6z/OMf/5BBgwYZadT5oh869IOF/iLgyCaBzz77zLxO9fWujytTQdR/u/7666W61/X8+fOrrHV1P8smBbLSmi1dulROPvlk8/v9ggsukP79+8vpp58u1dVT3xf23ntvOfzww+Wjjz4y7yN/+ctfZJ999jGLDbNmzTK/LzTmd77znbxFhmLII4XFUKuijW79PvPMM+YXt34iXLRoUfl270knnSRXXHGF+eWuh/5C+Pjjj+VnP/uZ+btuD2tR9ZxRo0YZKdRfEDoZVBbbtGljzlPZ0In07W9/22HmhHJJQFcH/vnPf5rtIhXCnBSuXr3a1F/fBHKfEPVT35lnninHHXecfP/73zd/VvGveGj99cPEs88+a/5Zf5noBwV9Q9hzzz1dpk4shwRU4vQD4kMPPSTNmjUrl0J9U9c38t/97nemN33fOOigg8yHvbKyMvPM29mzZ5tVwtdff928H+iHzMmTJ5vVwzFjxph2uuswdOjQzD/j3SHS4EPpa3n8+PFG9qt7Xf/xj3+sstbMg+Cngfmgp4tIv/jFL2r0uj777LNFFxZ0t1D/fP7555tVRz109+jDDz80H0RtDqTQhl4VbVXwdpRClTn9ha9fSKnHbbfdJm+++abZZtZD3/h1dUiLreepFGqBdVVJVxhzh8rBHnvsYT5FcmSbwMyZM+X+++8vl8Kc5Od+4Wv2Oi969uxpPjkecMAB5s3i1VdfNVsF+jzvfffd16wM6SUFOmdyh0rkTTfdZB7pyJFtAroqpHKYWynU172u8qno6ZGbF7qipB8CdXtY/3zeeeeZ+aMfFE844QQZPXq0dO7cWQYMGGDa6ZZSjx49RFemVdiA+p8AAA+oSURBVCY5sk9AVwp190BrWd3rWqWwqlrrhwLmQfZrXVWGeg2pLgBdeuml8o1vfCPx61ovQdMFJ3UDvQRNf2/cfvvtZkdBD/2gobsNFS9XKoYSUlgMtZ20KSSF+iavb/Zq9nrRqK4U6DaR/qLXlQMtrq4o6OphTgr1zV4/Deh1aLlD31T0QtXc9Woe0iekIwI7SqGG1WtAdBtB3xR0Zeixxx4zW8annXaa+SCh15fpJQPvvvuuuTZVBVGFUEUi92xvjaPn67Zhr169HGVLGF8EdpRCvUFAZU6vJT3qqKOMHLz22mtmLhxyyCFG8vr27WuuG9Tt4bvuukt23313c22i1lu3nfTQVUOdL/r+oOdyZJuArvrq9cRaZ10FfvDBB6t8Xf/hD3+osta6gMA8yHatq8tOf9frwoDuIOkNIkle1/qeoR8q9f1Bdwf00EUE3ZnMXVuuO0e33HKL9WVFSKGHuVVICrUbvYZMf8HvtddeoluMejOCTghd9dGl3/3339+sDurqkYqibhPuuFJ4+eWXm18UKg4c2SZQSAp1lUCvHVQJUAnUN/8zzjjDbCt/7Wtfq7QlnHuz0LvOnnjiCfPBIXfonFFJPOKII7INgezM9WMVVwpzQqfXCeoHBF0t0A+CL7/8srlIXFcD9JF3Kny5D4t6MfmVV15pblDQ9wc99GYlXS2oeJkKuLNJ4L333jOvcxV8fd3rodeLVfW61kWEqmqtK8fMg2zWeWdZ6Y2E1113nflgoKt9eujK787qqTuEek2hekJuV0Bf+7qopNcl5+bTI488wkrhzoqQxs+rksKKuegWkL5J7LbbbmbrsNChKwh6fdmLL75YfmfiOeecI/of1xSmUdma9VlICitG0GtK9IWtvxj0g4JePlDxOkG9S1H/Ta8f1DtQd9xu5JrCmtUjrbMLSWHFXHTFeNiwYab2+ktDrzXMXW+oKwQqh7qNrNeg6bcQ6B3reug2kq4866oDR3YJ6C9zfa/XLeOK79ta96pe148//niVtVYRYB5kt95VZaaLAbrKq69lvYY4d+ysnrrDmFtZrPg1ZuoQumtwyimnmFC/+tWvzAdFrinM4NyoTgr1eoLf/OY3poA6SRo2bFhpBLpykNs+1h/oLwv9qgp989eVRv2ZbkO0aNEigyMnpYoEqpNCvY5MV331ZhS9cFwP/aWhh/7S1xVj3SJWYdRrSHW78dprrzUrx3rNiP7S0E+bHNknUJ0U6uUi+lU1eneqftjT179uHeu2kG4Z69awrgzmrjHW60xVHHX7Ub+RQO9s1vcGjmwS0Os+czcHaO1yh96JrL8LqnpdL1myxFxTXKjW1f0smxTISj8A6FfQ6WVjugWcOxo1aiTV1VNXlnU3Sb+hIPf9tLpSqN9zqJeb6e8A3YbWu491AUlvYtI7lG0Oto9t6FXRtpAU6vaPrvzo6pBeTK6/4AvdObqjFOqbit6hqtsPeuingNwnAw+pE9IhAV35qXj3sYbWG0n0hayXDmgd9e6z3J3I+m96naBuI+olAnqjgf6nh76p6HayXlLQsmVL8/U0erE5R/YJ6HXA+oZe8XsK9VP++++/b76PUl/fuTrraPTrq3J3n+p7hN5tmLtBTb+1IHdtqd5kpN9vyJeZZ3cO6Ac4fa/f8dBf8nrJSHWv6+pqzTzIbs0LZaaXe+nvgx2Pt99+23xVUVX11OsGdzz08gPdSdD3Dr0eXT9A6n0K+j6hK5F6z4HNgRTa0KtBW/3aCb2OUN/A9eLSmh4qk3oxuW3Ba9ov57sloC9kvUFAxa7Qt9Nrb9V9e71+4EAC3NYkjWj6ZAMV/OpqqfOg0A0kPMkijYr57bOq1zVPNPHLPUvRi31d80STLFWRXCAAAQhAAAIQgEAkBFgpjKSQDAMCEIAABCAAAQjYEEAKbejRFgIQgAAEIAABCERCACmMpJAMAwIQgAAEIAABCNgQQApt6NEWAhCAAAQgAAEIREIAKYykkAwDAhCAAAQgAAEI2BBACm3o0RYCEIAABCAAAQhEQgApjKSQDAMCEIAABCAAAQjYEEAKbejRFgIQgAAEIAABCERCACmMpJAMAwIQgAAEIAABCNgQQApt6NEWAhCAAAQgAAEIREIAKYykkAwDAhCAAAQgAAEI2BBACm3o0RYCEIAABCAAAQhEQgApjKSQDAMCEIAABCAAAQjYEEAKbejRFgIQgAAEIAABCERCACmMpJAMAwIQgAAEIAABCNgQQApt6NEWAhCAAAQgAAEIREIAKYykkAwDAjETWLt2rXzyySdmiA0aNJDddttNGjVqVKMh33nnnfLll1/K4MGDC7ZbvXq1XHLJJTJlyhRp3769LFy4ULZu3SqHHHJIjfpJcrLP2En65xwIQAAChQgghcwLCEAg8wQefPBBufLKKyvl+d3vftcIXps2bRLlf/nll8uGDRvkxhtvLHj+8uXLpWfPnvLss8/KvvvuK6NGjZI1a9bIbbfdlih+VSdpn2+99ZYcc8wx5ae4im2VGI0hAAEI7EAAKWRKQAACmSegUnjPPffIX/7yF1m1apUsWLDAyN3//M//yIQJExLlX1Mp/Pzzz2Xbtm1mVdLmeOqpp+Thhx82+ecOV7Ft8qItBCAAgR0JIIXMCQhAIPMEclL417/+tTzXP/3pT/Kzn/3MbPM++eST8uc//1luv/328p+/9tprctVVV8kTTzxh/k2lULehVfKee+45qV+/vpxyyikyZMgQqVevnuy4UnjLLbfIxo0bZeTIkab9ypUr5dprr5VXXnnF/Pvhhx8u999/v2zZskUmT55sVhjff/99Oeqoo8w29LHHHiuPPvqoWeFct26dWX1s2bKlPPTQQ1JdbO3ruOOOMyuVzZs3N33r+U2aNJH//ve/opLZuHFj+fa3vy0DBgyQZs2aVarf448/bvL6/e9/b8alx/bt2+Xcc8814z377LNl/vz5Ziz//Oc/pWPHjjJ06FDp06ePOffjjz8249FxKi/N5cc//rHJP5eLrs7qmO677z7z79OmTcv8HCJBCEBg5wSQwp0z4gwIQCBlAoWk8LLLLpM333xTZs+eLfrz3/zmN0aYcsesWbPkoosuksWLF5dL4e9+9zsjPypG77zzjtx9991y4YUXmm3oHaWw4sqiXlt40kknGQH8wQ9+IJ06dZIVK1bIqaeeamKPGzdODjzwQPOf9jF37lxRgV22bJkRukWLFsn48eOlrKxMDjroICOoua3sXGyNozK5adMmueOOO6RVq1byhz/8QerUqWPOr5j7p59+aoR34MCBRugqHiqvulV91113Se/evc2PVALPOOMMefrpp41c9urVS04//XSTv66+PvDAAzJjxgyTv7afOHGi2UpXKb355pvl0EMPLd++11xUgDXOj370I7Na6+O6y5SnHN1DoCQJIIUlWXYGDYGwCKj0/epXvzJbsLr1qjI4adIkI1z/+7//m1gKVWZefvllI2d6XHfddWblbt68edVK4QsvvGDkUVf+VJCqOz744AM54YQTyq9N1FW3v//975W2jytKYU5ep0+fLgcffLAJ/cYbb8g555xjRPDII480Ujhz5kzRc3O560qiClzFbelcXpdeeqlZJdS+c+N8/fXXRVdXdbtdZTPHQbfIu3TpYlYSf/KTn+QN7ZFHHjHSq4z0yAmq5rLnnnuGNZHIFgIQqJYAUsgEgQAEMk+g4o0mTZs2lc6dOxtp0i1UXUlLulKoK3d6F3LueOaZZ8wqoa7srV+/vtKNJhXFTbdjdWVOt6pzUlYRmgqXStKHH35opFWFSwVMt5h3JoX33nuvOUdzyMXWu6RVPrXPs846y4iYCmDFm150NVFXI1VqdzxyEqtyucsuu0iPHj1EV1aV2Q9/+EN59dVXpVu3buXNNH9dVdQ8Nm/eLMpFb47RrWRl9vbbb1dacdVtZ71OkgMCEIiLAFIYVz0ZDQSiJFBo+7jiQAtJoW6V6rVwFbePdxSr3CqdSpFeJ1jx7uOKUqjXKqq8zZkzJ4+vSuYNN9xgVtqOOOIIc42fblsnlUK9Lk9XPVXCVHD10C3lrl27yk9/+lPRu6wL3SRTnRRqexXBYcOGmWv+vve978nf/vY3cz2lbn/r1/voymfFo127dmZVUn+uW+v9+/c3UrtkyRKzhVyRY3V3cUc5ARkUBEqEAFJYIoVmmBAImcDOpFBvqtAbJyqutv3617/OkxmVOt1Czh0qY1OnTjXCU901hXq9nV67pzeo6I0ZFQ+9EUMFTK8Z1EO3eQcNGlQuhfq9hypkOobcUVHy9IaY73//++XbzXqOrsyddtpp5dcF1lQKNYZurWtsvU5Qb1DRceqheaqwVmSVy0tXBfV6Q72mUG9K0eP66683eSCFIb+CyB0CyQgghck4cRYEIJAigZ1JoUqXrobptW8nnniivPTSS3LNNdeIfiH1jjea6CqenqurXeeff75885vflDFjxlQrhV988YW5m1ivvdPtZr0JRO801ptW9Po93e696aab5L333jPXKer1d7mVQt3ivfjii80NHfql2Prl2xUlT/PQGz723ntvs8Wr27cqkv/5z3/MjSE7np8rQ3UrhXrO0qVLzZ3Dut2uK33HH3+8aapb4H379jXb0roKqT//xz/+YW6AUeHVbeULLrhAzjvvPCOVeve13mmMFKb4AqBrCNQSAaSwlkDTDQQgUDwBlUL92pOKq3wVo+lXruj1cHp9nYqgSptuj+oqV0WZ0a9y0Ttx9Vo7PVQIVR71LtvcSmFuNXDH1TkVPd3OVRnUQ796RvPSfx87dqxZ3dPjiiuuMDd/aD6HHXaYkU/92hvdqtZD89kx9kcffWS+gkYlTA/dttUtab3LWY9CK4W6bf38888XvKYwx0bvTtb8VJpVLnOHCqp+VY6OWQ8VQ5XMr33ta+ZaQZXIHMfRo0ebG1CQwuLnLy0hEAoBpDCUSpEnBCCwUwJ6LZ0+hWRnXzitK19169Y13/dX00NXDfWGkB3b6g0melNHoRtRtA/9zj+9I7i6PlUgVXD1615cHPrVO/p1MboSWujQnLU/vQ5SeeQOvSNZObZo0cJFGsSAAAQCIYAUBlIo0oQABCBQEwK64qnfI6jXOO611141acq5EIBAiRJACku08AwbAhCIk4A+3UVvDNHtbF0h1KeecEAAAhBIQgApTEKJcyAAAQgEQkDvINabSfR7DvVxdBwQgAAEkhJACpOS4jwIQAACEIAABCAQMQGkMOLiMjQIQAACEIAABCCQlABSmJQU50EAAhCAAAQgAIGICSCFEReXoUEAAhCAAAQgAIGkBJDCpKQ4DwIQgAAEIAABCERMACmMuLgMDQIQgAAEIAABCCQl8P8AWZJP483vxZQAAAAASUVORK5CYII=", "image/svg+xml": [ "19401960198020002020020406080100Publication yearcount" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = px.histogram(\n", " X_train[\"timestamp\"],\n", " labels={\"value\": \"Publication year\"}, width=550, height=250,\n", ")\n", "fig.update_layout(showlegend=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we take a closer look at the new articles published prior to 2000, we find that the timestamps don't match the actual publication date of the article. These date issues are most likely related to the web scraper collecting inaccurate information from the web pages. We can zoom into the region of the histogram after 2000:" ] }, { "cell_type": "code", "execution_count": 332, "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "alignmentgroup": "True", "bingroup": "x", "hovertemplate": "variable=timestamp
Publication year=%{x}
count=%{y}", "legendgroup": "timestamp", "marker": { "color": "#1F77B4", "pattern": { "shape": "" } }, "name": "timestamp", "offsetgroup": "timestamp", "orientation": "v", "showlegend": true, "type": "histogram", "x": [ "2019-01-04T19:25:46", "2016-01-12T21:02:28", "2017-05-28T07:00:00", "2018-04-18T07:00:00", "2014-02-25T08:00:00", "2008-02-02T08:00:00", "2014-04-06T07:00:00", "2017-10-17T07:00:00", "2017-12-23T11:38:49", "2017-06-29T10:11:23", "2011-11-17T08:00:00", "2017-08-11T05:30:55", "2013-07-24T07:00:00", "2017-08-06T07:00:00", "2008-06-15T07:00:00", "2012-05-05T07:00:00", "2013-04-18T07:00:00", "2017-06-23T07:00:00", "2017-05-11T13:20:53", "2018-01-18T13:11:21", "2017-07-13T07:00:00", "2017-05-05T07:00:00", "2017-04-10T23:33:37", "2018-01-15T00:45:10", "2017-12-06T03:56:22", "2007-01-30T23:00:00", "2018-04-27T07:00:00", "2017-08-26T23:55:58", "2016-08-24T16:31:21", "2017-08-12T07:00:00", "2017-12-08T16:27:57", "2018-01-20T19:55:11", "2017-07-06T23:08:01", "2011-06-10T07:00:00", "2014-08-06T07:00:00", "2016-12-23T19:20:30", "2012-06-17T07:00:00", "2016-03-15T07:00:00", "2007-07-20T16:03:00", "2008-05-05T07:00:00", "2018-04-30T07:00:00", "2016-11-15T13:49:28", "2017-12-15T08:00:00", "2018-05-14T07:00:00", "2008-03-17T07:00:00", "2017-05-10T07:00:00", "2017-03-02T21:08:00", "2011-08-15T07:00:00", "2022-01-21T20:11:33", "2017-06-21T08:29:37", "2017-04-28T22:43:30", "2017-10-02T07:00:00", "2015-12-22T08:00:00", "2022-01-21T20:11:33", "2018-05-12T10:31:03", "2017-05-13T12:16:07", "2015-07-12T07:00:00", "2012-08-15T07:00:00", "2018-05-02T21:43:38", "2017-06-14T10:54:18", "2017-03-21T17:03:42", "2018-06-26T07:00:00", "2018-05-10T10:27:59", "2012-11-12T08:00:00", "2016-08-15T21:35:17", "2012-06-23T07:00:00", "2017-04-22T16:49:00", "2012-02-17T08:00:00", "2015-11-04T19:03:03", "2018-04-02T07:00:00", "2012-02-08T08:00:00", "2016-09-26T07:00:00", "2022-01-21T20:11:33", "2017-01-30T08:00:00", "2017-10-30T03:51:53", "2014-07-28T06:25:34", "2016-12-15T17:58:10", "2017-05-25T23:45:14", "2011-07-11T07:00:00", "2018-01-15T12:47:13", "2021-04-05T16:39:51", "2015-12-19T08:00:00", "2009-07-12T07:00:00", "2017-11-06T14:31:59", "2017-09-10T07:00:00", "2017-11-10T15:06:39", "2012-06-02T00:00:00", "2012-11-06T08:00:00", "2017-10-17T10:00:14", "2011-08-26T07:00:00", "2012-08-23T07:00:00", "2012-10-22T07:00:00", "2015-07-24T07:00:00", "2008-06-03T07:00:00", "2022-01-21T20:11:33", "2017-02-05T00:19:34", "2017-02-14T08:00:00", "2018-01-04T08:00:00", "2018-01-17T08:00:00", "2022-01-21T20:11:33", "2017-11-06T16:38:11", "2010-12-13T08:00:00", "2009-02-03T08:00:00", "2017-09-05T07:00:00", "2017-05-20T13:17:59", "2013-03-31T07:00:00", "2022-01-21T20:11:33", "2017-07-15T07:00:00", "2017-12-08T22:25:03", "2012-10-03T07:00:00", "2013-03-08T08:00:00", "2018-04-28T23:36:00", "2015-10-22T17:38:15", "2017-05-09T07:00:00", "2013-05-07T07:00:00", "2016-01-01T16:30:16", "2016-11-25T08:00:00", "2017-03-01T13:48:02", "2022-01-21T20:11:33", "2017-11-02T17:25:12", "2017-01-31T14:33:42", "2017-03-10T15:40:16", "2017-11-15T00:52:37", "2017-02-04T20:49:12", "2012-08-09T07:00:00", "2018-05-16T15:34:00", "2018-03-04T22:45:53", "2008-09-19T07:00:00", "2017-06-01T01:33:02", "2016-11-22T19:46:39", "2017-11-10T14:21:36", "2018-03-13T07:00:00", "2017-02-09T00:43:39", "2018-06-25T07:00:00", "2007-08-01T07:00:00", "2017-11-09T08:00:00", "2018-02-12T09:00:00", "2016-07-31T16:41:09", "2009-10-21T07:00:00", "2011-08-15T07:00:00", "2011-02-06T08:00:00", "2018-07-02T07:00:00", "2015-01-07T08:00:00", "2018-06-09T21:52:02", "2017-04-25T07:00:00", "2016-02-23T08:00:00", "2006-11-07T08:00:00", "2016-06-13T07:00:00", "2009-09-07T07:00:00", "2017-11-13T14:53:49", "2017-08-14T02:18:16", "2015-07-10T07:00:00", "2016-02-11T08:00:00", "2017-10-02T14:13:42", "2022-01-21T20:11:33", "2017-11-06T07:00:44", "2020-03-25T05:17:00", "2022-01-21T20:11:33", "2016-09-05T07:00:00", "2022-01-21T20:11:33", "2017-06-21T20:42:21", "2008-03-03T08:00:00", "2013-04-17T07:00:00", "2017-12-30T08:00:00", "2011-02-11T08:00:00", "2012-04-03T07:00:00", "2013-10-27T07:00:00", "2013-08-06T07:00:00", "2017-07-01T11:58:59", "2022-01-21T20:11:33", "2017-02-16T20:48:25", "2016-05-10T23:21:17.233000", "2022-01-21T20:11:33", "2017-07-06T07:00:00", "2022-01-21T20:11:33", "2008-08-15T07:00:00", "2018-07-05T10:48:31", "2016-04-24T21:04:28", "2017-05-12T12:50:32", "2018-07-17T07:00:00", "2013-04-25T20:33:20", "2015-02-12T12:30:05", "2011-11-29T08:00:00", "2010-10-14T17:04:00", "2016-11-25T08:00:00", "2011-03-11T08:00:00", "2017-11-26T18:25:52", "2017-10-08T23:43:28", "2022-07-13T14:49:56", "2018-06-27T16:09:14", "2015-07-13T07:00:00", "2016-09-20T07:00:00", "2017-05-08T07:00:00", "2017-07-08T07:00:00", "2022-05-13T19:50:48", "2017-04-01T10:22:51", "2011-11-30T08:00:00", "2017-11-27T15:18:23", "2012-09-18T03:00:58", "2013-03-07T08:00:00", "2007-08-01T07:00:00", "2008-01-30T08:00:00", "2017-02-11T08:00:00", "2016-05-09T07:00:00", "2018-01-31T03:12:22", "2016-12-12T19:20:51", "2008-03-17T07:00:00", "2001-09-11T05:00:00", "2018-07-10T07:00:00", "2012-10-12T07:00:00", "2016-03-10T18:11:20.173000", "2017-07-17T13:06:07.680999", "2018-02-15T19:38:00", "2016-02-07T00:23:19.497999", "2017-06-28T02:30:25", "2016-03-14T07:00:00", "2009-12-18T08:00:00", "2013-10-02T07:00:00", "2011-05-24T07:00:00", "2018-05-21T07:00:00", "2017-09-07T15:58:27", "2018-06-09T13:46:04", "2013-05-02T07:00:00", "2017-03-16T21:05:45", "2017-04-12T23:27:02", "2013-07-24T07:00:00", "2008-01-30T08:00:00", "2016-11-07T08:00:00", "2018-03-20T17:56:46", "2018-04-09T07:00:00", "2017-08-08T07:00:00", "2009-03-05T08:00:00", "2017-01-05T08:00:00", "2015-11-25T08:00:00", "2016-01-05T08:00:00", "2017-12-30T08:00:00", "2014-07-30T13:14:31", "2017-12-11T05:56:25", "2017-03-01T23:25:53", "2017-09-13T07:00:00", "2017-09-14T20:00:00", "2009-02-17T08:00:00", "2016-12-06T00:12:45", "2016-05-23T11:29:00", "2017-09-30T23:15:05", "2008-06-03T07:00:00", "2018-05-04T14:02:09", "2018-03-16T07:00:00", "2017-01-02T08:00:00", "2016-10-10T04:00:36.789999", "2017-08-20T07:00:00", "2018-03-24T18:45:45", "2016-12-20T08:00:00", "2018-04-09T07:00:00", "2012-07-17T07:00:00", "2010-02-23T08:00:00", "2016-06-21T13:41:37", "2017-12-14T08:00:00", "2009-02-09T08:00:00", "2018-01-14T01:29:40", "2016-01-02T08:00:00", "2016-01-01T23:17:43", "2008-02-08T08:00:00", "2018-07-12T16:28:19", "2016-07-09T07:00:00", "2009-09-10T07:00:00", "2018-05-13T07:00:00", "2016-11-14T08:00:00", "2008-06-18T07:00:00", "2016-12-23T17:04:56", "2017-06-24T07:00:00", "2017-10-12T23:15:41", "2016-04-29T12:25:53", "2008-08-23T07:00:00", "2014-12-21T08:00:00", "2016-05-06T20:32:20", "2016-10-10T04:00:36.789999", "2012-07-12T07:00:00", "2022-01-21T20:11:33", "2016-03-10T08:00:00", "2011-12-09T08:00:00", "2017-05-20T07:00:00", "2017-09-01T03:14:21", "2018-04-15T07:00:00", "2018-06-23T17:18:57", "2017-06-01T07:00:00", "2015-04-13T07:00:00", "2012-04-17T07:00:00", "2022-01-21T20:11:33", "2017-03-14T18:19:08", "2017-09-26T07:00:00", "2020-07-01T05:10:00", "2011-03-15T07:00:00", "2018-05-13T13:33:50", "2017-10-10T07:00:00", "2010-06-07T13:30:42", "2014-02-28T05:49:15", "2014-01-24T08:00:00", "2011-07-06T07:00:00", "2016-01-10T20:56:04", "2017-07-28T22:24:04", "2017-11-23T08:00:00" ], "xaxis": "x", "yaxis": "y" } ], "layout": { "barmode": "relative", "height": 250, "legend": { "title": { "text": "variable" }, "tracegroupgap": 0 }, "showlegend": false, "template": { "data": { "bar": [ { "error_x": { "color": "rgb(36,36,36)" }, "error_y": { "color": "rgb(36,36,36)" }, "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "white", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "baxis": { "endlinecolor": "rgb(36,36,36)", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "rgb(36,36,36)" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "line": { "color": "white", "width": 0.6 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" }, "colorscale": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "rgb(237,237,237)" }, "line": { "color": "white" } }, "header": { "fill": { "color": "rgb(217,217,217)" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowhead": 0, "arrowwidth": 1 }, "autosize": true, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 1, "tickcolor": "rgb(36,36,36)", "ticks": "outside" } }, "colorscale": { "diverging": [ [ 0, "rgb(103,0,31)" ], [ 0.1, "rgb(178,24,43)" ], [ 0.2, "rgb(214,96,77)" ], [ 0.3, "rgb(244,165,130)" ], [ 0.4, "rgb(253,219,199)" ], [ 0.5, "rgb(247,247,247)" ], [ 0.6, "rgb(209,229,240)" ], [ 0.7, "rgb(146,197,222)" ], [ 0.8, "rgb(67,147,195)" ], [ 0.9, "rgb(33,102,172)" ], [ 1, "rgb(5,48,97)" ] ], "sequential": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ], "sequentialminus": [ [ 0, "#440154" ], [ 0.1111111111111111, "#482878" ], [ 0.2222222222222222, "#3e4989" ], [ 0.3333333333333333, "#31688e" ], [ 0.4444444444444444, "#26828e" ], [ 0.5555555555555556, "#1f9e89" ], [ 0.6666666666666666, "#35b779" ], [ 0.7777777777777778, "#6ece58" ], [ 0.8888888888888888, "#b5de2b" ], [ 1, "#fde725" ] ] }, "colorway": [ "#1F77B4", "#FF7F0E", "#2CA02C", "#D62728", "#9467BD", "#8C564B", "#E377C2", "#7F7F7F", "#BCBD22", "#17BECF" ], "font": { "color": "rgb(36,36,36)" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "white", "showlakes": true, "showland": true, "subunitcolor": "white" }, "height": 250, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "margin": { "b": 10, "l": 10, "r": 10, "t": 10 }, "paper_bgcolor": "white", "plot_bgcolor": "white", "polar": { "angularaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "radialaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "scene": { "xaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "zaxis": { "backgroundcolor": "white", "gridcolor": "rgb(232,232,232)", "gridwidth": 2, "linecolor": "rgb(36,36,36)", "showbackground": true, "showgrid": false, "showline": true, "ticks": "outside", "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } }, "shapedefaults": { "fillcolor": "black", "line": { "width": 0 }, "opacity": 0.3 }, "ternary": { "aaxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "baxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" }, "bgcolor": "white", "caxis": { "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": false, "showline": true, "ticks": "outside" } }, "title": { "x": 0.5, "xanchor": "center" }, "width": 350, "xaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" }, "yaxis": { "automargin": true, "gridcolor": "rgb(232,232,232)", "linecolor": "rgb(36,36,36)", "showgrid": true, "showline": true, "ticks": "outside", "title": { "standoff": 15 }, "zeroline": false, "zerolinecolor": "rgb(36,36,36)" } } }, "width": 550, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ "2001-01-01", "2023-01-01" ], "title": { "text": "Publication year" }, "type": "date" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 0, 100 ], "title": { "text": "count" } } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoUAAAFoCAYAAAAhG4EVAAAAAXNSR0IArs4c6QAAIABJREFUeF7tnQmYFtW1rhfdzMgMigOKopGgJgZEiUg769Gr0SjiFBEnNEdE4EA4waAIzhoGDRpFBdFzNJpoUHGMccABFRQJKhwwHoMKQRGZJ4X7rLrpvs3UVC3+2r3qr7eeJ0+QrlV71fttut/eVfVXjQ0bNmwQNghAAAIQgAAEIACBXBOogRTmOn9OHgIQgAAEIAABCEQEkEImAgQgAAEIQAACEIAAUsgcgAAEIAABCEAAAhBgpZA5AAEIQAACEIAABCDA5WPmAAQgAAEIQAACEICAEuCeQuYBBCAAAQhAAAIQgABSyByAAAQgAAEIQAACEGClkDkAAQhAAAIQgAAEIMDlY+YABCAAAQhAAAIQgIAS4J5C5gEEIAABCEAAAhCAAFLIHIAABCAAAQhAAAIQyOBK4ffffy+rV6+WBg0abJZfVV8jbAhAAAIQgAAEIACBrRNwefn46aefln79+skf/vAH6dChQ0X3Y8aMkVGjRkVC2KlTp4o/6w5VfY0JAAEIQAACEIAABCBQNQF3Ujh8+HB555135KuvvopEr2PHjtEZzJgxQ3r16iUTJ06UFi1ayIABA6R169bSv3//Kr/GBIAABCAAAQhAAAIQ2DYBd1L48ssvS+fOneXss8+WIUOGVEjh6NGjZenSpdHf6TZt2jTp27evTJ48War62rYRsAcEIAABCEAAAhCAgDspLI/k5JNPlqFDh1ZI4eDBg6Vdu3bSo0ePaJeFCxdKly5dZNasWZEobu1rpaWlpAwBCEAAAhCAAAQgsA0CmZHC3r17S1lZmXTv3j06JV011EvL06dPl0GDBm31a+UPpEyYMGEzFOWCySyBAAQgAAEIQAACeSeQGSnU1cC2bdtKz549o8wWLFggXbt2ldmzZ8s111yz1a+VlJRE+29JCvX+xTlz5uR9Drg9/2+//Vbq1asnderUcdsjjaVPQO8vbt68uZT/W05/REbwRkA/WWLx4sXR/eRs+SWwatUqWbdunTRq1Ci/EFI+88xI4V133SXz58+XYcOGRUimTJkiAwcOjO4prOprVfHbZ599kMKUJ9j2HB4p3B56xVOLFBZPltYzQQqt5IqrDilMP8/MSOHcuXOlW7duMmnSJGnVqpX06dNH2rRpE4lhVV9DCtOfRGmNgBSmRTZbx0UKs5VXGt0ihWlQzd4xkcL0M3MrhaeeeqpcffXVG31OoV4CHjFiRERFP79w5MiR0rhx4+i/q/ra1jCyUpj+BNueEZDC7aFXPLVIYfFkaT0TpNBKrrjqkML083QrhVs79UK+0QQpTH+Cbc8ISOH20CueWqSweLK0nglSaCVXXHVIYfp5Zk4KC4kEKSwkzcIfCyksPNMsHhEpzGJqhe0ZKSwsz6weDSlMPzmkkKeP059lxhGQQiO4IitDCossUMPpIIUGaEVYghSmHypSiBSmP8uMIyCFRnBFVoYUFlmghtNBCg3QirAEKUw/VKQQKUx/lhlHQAqN4IqsDCksskANp4MUGqAVYQlSmH6oSCFSmP4sM46AFBrBFVkZUlhkgRpOByk0QCvCEqQw/VCRQqQw/VlmHAEpNIIrsjKksMgCNZwOUmiAVoQlSGH6oSKFSGH6s8w4AlJoBFdkZUhhkQVqOB2k0ACtCEuQwvRDRQqRwvRnmXEEpNAIrsjKkMIiC9RwOkihAVoRliCF6YeKFCKF6c8y4whIoRFckZUhhUUWqOF0kEIDtCIsQQrTDxUpRArTn2XGEZBCI7giK0MKiyxQw+kUoxS++j9fyScLlxtoJCs58Uc7S6tGdZMVOd0bKUw/GKQQKUx/lhlHQAqN4IqsDCksskANp1OsUnj+/e8YaMQv2X/XxnLv+QchhfGR5X5PpBApdPuPACl0G03QxpDCoLhdDoYU2mJBCm3c8lyFFCKFbuc/Uug2mqCNIYVBcbscDCm0xYIU2rjluQopRArdzn+k0G00QRtDCoPidjkYUmiLBSm0cctzFVKIFLqd/0ih22iCNoYUBsXtcjCk0BYLUmjjlucqpBApdDv/kUK30QRtDCkMitvlYEihLRak0MYtz1VIIVLodv4jhW6jCdoYUhgUt8vBkEJbLEihjVueq5BCpNDt/EcK3UYTtDGkMChul4MhhbZYkEIbtzxXIYVIodv5jxS6jSZoY0hhUNwuB0MKbbEghTZuea5CCpFCt/MfKXQbTdDGkMKguF0OhhTaYkEKbdzyXIUUIoVu5z9S6DaaoI0hhUFxuxwMKbTFghTauOW5CilECt3Of6TQbTRBG0MKg+J2ORhSaIsFKbRxy3MVUogUup3/SKHbaII2hhQGxe1yMKTQFgtSaOOW5yqkECl0O/+RQrfRBG0MKQyK2+VgSKEtFqTQxi3PVUghUuh2/iOFbqMJ2hhSGBS3y8GQQlssSKGNW56rkEKk0O38RwrdRhO0MaQwKG6XgyGFtliQQhu3PFchhUih2/mPFLqNJmhjSGFQ3C4HQwptsSCFNm55rkIKkUK38x8pdBtN0MaQwqC4XQ6GFNpiQQpt3PJchRQihW7nP1LoNpqgjSGFQXG7HAwptMWCFNq45bkKKUQK3c5/pNBtNEEbQwqD4nY5GFJoiwUptHHLcxVSiBS6nf9IodtogjaGFAbF7XIwpNAWC1Jo45bnKqQQKXQ7/5FCt9EEbQwpDIrb5WBIoS0WpNDGLc9VSCFS6Hb+I4VuownaGFIYFLfLwZBCWyxIoY1bnquQQqTQ7fxHCt1GE7QxpDAobpeDIYW2WJBCG7c8VyGFSKHb+Y8Uuo0maGNIYVDcLgdDCm2xIIU2bnmuQgqRQrfzHyl0G03QxpDCoLhdDoYU2mJBCm3c8lyFFCKFbuc/Uug2mqCNIYVBcbscDCm0xYIU2rjluQopRArdzn+k0G00QRtDCoPidjkYUmiLBSm0cctzFVKIFLqd/0ih22iCNoYUBsXtcjCk0BYLUmjjlucqpBApdDv/kUK30QRtDCkMitvlYEihLRak0MYtz1VIIVLodv4jhW6jCdoYUhgUt8vBkEJbLEihjVueq5BCpNDt/EcK3UYTtDGkMChul4MhhbZYkEIbtzxXIYVIodv5jxS6jSZoY0hhUNwuB0MKbbEghTZuea5CCpFCt/MfKXQbTdDGkMKguF0OhhTaYkEKbdzyXIUUIoVu5z9S6DaaoI0hhUFxuxwMKbTFghTauOW5CilECt3Of6TQbTRBG0MKg+J2ORhSaIsFKbRxy3NV5qRw/fr1snbtWqlbt+5muek3jtWrV0uDBg1iZbrPPvvIHKQwFqvq2AkprA7q/sZECv1lErojpNBGHCm0cctzVaak8Oabb5ann35a1q1bJ+3bt5frrrtOdtlllyi/MWPGyKhRoyIh7NSpU8WfqwoXKfQ99ZFC3/mE6g4pDEXa7zhIoS0bpNDGLc9VmZHCDz74QC699FJ56aWXpF69enL99ddLaWmpDB48WGbMmCG9evWSiRMnSosWLWTAgAHSunVr6d+/f5XZIoW+pz5S6DufUN0hhaFI+x0HKbRlgxTauOW5KjNS+Oabb8rQoUPlueeek5KSErnzzjtl/vz5Mnz4cBk9erQsXbpUhgwZEmU5bdo06du3r0yePBkpzPDsRgozHF4BW0cKCwgzo4dCCm3BIYU2bnmuyowUrlmzRi655BLRewoPOuggefLJJ+W+++6TPffcM1otbNeunfTo0SPKcuHChdKlSxeZNWtWtJq4tY2VQt9THyn0nU+o7pDCUKT9joMU2rJBCm3c8lyVGSnUkB5//HEZNGhQlNepp54a3VNYp04d6d27t5SVlUn37t2jr+mqYceOHWX69OkVD52cddZZm+WsK4q6Asnmk8CGDRukRo0aPpujq2AE9BdBvTrAlm8CxTQPdLHig4Vr5YLx01INVaVwzFkHSH1Zm+o4oQ6uPxN04+dCcuItW7aMVZQZKXz55ZejS8Xjxo2L7inUS8X169eXkSNHRn9u27at9OzZMzrpBQsWSNeuXWX27NkVP0wWLVq0GZDOnTtH+7D5JLBkyZLoKXMVf7b8EtB/u02bNkUM8zsFRFcK9ftBs2bNiobC5LmL5Pz730n1fFQKx/Y4SHZqWDvVcUIdXD9dRB80bdiwYaghi2acuL9YZ0YKf/Ob38jOO+8sl19+eRSSfpTMiSeeGF0ivueee6L7C4cNGxZ9bcqUKTJw4EDuKcz4dObyccYDLFD7XD4uEMgMH4bLx7bwuHxs45bnqsxIoT5Z/Nhjj8nYsWOldu3a8sADD8jbb78td999t8ydO1e6desmkyZNklatWkmfPn2kTZs2kRhWtXFPoe+pjxT6zidUd0hhKNJ+x0EKbdkghTZuea7KjBTqsvG1114rehlZtwMOOED69esXfV6hbhMmTJARI0ZEf+7QoUN0Wblx48ZIYYZnN1KY4fAK2DpSWECYGT0UUmgLDim0cctzVWaksDwkvdlYn0TW+wo33XijSXFNZaSwuPK0ng1SaCVXPHVIoS1LpNDGLc9VmZPCQobF5eNC0iz8sZDCwjPN4hGRwiymVtiekUIbT6TQxi3PVUgh7z52O/+RQrfRBG0MKQyK2+VgSKEtFqTQxi3PVUghUuh2/iOFbqMJ2hhSGBS3y8GQQlssSKGNW56rkEKk0O38RwrdRhO0MaQwKG6XgyGFtliQQhu3PFchhUih2/mPFLqNJmhjSGFQ3C4HQwptsSCFNm55rkIKkUK38x8pdBtN0MaQwqC4XQ6GFNpiQQpt3PJchRQihW7nP1LoNpqgjSGFQXG7HAwptMWCFNq45bkKKUQK3c5/pNBtNEEbQwqD4nY5GFJoiwUptHHLcxVSiBS6nf9IodtogjaGFAbF7XIwpNAWC1Jo45bnKqQQKXQ7/5FCt9EEbQwpDIrb5WBIoS0WpNDGLc9VSCFS6Hb+I4VuownaGFIYFLfLwZBCWyxIoY1bnquQQqTQ7fxHCt1GE7QxpDAobpeDIYW2WJBCG7c8VyGFSKHb+Y8Uuo0maGNIYVDcLgdDCm2xIIU2bnmuQgqRQrfzHyl0G03QxpDCoLhdDoYU2mJBCm3c8lyFFCKFbuc/Uug2mqCNIYVBcbscDCm0xYIU2rjluQopRArdzn+k0G00QRtDCoPidjkYUmiLBSm0cctzFVKIFLqd/0ih22iCNoYUBsXtcjCk0BYLUmjjlucqpBApdDv/kUK30QRtDCkMitvlYEihLRak0MYtz1VIIVLodv4jhW6jCdoYUhgUt8vBkEJbLEihjVueq5BCpNDt/EcK3UYTtDGkMChul4MhhbZYkEIbtzxXIYVIodv5jxS6jSZoY0hhUNwuB0MKbbEghTZuea5CCpFCt/MfKXQbTdDGkMKguF0OhhTaYkEKbdzyXIUUIoVu5z9S6DaaoI0hhUFxuxwMKbTFghTauOW5CilECt3Of6TQbTRBG0MKg+J2ORhSaIsFKbRxy3MVUogUup3/SKHbaII2hhQGxe1yMKTQFgtSaOOW5yqkECl0O/+RQrfRBG0MKQyK2+VgSKEtFqTQxi3PVUghUuh2/iOFbqMJ2hhSGBS3y8GQQlssSKGNW56rkEKk0O38RwrdRhO0MaQwKG6XgyGFtliQQhu3PFchhUih2/mPFLqNJmhjSGFQ3C4HQwptsSCFNm55rkIKkUK38x8pdBtN0MaQwqC4XQ6GFNpiQQpt3PJchRQihW7nP1LoNpqgjSGFQXG7HAwptMWCFNq45bkKKUQK3c5/pNBtNEEbQwqD4nY5GFJoiwUptHHLcxVSiBS6nf9IodtogjaGFAbF7XIwpNAWC1Jo45bnKqQQKXQ7/5FCt9EEbQwpDIrb5WBIoS0WpNDGLc9VSCFS6Hb+I4VuownaGFIYFLfLwZBCWyxIoY1bnquQQqTQ7fxHCt1GE7QxpDAobpeDIYW2WJBCG7c8VyGFSKHb+Y8Uuo0maGNIYVDcLgdDCm2xIIU2bnmuQgqRQrfzHyl0G03QxpDCoLhdDoYU2mJBCm3c8lyFFCKFbuc/Uug2mqCNIYVBcbscDCm0xYIU2rjluQopRArdzn+k0G00QRtDCoPidjkYUmiLBSm0cctzFVKIFLqd/0ih22iCNoYUBsXtcjCk0BYLUmjjlucqpBApdDv/kUK30QRtDCkMitvlYEihLRak0MYtz1VIIVLodv4jhW6jCdoYUhgUt8vBkEJbLEihjVueq5BCpNDt/EcK3UYTtDGkMChul4MhhbZYkEIbtzxXIYVIodv5jxS6jSZoY0hhUNwuB0MKbbEghTZuea7KpBSuX79eli1bJjvssIOUlpZW5KffOFavXi0NGjSIlek+++wjc5DCWKyqYyeksDqo+xsTKfSXSeiOkEIbcaTQxi3PVZmSwsWLF8s111wjr732mjRr1kx69+4tp512WpTfmDFjZNSoUZEQdurUqeLPVYWLFPqe+kih73xCdYcUhiLtdxyk0JYNUmjjlueqTEnh6aefLoceeqj07dt3oxXCGTNmSK9evWTixInSokULGTBggLRu3Vr69+9fZbZIoe+pjxT6zidUd0hhKNJ+x0EKbdkghTZuea7KjBS+++67MmjQIHnxxRc3EkINb/To0bJ06VIZMmRIlOW0adMicZw8eTJSmOHZjRRmOLwCto4UFhBmRg+FFNqCQwpt3PJclRkpfOCBB+Sjjz4SXd3T/z/66KPlmGOOkTp16sjgwYOlXbt20qNHjyjLhQsXSpcuXWTWrFmbCWTlsFkp9D31kULf+YTqDikMRdrvOEihLRuk0MYtz1WZkcJbbrlFxo4dK/369ZO9995bxo0bJwcccEAkhHpvYVlZmXTv3j3KUlcNO3bsKNOnT6946GTKlCmb5XzeeefJzJkz85y/63NfsWKF1K5dW2rVquW6T5pLl8CSJUukUaNGUqNGjXQH4uhuCejDhcuXL4/mQTFsOpff/PRb6Tnu3VRPR6Xwnl90kOb1//8DmakOmPLB165dK999953Ur18/5ZGK7/C6gBZny4wU3nDDDdE3Bf1/3XQVsGfPnvLGG2/I0KFDpW3bttF/67ZgwQLp2rWrzJ49W0pKSqK/K7+0XBnKI488InpZms0ngXXr1kUrveUZ+uySrtImoD8I9BcDpDBt0n6Pv2HDBtHvB/pLYjFs+j3tvS9XSc/xU1M9HZXCO8/+sTSq+X2q44Q6uK4Y61yoWbNmqCGLZpwmTZrEOpfMSKGuDOrHx5RL4bx58+Tkk0+OpO7ee++V+fPny7Bhw6KT1lXBgQMHck9hrCngdycuH/vNJmRnXD4OSdvnWFw+tuXC5WMbtzxXZUYKVQKPOuooeeqpp2SvvfaSO+64Q77++mu58cYbZe7cudKtWzeZNGmStGrVSvr06SNt2rSJxLCqjXsKfU99pNB3PqG6QwpDkfY7DlJoywYptHHLc1VmpFBDeuKJJ+Taa6+N8jr88MPlyiuvjARRtwkTJsiIESOiP3fo0EFGjhwpjRs3RgozPLuRwgyHV8DWkcICwszooZBCW3BIoY1bnqsyJYUalN5wrG8t2dKNprzRpLimMlJYXHlazwYptJIrnjqk0JYlUmjjlueqzElhIcPi8nEhaRb+WEhh4Zlm8YhIYRZTK2zPSKGNJ1Jo45bnKqSQdx+7nf9IodtogjaGFAbF7XIwpNAWC1Jo45bnKqQQKXQ7/5FCt9EEbQwpDIrb5WBIoS0WpNDGLc9VSCFS6Hb+I4VuownaGFIYFLfLwZBCWyxIoY1bnqvMUrhy5crMf6o49xT6nvpIoe98QnWHFIYi7XccpNCWDVJo45bnqiql8NZbb5Udd9xRzj///M0YHXjggdHnAu66666Z5YcU+o4OKfSdT6jukMJQpP2OgxTaskEKbdzyXGWSws8//1yOPPJIee2112TnnXfOLD+k0Hd0SKHvfEJ1hxSGIu13HKTQlg1SaOOW56otSuF7770n11xzjehbROrWrSstW7asYKQvo9Y3iHTs2FH03cFZ3pBC3+khhb7zCdUdUhiKtN9xkEJbNkihjVueq7YohfoB0R9++KHcfPPN0rBhQ/npT39awUhfSq8yddBBB2X+pdRIoe+pjxT6zidUd0hhKNJ+x0EKbdkghTZuea6q8vLx//zP/8jy5cuj18YV44YU+k4VKfSdT6jukMJQpP2OgxTaskEKbdzyXBXr6WP9B6nfmDfddtppJ9GVw6xuSKHv5JBC3/mE6g4pDEXa7zhIoS0bpNDGLc9VVUqhfuzMTTfdJE8++aSsWLFiM05Tp06Vxo0bZ5YfUug7OqTQdz6hukMKQ5H2Ow5SaMsGKbRxy3NVlVL43HPPydChQ+XXv/61HHDAAZutCu6xxx5SUlKSWX5Ioe/okELf+YTqDikMRdrvOEihLRuk0MYtz1VVSuHgwYOladOmMnDgwKJkhBT6jhUp9J1PqO6QwlCk/Y6DFNqyQQpt3PJcVaUUjho1Sv7+97/L7bffXpSMkELfsSKFvvMJ1R1SGIq033GQQls2SKGNW56rqpTCzz77TM4880y54YYboo+gadSoUVGxQgp9x4kU+s4nVHdIYSjSfsdBCm3ZIIU2bnmuqlIK77//frnxxhu3yocHTfI8ddI/d6QwfcZZGAEpzEJK6faIFNr4IoU2bnmuqlIK//d//1e+/PLLrfI55JBDpLS0NLP8WCn0HR1S6DufUN0hhaFI+x0HKbRlgxTauOW5KtbnFBYrIKTQd7JIoe98QnWHFIYi7XccpNCWDVJo45bnqiql8NVXX5X3339/q3wuu+yy6N3IWd2QQt/JIYW+8wnVHVIYirTfcZBCWzZIoY1bnquqlMLHHntMnn/++Qo+a9eulU8//VQWLFggRxxxRPRUcr169TLLDyn0HR1S6DufUN0hhaFI+x0HKbRlgxTauOW5KvHl4w0bNsidd94pkydPlkceeSTT7JBC3/Ehhb7zCdUdUhiKtN9xkEJbNkihjVueqxJLocJatGiRdO7cWd544w3ZcccdM8sPKfQdHVLoO59Q3SGFoUj7HQcptGWDFNq45bnKJIV6+bhr167y9ttvS7NmzTLLDyn0HR1S6DufUN0hhaFI+x0HKbRlgxTauOW5qkopnD59usyePXsjPosXL5ZJkyZJgwYNuHyc55kT4NyRwgCQMzAEUpiBkFJuESm0AUYKbdzyXFWlFN5zzz2biZ/K4NFHHy2nnHKK7Lnnnplmx0qh7/iQQt/5hOoOKQxF2u84SKEtG6TQxi3PVabLx8UCDCn0nSRS6DufUN0hhaFI+x0HKbRlgxTauOW5KpYULlu2LPoomuXLl8suu+wie+yxh9SoUSPz3JBC3xEihb7zCdUdUhiKtN9xkEJbNkihjVueq7YphQ899JBce+21GzHq2LGj3HbbbbLbbrtlmh1S6Ds+pNB3PqG6QwpDkfY7DlJoywYptHHLc1WVUvjmm2/K+eefL/369YueNm7VqpW89957Mm7cONF/pPrh1lnekELf6SGFvvMJ1R1SGIq033GQQls2SKGNW56rqpTC66+/XubMmSPjx4/fiNGMGTPk9NNPl7feektatGiRWX5Ioe/okELf+YTqDikMRdrvOEihLRuk0MYtz1VVSuGgQYOkUaNGctVVV23E6JtvvpFDDjlEXnrpJdl9990zyw8p9B0dUug7n1DdIYWhSPsdBym0ZYMU2rjluapKKZwwYYKMGDEiev/xTjvtFHHSf5yjR4+WRx99VKZMmZJpdkih7/iQQt/5hOoOKQxF2u84SKEtG6TQxi3PVVVK4apVq6R79+4ya9Ys2XvvvaMHS1555ZWI17333iuHH354ptkhhb7jQwp95xOqO6QwFGm/4yCFtmyQQhu3PFdt8+njdevWycSJE2XmzJmyYsUK2W+//aSsrEz22muvzHNDCn1HiBT6zidUd0hhKNJ+x0EKbdkghTZuea6qUgq//PJLKSkpiZ46rrwtWbJEvvjiC2nfvn2m2SGFvuNDCn3nE6o7pDAUab/jIIW2bJBCG7c8V1UphbfeeqvMmzdPbr/99o0YffTRR9Fr7vSycmlpaWb5IYW+o0MKfecTqjukMBRpv+MghbZskEIbtzxXVSmF+vmEbdu2ld69e2/EaM2aNbL//vvLCy+8kOn3HyOFvqc+Uug7n1DdIYWhSPsdBym0ZYMU2rjluapKKbzllltk8uTJ8tRTT23E6PXXX5cLLrhApk6dKo0bN84sP6TQd3RIoe98QnWHFIYi7XccpNCWDVJo45bnqiqlcPr06XLGGWdE/zviiCOi9x6///778uCDD0b/PXjw4EyzQwp9x4cU+s4nVHdIYSjSfsdBCm3ZIIU2bnmu2ubTx5MmTZLhw4fLokWLKjgdc8wxMmzYMGnZsmWm2SGFvuNDCn3nE6o7pDAUab/jIIW2bJBCG7c8V21TChXO+vXr5euvv5alS5fKzjvvLA0aNCgKZkih7xiRQt/5hOoOKQxF2u84SKEtG6TQxi3PVbGksFgBIYW+k0UKfecTqjukMBRpv+MghbZsjtuvlVz/8/2l5Q51bAdwVqUv1NDPTtbX77KlQwApnDMnHbIcdbsJIIXbjbAoDoAUFkWM23USSKEN3ykH7io//8muUlpiq09S9cOdG0uLHWonKUm8L1KYGFniAqQQKUw8aUIVIIWhSPseByn0nU+I7pBCG2WVwqPa7ShXPvK+7QAxqw7es5nceW5HpDAmL8+7IYVIodv5iRS6jSZoY0hhUNwuB0MKbbEghTZuea7KrBTqB2jXrl1batSoUZGffuNYvXp17AdhuKfQ99RHCn3nE6o7pDAUab/jhJTCNz75Wj7+clmqMBrXqyXNd6gtF45/N9VxkMJU8RblwTMphc8++6z06dNnozeqjBkzRkaNGhUJYadOnSr+XFVqSKHvOY0U+s4nVHdIYSjSfscJLYXnjn07VRhH/3BHOfeQPZDChJS5pzAhMMPumZNC/QFx5plnyjfffCNPPPFE9JrzfjWMAAAgAElEQVS9GTNmSK9evWTixInSokULGTBggLRu3Vr69+9fJRKk0DBjApYghQFhOx4KKXQcTqDWkEIbaFYKbdzyXJU5Kbz00kvlhBNOkN/+9rcyYcKESApHjx4dfYbikCFDoiynTZsmffv2jV7Rx0phdqc3Upjd7ArZOVJYSJrZPBZSaMsNKbRxy3NVpqTw8ccfF710PHbsWOncubM8/PDDkRTq6/batWsnPXr0iLJcuHChdOnSRWbNmiWlpaVbzZeVQt9THyn0nU+o7pDCUKT9joMU2rJBCm3c8lyVGSn84osv5PTTT48uEe+0004bSWHv3r2lrKxMunfvHmWpq4YdO3YUfXdz+dtXylcRK4f9yCOPyLvvpnujb54n1/aeu35IqUp9SUmAD9na3mapT43A2rVrpVatWhs9VJbaYBzYJYENGzZEH1qsDxemuen3mg8WrJbz7k/350LIewqPbNdS+j4yPU1soh9JM6rb/lK/9PtUx9FfDnQu1KxZM9VxivHgTZo0iXVamZBCfc1ez5495dBDD5Vu3bpFJ3bSSSeJPlzSvn17ueGGG6Rt27bRProtWLBAunbtKrNnz64QiilTpmwG5LzzzpOZM2fGAsVO4QmsWLEi+iGgQsCWXwJLliyJ3mBQ+ZMG8ksjn2euPwOWL1+e+pssdI69+9lSOfe+YnrQpKVcGUAK7zjrQGlSN91f4PUXxO+++07q16+fz38I23HWderEe6tNJqRQvxn85Cc/2SKO66+/XhYtWiTz58+XYcOGRfuoAA4cOJB7CrdjAnko5fKxhxSqvwcuH1d/BtXdAZePbQlw+djGLc9VmZDCLQVU+Z7CuXPnRiuIkyZNklatWkUfV9OmTZtIDKvauKfQ99RHCn3nE6o7pDAUab/jIIW2bJBCG7c8V2VaCvWeQJU/3fRJ5BEjRkR/7tChg4wcOVIaN26MFGZ4diOFGQ6vgK0jhQWEmdFDIYW24JBCG7c8V2VWCrcUGm80Ka6pjBQWV57Ws0EKreSKpw4ptGWJFNq45bmqqKQwaZBcPk5KLOz+SGFY3l5HQwq9JhOuL6TQxhoptHHLcxVSOGdOnvN3fe5Ioet4gjWHFAZD7XYgpNAWDVJo45bnKqQQKXQ7/5FCt9EEbQwpDIrb5WBIoS0WpNDGLc9VSCFS6Hb+I4VuownaGFIYFLfLwZBCWyxIoY1bnquQQqTQ7fxHCt1GE7QxpDAobpeDIYW2WJBCG7c8VyGFSKHb+Y8Uuo0maGNIYVDcLgdDCm2xIIU2bnmuQgqRQrfzHyl0G03QxpDCoLhdDoYU2mJBCm3c8lyFFCKFbuc/Uug2mqCNIYVBcbscDCm0xYIU2rjluQopRArdzn+k0G00QRtDCoPidjkYUmiLBSm0cctzFVKIFLqd/0ih22iCNoYUBsXtcjCk0BYLUmjjlucqpBApdDv/kUK30QRtDCkMitvlYEihLRak0MYtz1VIIVLodv4jhW6jCdoYUhgUt8vBkEJbLEihjVueq5BCpNDt/EcK3UYTtDGkMChul4MhhbZYkEIbtzxXIYVIodv5jxS6jSZoY0hhUNwuB0MKbbEghTZuea5CCpFCt/MfKXQbTdDGkMKguF0OhhTaYkEKbdzyXIUUIoVu5z9S6DaaoI0hhUFxuxwMKbTFghTauOW5CilECt3Of6TQbTRBG0MKg+J2ORhSaIsFKbRxy3MVUogUup3/SKHbaII2hhQGxe1yMKTQFgtSaOOW5yqkECl0O/+RQrfRBG0MKQyK2+VgSKEtFqTQxi3PVUghUuh2/iOFbqMJ2hhSGBS3y8GQQlssSKGNW56rkEKk0O38RwrdRhO0MaQwKG6XgyGFtliQQhu3PFchhUih2/mPFLqNJmhjSGFQ3C4HQwptsSCFNm55rkIKkUK38x8pdBtN0MaQwqC4XQ6GFNpiQQpt3PJchRQihW7nP1LoNpqgjSGFQXG7HAwptMWCFNq45bkKKUQK3c5/pNBtNEEbQwqD4nY5GFJoiwUptHHLcxVSiBS6nf9IodtogjaGFAbF7XIwpNAWC1Jo45bnKqQQKXQ7/5FCt9EEbQwpDIrb5WBIoS0WpNDGLc9VSCFS6Hb+I4VuownaGFIYFLfLwZBCWyxIoY1bnquQQqTQ7fxHCt1GE7QxpDAobpeDIYW2WJBCG7c8VyGFSKHb+Y8Uuo0maGNIYVDcLgdDCm2xIIU2bnmuQgqRQrfzHyl0G03QxpDCoLhdDoYU2mJBCm3c8lyFFCKFbuc/Uug2mqCNIYVBcbscDCm0xYIU2rjluQopRArdzn+k0G00QRtDCoPidjkYUmiLBSm0cctzFVKIFLqd/0ih22iCNoYUBsXtcjCk0BYLUmjjlucqpBApdDv/kUK30QRtDCkMitvlYEihLRak0MYtz1VIIVLodv4jhW6jCdoYUhgUt8vBkEJbLEihjVueq5BCpNDt/EcK3UYTtDGkMChul4MhhbZYkEIbtzxXIYVIodv5jxS6jSZoY0hhUNwuB0MKbbEghTZuea5CCpFCt/MfKXQbTdDGkMKguF0OhhTaYkEKbdzyXIUUIoVu5z9S6DaaoI0hhUFxuxwMKbTFghTauOW5CilECt3Of6TQbTRBG0MKg+J2ORhSaIsFKbRxy3MVUogUup3/SKHbaII2hhQGxe1yMKTQFgtSaOOW5yqkECl0O/+RQrfRBG0MKQyK2+VgSKEtFqTQxi3PVUghUuh2/iOFbqMJ2hhSGBS3y8GQQlssSKGNW56rkEKk0O38RwrdRhO0MaQwKG6XgyGFtliQQhu3PFchhUih2/mPFLqNJmhjSGFQ3C4HQwptsSCFNm55rsqcFK5Zs0ZKSkqkVq1am+Wm3zhWr14tDRo0iJXpPvvsI3OQwlisqmMnpLA6qPsbEyn0l0nojpBCG3Gk0MYtz1WZkcJZs2bJddddJzNnzozyOv7442Xo0KFSr1696L/HjBkjo0aNioSwU6dOFX+uKlyk0PfURwp95xOqO6QwFGm/4yCFtmyQQhu3PFdlRgpnzJgh8+bNkxNPPFFWrlwpF110kXTv3l1OO+000a/16tVLJk6cKC1atJABAwZI69atpX///lVmixT6nvpIoe98QnWHFIYi7XccpNCWDVJo45bnqsxI4aYh3X777bJs2TK56qqrZPTo0bJ06VIZMmRItNu0adOkb9++MnnyZKQww7MbKcxweAVsHSksIMyMHgoptAWHFNq45bkqk1K4YcMG+fnPfy6XX365HHvssTJ48GBp166d9OjRI8py4cKF0qVLF9FLzqWlpdHfLVq0aLOcO3fuLLNnz85z/q7PfcmSJVK3bl2pU6eO6z5pLl0C+m+3adOm0b3EbPkkoFKo3w+aNWuWOoC3/v6NnHvv26mOc/QPd5RzD9lDLhz/bqrjhJTCMed0kOYNNr/Xv5AnqM8MrFu3Tho2bFjIw+biWHG/f2ZSCu++++5oFXD8+PFSs2ZN6d27t5SVlUWXk3XTVcOOHTvK9OnTKx46OeusszYLXlcU33zzzVxMiCyepMp/jRo1stg6PReQwPr16xHCAvLM6qFCzANdRPjw6+/kvPvTlbVICg/eXS58YGqqcagUHrlvS+n7h+mpjnPwns1kxGntpY6sTXUc/ZmgGz8XkmNu2bJlrKLMSeGkSZPkpptukj//+c/SvHnz6CT1snHbtm2lZ8+e0X8vWLBAunbtGq0CVmXH3FMYa45U205cPq429K4G5vKxqziqpRkuH9uwh1wpvPPcjtJih9q2RmNWrVq1KlopbNSoUcwKdktKIFNS+Oqrr8qgQYPkgQcekH333bfiXO+66y6ZP3++DBs2LPq7KVOmyMCBA7mnMOlscLY/UugskGpqBymsJvCOhkUKbWEghTZuea7KjBROnTpVLr74Yrnvvvtkv/32q8hM7zmbO3eudOvWTXQVsVWrVtKnTx9p06ZNJIZVbawU+p76SKHvfEJ1V2xS+PnilfLeZ9+mju8nuzeR1s3qpz5OiAGQQhtlpNDGLc9VmZHCSy65RF555ZXNsvrwww+ldu3aMmHCBBkxYkT09Q4dOsjIkSOlcePGSGGGZzdSmOHwCth6MUrhYTe/XEBCmx+qfu1Seb5vGVJooPzGJ1/LuWN50CQJOr2nkMvHSYj53TczUhgHIW80iUMpO/sghdnJKs1OkcLkdJHC5MzKK5DC5OyQwuTMvFYUlRQmhczl46TEwu6PFIbl7XU0pDB5MkhhcmZIoZ0ZUmhn560SKeTdx97mZEU/SKHbaII2hhQmx40UJmeGFNqZIYV2dt4qkUKk0NucRArdJlI9jSGFybkjhcmZIYV2Zkihnd2y1d/ZixNUNqxbM9beSCFSGGuiVMdOrBRWB3V/YyKFyTNBCpMzQwrtzJBCO7vrn/lYPlm43H6AGJXNGtSW2874cYw9RZBCpDDWRKmOnZDC6qDub0ykMHkmSGFyZkihnRlSaGenUjj2tb/bDxCjslvH3ZDCGJyEB03iUKq+fZDC6mPvaWSkMHkaSGFyZkihnRlSaGeHFNrZFbwSKSw40oIeECksKM7MHgwpTB4dUpicGVJoZ4YU2tkhhXZ2Ba9ECguOtKAHRAoLijOzB0MKk0eHFCZnhhTamSGFdnZIoZ1dwSuRwoIjLegBkUIbzs8Xr5INGzbYihNWhXiNWigpnPfNyoRnb9v9+w0b5IhbN387k+1oW65CCu00+fDq5OyQwuTMyiuQQju7glcihQVHWtADIoU2nCqF54ydIl8tW2M7QMyqRy/9qRywW9Wvkox5qCp3CymFx418rRAtV3mMZ/t2RQoTUubdxwmB/Wt33n1s4xayCikMSXsbYyGFjsLYQitIoS2fcin8R8orX0/1PqzopPCo374q675fbwMfo6pOzRJ5vl8ZUhiDVeVdkMKEwJBCG7BqqEIKqwH61oZECh2FgRQWLAyk0IZSLx8jhTZ2aVchhTbCrBTauIWsQgpD0mal0BHt5K2wUpicmVYghTZuSKGNW4gqpNBGGSm0cQtZhRSGpI0UOqKdvBWkMDkzpNDGTKuKSQob16slL/Qrk50a1bUDcVSJFNrCQApt3EJWIYUhaSOFjmgnbwUpTM4MKbQxK0Yp/NMvD5UPPv/WDiRm5cFtmknaT6EjhTHD2GQ3pNDGLWQVUhiSNlLoiHbyVpDC5MyQQhuzYpXCY0a8agcSo1JXJJ++4jCkMAaryrsc/cMd5dxD9pALx7+bsDLZ7khhMl7VsTdSWB3UtzImD5o4CmMLrSCFtny4p9DGrdguH+tKYTFJ4cqVK6Vhw4a2cBNU8TmFCWD9a1c+pzA5s/IKpNDOruCVSGHBkRb0gEihDSdSaOOGFCbnFnKlcOpni+XZmf9M3mSCiqb1a8tPdm8iPe5/J0FV8l1ZKUzOTCtWrVol69atk0aNGtkO4LAKKXQUClLoKAxWCgsWBlJoQ4kUJucWWgrPvOft5E0mqDhs7xbSq2wvpDABM92VlcKEwCrtjhTa2RW8EiksONKCHpCVQhtOpNDGDSlMzg0pTM5MK1gptHFjpdDGrVvH3eS2M34cq7jGhlAvSY3VTtidkMKwvJOOhhQmJfb/9kcKbdyQwuTckMLkzJBCGzOtQgpt7JDCmNyQwpigqmk3pNAGHim0cUMKk3NDCpMzQwptzJBCOzekMCY7pDAmqGraDSm0gUcKbdyQwuTckMLkzJBCGzOk0M4NKYzJDimMCaqadkMKbeCRQhs3pDA5N6QwOTOk0MYMKbRzQwpjskMKY4Kqpt2QQht4pNDGDSlMzg0pTM4MKbQxQwrt3JDCmOyQwpigqmk3pNAGPpQUPt+3TOrXLrU1maBKX3G2e/MGUlJSkqAq+a5IYXJmSGFyZkihjRlSaOeGFMZkhxTGBFVNuyGFNvAhpbDnuHfk6+VrbY3GrHr8l51lv10aI4UxeeluKmvF9kYT/fBqPqcwwSQQEV5zl4xXdezN5xRWB/WtjIkUOgpjC60ghbZ8Qkvh/CWrbY3GrHqq96FIYUxW5buFksLWzerLH3p1ll2a1EvYYbLddbUYKUzGTPdGCpMzC12BFIYmXsV4SKGjMJDCgoWBFNpQcvk4OTeVwjHndJB1369PXpygolZpiaxYs07OHssbTRJgQwqTwKqmfZHCagK/pWGRQkdhIIUFCwMptKFECpNzK5fCn/3u9eTFCSp+vFtj+c8T2iGFCZixUpgQVjXtjhRWE3ik0BH4mK1w+TgmqE12Qwpt3JDC5NyQwuTMtILX3Nm48UYTGzceNInJjZXCmKCqaTek0AYeKbRxQwqTc0MKkzNDCm3MtAoptLFDCmNyQwpjgqqm3ZBCG3ik0MYNKUzODSlMzgwptDFDCu3ckMKY7JDCmKCqaTek0AYeKbRxQwqTc0MKkzNDCm3MkEI7N6QwJjukMCaoatoNKbSBRwpt3JDC5NyQwuTMkEIbM6TQzg0pjMkOKYwJqpp2Qwpt4JFCGzekMDk3pDA5M6TQxgwptHNDCmOyQwpjgqqm3ZBCG3ik0MYNKUzODSlMzgwptDFDCu3ckMKY7JDCmKCqaTek0AYeKbRxQwqTc0MKkzNDCm3MkEI7N6QwJjukMCaoatoNKbSBRwpt3JDC5NyQwuTMkEIbM6TQzg0pjMkOKYwJqpp2KzYp/OLbVbJhQ/ow13z3vVww7l35xzcrUx3s+b5l0nPcO5L2u4+f79tVGtSpKSI1Uj0ffVXbcSNfS/WVbXVqlsjz/crkiFtfSfVcQr77WF9zxxtNksXJh1cn41W+N59TaOOGFMbkhhTGBFVNuxWjFP7i3rfl+/XpmuHd53WUSx+cVjRS+EK/Mrn4gampz8LxFx4sxyOFiTizUpgIV8XOSKGNG1Jo44YUxuSGFMYEVU27FasUfvr1ilSJPntl16KTwjN+/5YsWbUuVW5/HXAEUpiQMFKYENi/dkcKbdyQQhs3pDAmN6QwJqhq2g0ptIFHCm3ckMLk3JDC5My0Aim0cUMKbdyQwpjckMKYoKppN6TQBh4ptHFDCpNzQwqTM0MKbcy0Cim0sUMKY3JDCmOCqqbdkEIbeKTQxg0pTM4NKUzODCm0MdOq1atXy3fffSc77LCD/SDOKq9/5mMZ+9rfU+0qt1L4/fffR5OmQYMGsQAjhbEwVdtOSKENPVJo44YUJueGFCZnhhTamGnVmjVr5L3Pl0lJSbqfRKBj7b9L43996oG93ziVSGEcSoZ9xowZI6NGjYqEsFOnThV/rupQSKEBdMASpNAGGym0cUMKk3NDCpMzQwptzMql8KF3vpDhkz62HyRG5bHtd5JRZx6IFMZg5XKXGTNmSK9evWTixInSokULGTBggLRu3Vr69+9fZb9Iocs4K5pCCm35IIU2bkhhcm5IYXJmxSiF5x/aRvof+wPRz8dMc1u3bp1MeHueDH86XSm8/Mi95Yqj9pa6tUrTPJ3o2KwUpoB49OjRsnTpUhkyZEh09GnTpknfvn1l8uTJ25TCax78SwodbX7IX3TeI8g4xTRIKClcsHS1/OWjf6aO7sDWTeSKh98XPpImGWr9nEI+kiYZMz68Ohmv8r0P27uF9CrbS3rc/47tADGriu3pY5XCfXZM/z6/nRrVkc8WrZTrUl4p7HfsD6RZ/dpSI+Wr1Ls3ry+T53zNPYUx/93E3m3w4MHSrl076dGjR1SzcOFC6dKli8yaNUtKS7du+rpSeMoNf5Q/Tvs89liWHS8p20uuOvGHltJc14SUQv1w5JlfLEmV99NXHIYUGggjhcmhIYXJmWkFUmjjVi6Fv/nzTNsBYlb1PnJvaVK/VhAprFVaIrc8NytmZ7bdfvN/2ss/l61GCm34tl7Vu3dvKSsrk+7du0c76aphx44dZfr06RUPnUyYMGGzAwwfPjySwrS3pg1qI4UGyCGl8LbnZxs6TFbS89A2Mv7N/01WZNj7osP2lPte/9RQmazkkq57ydjJ6T41px3pys09KT+dp+P8+5F7y50vz00GwbB376P2lt/9Nd1xSktqiObz+1c/MXQYv6Re7VI5o2NrmfBWuvO6Sb1a0Wf7/em9L+I3Z9izeYPa0mXvFvLkB18aquOXtGxYRzq1aSbP/G1+/CLDnrs2rSd7tdhBJs/5ylAdv2SvFg2kUb1aMn3et/GLDHvqaqTO7VkLlhmq45e0a9VQ1n6/Qf7+1fL4RYY9f7RbE5m3eKUsXrHWUJ2s5LYzfhyroMaGDSHexhqrF/NOetm4bdu20rNnz+gYCxYskK5du8rs2bOlpKQk+rutSaF5UAohAAEIQAACEIBABgjMmTMnVpdFIYV33XWXzJ8/X4YNGxad9JQpU2TgwIHbvKcwFiF2qjYC1157rRx99NFy2GGHVVsPDFz9BPQKwN133y1Nmzat/mbooFoIfP7559E94+PGjauW8RnUB4Fnn31WPv74420+ROqj22x2URRSOHfuXOnWrZtMmjRJWrVqJX369JE2bdpEYsiWXQJIYXazK2TnSGEhaWbzWEhhNnMrdNdIYaGJbn68opBCPS29PDxixIjoDDt06CAjR46Uxo0bp0+QEVIjgBSmhjZTB0YKMxVXKs0ihalgzdxBkcL0IysaKVRUSd9okj5eRtgeAkjh9tArnlqksHiytJ4JUmglV1x1SGH6eRaVFKaPixFCEkAKQ9L2OxZS6DebUJ0hhaFI+x4HKUw/H6QwfcaMAAEIQAACEIAABNwTQArdR0SDEIAABCAAAQhAIH0CSGH6jBkBAhCAAAQgAAEIuCeAFLqPiAYhAAEIQAACEIBA+gSQwvQZM0IlAvqE+Nq1a6VevXqbcdGX6+grCrf0UUI8WV5c02jNmjXR24Zq1aq12YlZs161apXUrFlzi8csLnrFczZVzQPyLJ6ct3UmK1askPr160uNGjU223XJkiXSsGHDireTle9g/VmyrV7y/nWkMO8zIND5L168WG655RbRp8d0O+igg+TXv/519HpC3V599VW58soroz/vuOOO8vvf/1722muv6L/HjBkjo0aNit5j3alTp4o/6w+NH/3oRxudgX4+5UknnRTorBgmKYFZs2bJddddJzNnzoxKjz/+eBk6dGjFLwlby1r3/eabb2TAgAFR3f33318xtM4D/aD6119/Pfq78847L3rjwZZ+wCTtl/3TIVDVPNhWnh999JHo++7PPPNMufTSSysa1O8ROn/Kt9atW8tf//rXdE6AoxaEwIsvvii33nqrLFy4MBK/c845R375y19Gx/7HP/4R5atvK9NNf34cd9xxsj0/SwrSdJEfBCks8oC9nN63334rf/rTn6J/9LVr147+gevf3XzzzbJ69Wrp3Lmz3HnnnXLooYfKf//3f0f76v9mzJghvXr1kokTJ0qLFi0iKdBv9vpDX79Z/PznP4+EsnzTlaLS0lIvp00fmxDQPOfNmycnnniirFy5Ui666CLRj5w57bTTqsxaJULfbb7//vvLd999J+PHj684sgriK6+8Ivfdd190TJ0T+spLXo/od/pVNQ+qyvPpp5+OfqnQN1YdccQRctlll1Wc5NVXXy3t27eP8tdtayvRfqnkrzPNc/fdd49+uf/iiy+iTP/yl7/IHnvsIZdccokccMAB0RvK9BeBU045RaZOnSp6RcnysyR/dG1njBTauFG1nQTefPNNGT58eLRyqH/W1aIXXnghOqpKon4z0B/0f/zjH6NLyvreU92mTZsmffv2jd5rraKgK0RPPfXUdnZDeXURuP3222XZsmVy1VVXyejRo7eata4O6DtP9dYDFcLKUnjWWWfJBRdcEK066qarzPq5dioPbNkgUHkeVJXn3/72t+j2kkceeUQaNWq0kRRefvnl0S8X+r50tmwS0OwvvPBC6dq1aySK+rOhZcuW0cnoL4Wa789+9rONTi7uz5Jdd901m1ACd40UBgbOcP+PgK4U6orP4MGDo1XA5557Tu66664KPEcddZTcdtttkRS2a9dOevToEX1NLzN06dIlEsJ33nlH+vXrJ6effnq0injMMcdEq4hs2SCgv/Hrqo7+MD/22GOjubC1rMtXf19++WV54IEHNpJC/QFy9913R6tEuukvGo899thGl5izQSSfXW46D+LkqVcYVA4rrxSqUOyyyy7SqlUrOeSQQ+SnP/1pdFWCLRsEvvrqq+hK0ZQpU0RvITjyyCNlzpw5Fc3rwoHmq1eOKm9xf5bo62/Ztk0AKdw2I/YoMIF3331XrrjiCvnzn/8cfQN/6KGH5L333qt4d7UOd+qpp0aXiB999FEpKyuLLjHqpquGHTt2lOnTp4venKwrBs2aNYsuLzzzzDNy4403ygknnFDgjjlcGgRU5HTFV1f99LK/3ie2taz1flLdtiSF++yzjzz//PMV96DqCvMdd9wRXWJi809g03kQJ88tSaH+cqkryvrwil6C1AcUdF5wb6n/OaAPjajg77ffftGVIP2lXyVfv8+Xbyp/ektA+X3F+vdJfpbo9xa2bRNACrfNiD0KSOCTTz6JVvbuvffe6GET3fS+Er0ErD8cyjddKRwxYkT0g10fRtFLB7otWLAgurQwe/bszZ5GU7nUFUf9fzbfBCZNmiQ33XRT9ItB8+bNo2b1FoFtZb21lUJdZdb7Dcvn0+OPP85Koe8pEHW3pXmg/763leeWpLDy6a5bty56KO2ee+6Rgw8+OAMk8t2irgLqPYV664deFfjyyy/l8MMP32ilUO8Z1StBeq+hbkl/lhx44IH5hhzz7JHCmKDYbfsJ6D96FUK9TFj5vhC9efhXv/pVxZOC5U8V64rPk08+GT1Qog8O6KaXFvQ+Ql1h2nTTp091tanyb5fb3zVHKDQBfTBo0KBB0WXgfffdt+LwKgLbynpLUqi3FuhKcvlT57/73e+iXx64p7DQyRX2eFubB3Hy3JYUaqdnnHFGNC/0/9n8EtCnxsuvGOgTyLrpaq/+kvfaa6/JzjvvHP3d2WefHbUriZYAAAw+SURBVP1Pf3ZYfpZwT2G8OYAUxuPEXttJQO8FLL+JuFu3bhVH03t+9J4ivU9QL/3qfST69KHKoK4izZ07V3R/XVHQS836JJo+eahiqJcY9O+aNGkS3WuoK036WVf6sTRsPgnoLwAXX3xx9KSwXioq3+rWrVtl1uX7bUkK9RYCnSt6GVqfPtanFPUhJn2Skc0ngarmQZw8N5VCvfz4/vvvR7eWrF+/PpIMXVHS21LKRcMniXx3pVeM9BahBx98sOLzaXWlUD+/VO8XVyHU7/UffPBBJPd6uVgfNrP8LMk36fhnjxTGZ8We20FARU+lb9NNvxnox9HoDwld5dMnj/UeQf14Gn3oQLcJEyZU3G+oNwur9OlN5nrZWZ9a1PsM9ZuI/gapT66VX47cjnYpTYmA/qDWFeBNtw8//DB6KGBrWZfvr7WbPn2slwp/85vfRPeP6X2mOgd0JVLvP2LzSaCqeaD3AG4rT72/TL8HlH9OoT60pr886jwq/zxT/fgr/SWTzS8BvX90001vK3r44YejX/T1Mwv1MrFuuvKvVwO252eJXxJ+OkMK/WRBJyLRzeFJ32iyfPny6AcBN5QXxxTijSbFkeP2noXljSb68Ua60qRXDNiKg4Bmqt/fk/6St7WfJcVBJb2zQArTY8uRIQABCEAAAhCAQGYIIIWZiYpGIQABCEAAAhCAQHoEkML02HJkCEAAAhCAAAQgkBkCSGFmoqJRCEAAAhCAAAQgkB4BpDA9thwZAhCAAAQgAAEIZIYAUpiZqGgUAhCAAAQgAAEIpEcAKUyPLUeGAAQgAAEIQAACmSGAFGYmKhqFAAQgAAEIQAAC6RFACtNjy5EhAAEIQAACEIBAZggghZmJikYhAAEIQAACEIBAegSQwvTYcmQIQAACEIAABCCQGQJIYWaiolEIQAACEIAABCCQHgGkMD22HBkCEIAABCAAAQhkhgBSmJmoaBQCEIAABCAAAQikRwApTI8tR4YABCAAAQhAAAKZIYAUZiYqGoUABCAAAQhAAALpEUAK02PLkSEAAQhAAAIQgEBmCCCFmYmKRiGQXwLLli2Tb775JgJQu3Ztadq0qdStWzcRkLFjx8qaNWukd+/eW6xbtGiRXHbZZXL77bfLzjvvLLNmzZLvv/9e9ttvv0TjxNk5zWPHGZ99IAABCGyJAFLIvIAABNwTeOihh+Taa6/dqM9zzjknEryWLVvG6v/qq6+WVatWya233rrF/RcsWCBdu3aVF154Qfbcc08ZNGiQLF26VO66665Yx9/aTjrm+++/L4ceemjFLoU69nY1RjEEIACBTQgghUwJCEDAPQGVwvvvv1/+8pe/yNdffy0zZ86M5O6HP/yhjBgxIlb/SaVwyZIlsn79+mhVcnu2Z599Vh577LGo//KtUMfenr6ohQAEILApAaSQOQEBCLgnUC6Ff/3rXyt6/dOf/iT/+Z//GV3mffrpp+WZZ56Ru+++u+Lrb7/9tlx33XXy1FNPRX+nUqiXoVXyXnzxRalVq5acdNJJ0qdPH6lZs6ZsulJ4xx13yOrVq2XgwIFR/VdffSU33nijvPnmm9Hf/+hHP5IHHnhAvvvuOxk9enS0wvjpp5/KIYccEl2GPuyww+SJJ56IVjhXrFgRrT42a9ZMHnnkEanq2DrWUUcdFa1UNm7cOBpb969fv77885//FJXMevXqyc9+9jPp0aOHNGrUaKP8nnzyyaivP/zhD9F56bZhwwY577zzovM966yzZMaMGdG5fPzxx9KmTRvp27evHHHEEdG+X375ZXQ+ep7KS3u54oorov7Le9HVWT2n8ePHR38/YcIE93OIBiEAgW0TQAq3zYg9IACBaiawJSm88sor5b333pPJkyeLfv2//uu/ImEq31555RW55JJLZM6cORVS+PDDD0fyo2L00UcfyX333ScXX3xxdBl6UymsvLKo9xaecMIJkQBeeOGF0rZtW1m4cKGccsop0bGHDRsmP/jBD6L/6RjTpk0TFdj58+dHQjd79mwZPny4lJaWyr777hsJavml7PJj63FUJteuXSv33HOPNG/eXB599FGpUaNGtH/l3hcvXhwJb8+ePSOhq7ypvOql6nvvvVcOP/zw6Esqgaeffro899xzkVyWlZXJaaedFvWvq68PPvigTJo0Kepf60eOHBldSlcp/e1vfyv7779/xeV77UUFWI/z7//+79FqbRr3XVbzlGN4COSSAFKYy9g5aQhki4BK3+9+97voEqxeelUZHDVqVCRc//Zv/xZbClVm3njjjUjOdLvpppuilbvp06dXKYWvvvpqJI+68qeCVNX22WefyTHHHFNxb6Kuun3wwQcbXT6uLIXl8jpx4kRp3759dOipU6fK2WefHYngQQcdFEnhyy+/LLpvee+6kqgCV/mydHlfl19+ebRKqGOXn+e7774rurqql9tVNss56CXyDh06RCuJ//Ef/7HZqT3++OOR9Coj3coFVXvZddddszWR6BYCEKiSAFLIBIEABNwTqPygSYMGDaRdu3aRNOklVF1Ji7tSqCt3+hRy+fb8889Hq4S6srdy5cqNHjSpLG56OVZX5vRSdbmUVYamwqWS9Pnnn0fSqsKlAqaXmLclhePGjYv20R7Kj61PSat86phnnnlmJGIqgJUfetHVRF2NVKnddCuXWJXLHXbYQbp06SK6sqrMfvnLX8pbb70lnTp1qijT/nVVUftYt26dKBd9OEYvJSuzDz/8cKMVV73srPdJskEAAsVFACksrjw5GwgUJYEtXT6ufKJbkkK9VKr3wlW+fLypWJWv0qkU6X2ClZ8+riyFeq+iytuUKVM246uSecstt0QrbQceeGB0j59eto4rhXpfnq56qoSp4Oqml5Q7duwov/rVr0Sfst7SQzJVSaHWqwj269cvuufv3HPPlXfeeSe6n1Ivf+vH++jKZ+WtVatW0aqkfl0vrXfv3j2S2rlz50aXkCtzrOop7qKcgJwUBHJCACnMSdCcJgSyTGBbUqgPVeiDE5VX237/+99vJjMqdXoJuXxTGRszZkwkPFXdU6j32+m9e/qAij6YUXnTBzFUwPSeQd30Mm+vXr0qpFA/91CFTM+hfKssefpAzC9+8YuKy826j67MnXrqqRX3BSaVQj2GXlrXY+t9gvqAip6nbtqnCmtlVuV96aqg3m+o9xTqQym63XzzzVEfSGGW/wXROwTiEUAK43FiLwhAoBoJbEsKVbp0NUzvfTv++OPl9ddflxtuuEH0A6k3fdBEV/F0X13tuuCCC+S4446TIUOGVCmFy5cvj54m1nvv9HKzPgSiTxrrQyt6/55e7r3tttvkk08+ie5T1PvvylcK9RLvpZdeGj3QoR+KrR++XVnytA994GP33XePLvHq5VsVyX/84x/RgyGb7l8eQ1UrhbrPvHnzoieH9XK7rvQdffTRUaleAj/55JOjy9K6Cqlf/9vf/hY9AKPCq5eVL7roIjn//PMjqdSnr/VJY6SwGv8BMDQEAhFACgOBZhgIQMBOQKVQP/ak8ipf5aPpR67o/XB6f52KoEqbXh7VVa7KMqMf5aJP4uq9drqpEKo86lO25SuF5auBm67Oqejp5VyVQd30o2e0L/37oUOHRqt7ul1zzTXRwx/azwEHHBDJp37sjV6q1k372fTYX3zxRfQRNCphuullW70krU8567allUK9bP3SSy9t8Z7Ccjb6dLL2p9Ksclm+qaDqR+XoOeumYqiSefDBB0f3CqpElnMcPHhw9AAKUmifv1RCICsEkMKsJEWfEIDANgnovXT6FpJtfeC0rnyVlJREn/eXdNNVQ30gZNNafcBEH+rY0oMoOoZ+5p8+EVzVmCqQKrj6cS+F2PSjd/TjYnQldEub9qzj6X2QyqN80yeSlWOTJk0K0QbHgAAEMkIAKcxIULQJAQhAIAkBXfHUzxHUexx32223JKXsCwEI5JQAUpjT4DltCECgOAno2130wRC9nK0rhPrWEzYIQAACcQgghXEosQ8EIACBjBDQJ4j1YRL9nEN9HR0bBCAAgbgEkMK4pNgPAhCAAAQgAAEIFDEBpLCIw+XUIAABCEAAAhCAQFwCSGFcUuwHAQhAAAIQgAAEipgAUljE4XJqEIAABCAAAQhAIC4BpDAuKfaDAAQgAAEIQAACRUwAKSzicDk1CEAAAhCAAAQgEJfA/wViaxg+8gGqywAAAABJRU5ErkJggg==", "image/svg+xml": [ "2005201020152020020406080100Publication yearcount" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig = px.histogram(\n", " X_train.loc[X_train[\"timestamp\"] > \"2000\", \"timestamp\"],\n", " labels={\"value\": \"Publication year\"}, width=550, height=250, \n", ")\n", "fig.update_layout(showlegend=False)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As expected, most of the articles were published between 2007 (the year Politifact was founded) and 2020 (the year the FakeNewsNet repository was published). But we also find that the timestamps are concentrated on the years 2016 to 2018—the year of the controversial 2016 US presidential election and the two years following. This insight is a further caution on the limitation of our analysis to carry over to nonelection years. \n", "\n", "Our main aim is to use the text content for classification. We explore some word frequencies next." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exploring Words in Articles" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'd like to see whether there's a relationship between the words used in the articles and whether the article was labeled as `fake`. One simple way to do this is to look at individual words like _military_, then count how many articles that mentioned \"military\" were labeled `fake`. For _military_ to be useful, the articles that mention it should have a much higher or much lower fraction of fake articles than 45% (the proportion of fake articles in the dataset: 264/584). \n", "\n", "We can use our domain knowledge of political topics to pick out a few candidate words to explore:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "word_features = [\n", " # names of presidential candidates\n", " 'trump', 'clinton',\n", " #congress words\n", " 'state', 'vote', 'congress', 'shutdown',\n", " \n", " # other possibly useful words\n", " 'military', 'princ', 'investig', 'antifa', \n", " 'joke', 'homeless', 'swamp', 'cnn', 'the'\n", "]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we define a function that creates a new feature for each word, where the feature contains `True` if the word appeared in the article and `False` if not: " ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def make_word_features(df, words):\n", " features = { word: df['content'].str.contains(word) for word in words }\n", " return pd.DataFrame(features)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is like one-hot encoding for the presence of a word (see {numref}`Chapter %s `). We can use this function to further wrangle our data and create a new data frame with a feature for each of our chosen words: " ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "df_words = make_word_features(X_train, word_features)\n", "df_words[\"label\"] = df[\"label\"]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(584, 16)" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_words.shape" ] }, { "cell_type": "code", "execution_count": 339, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
trumpclintonstatevote...swampcnnthelabel
164FalseFalseTrueFalse...FalseFalseTrue1
28FalseFalseFalseFalse...FalseFalseTrue1
708FalseFalseTrueTrue...FalseFalseTrue0
193FalseFalseFalseFalse...FalseFalseTrue1
\n", "

4 rows × 16 columns

\n", "
" ], "text/plain": [ " trump clinton state vote ... swamp cnn the label\n", "164 False False True False ... False False True 1\n", "28 False False False False ... False False True 1\n", "708 False False True True ... False False True 0\n", "193 False False False False ... False False True 1\n", "\n", "[4 rows x 16 columns]" ] }, "execution_count": 339, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df_words.head(4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we can find the proportion of these articles that were labeled `fake`. We visualize these calculations in the following plots. In the left plot, we mark the proportion of `fake` articles in the entire train set using a dotted line, which helps us understand how informative each word feature is—a highly informative word will have a point that lies far away from the line:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2023-07-17T23:13:40.657923\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.4, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fake_props = (make_word_features(X_train, word_features)\n", " .assign(label=(y_train == 1))\n", " .melt(id_vars=['label'], var_name='word', value_name='appeared')\n", " .query('appeared == True')\n", " .groupby('word')\n", " ['label']\n", " .agg(['mean', 'count'])\n", " .rename(columns={'mean': 'prop_fake'})\n", " .sort_values('prop_fake', ascending=False)\n", " .reset_index()\n", " .melt(id_vars='word')\n", ")\n", "\n", "g = sns.catplot(data=fake_props, x='value', y='word', col='variable',\n", " s=5, jitter=False, sharex=False, height=3)\n", "\n", "[[prop_ax, _]] = g.axes\n", "prop_ax.axvline(0.45, linestyle='--')\n", "prop_ax.set(xlim=(-0.05, 1.05))\n", "\n", "titles = ['Proportion of articles marked fake', 'Number of articles with word']\n", "\n", "for ax, title in zip(g.axes.flat, titles):\n", " # Set a different title for each axes\n", " ax.set(title=title)\n", " ax.set(xlabel=None)\n", " ax.set(ylabel=None)\n", " ax.yaxis.grid(True);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This plot reveals a few interesting considerations for modeling.\n", "For example, notice that the word _antifa_ is highly predictive---all articles that mention the word _antifa_ are labeled `fake`. However, _antifa_ only appears in a few articles. On the other hand, the word _the_ appears in nearly every article, but is uninformative for distinguishing between `real` and `fake` articles because the proportion of articles with _the_ that are fake matches the proportion of fake articles overall. We might instead do better with a word like _vote_, which is predictive and appears in many news articles." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This exploratory analysis brought us understanding of the time frame that our news articles were published, the broad range of publishing websites captured in the data, and candidate words to use for prediction. Next, we fit models for predicting whether articles are fake or real." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.4" } }, "nbformat": 4, "nbformat_minor": 4 }